(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

Reducing Computational Complexity in CNNs: A
Focus on VGG19 Pruning and Quantization

Md. Mijanur Rahman!, Anik Datta?, Md. Sabiruzzaman®, Md Samim Ahmed Bin Hossain*
Assistant Professor, Dept. of CSE, Southeast University, Dhaka, Bangladesh1
Dept. of CSE, Southeast University, Dhaka, Bangladesh?3:4

Abstract—The Convolutional Neural Network (CNN) models
are effective in computer vision strategies and have gained
popularity due to their strong performance in visual tasks. Never-
theless, models with architectures such as VGG19 are expensive
in terms of computational resources and require huge memory,
which limits their usage on low-end devices. The study examines
how efficiency can be increased in the model VGG19 by using
model compression techniques, like pruning (structured and un-
structured) and quantization (8-bit and 4-bit Quantization-Aware
Training - QAT). The efficiency of the individual compression
approaches was tested by thoroughly exploring the VGG19 with
the MNIST, CIFAR-10, and Oxford-IIIT Pet datasets. Each model
was evaluated against the baseline based on measures of accuracy,
model size, inference time, and complexities of the model, CPU
usage, and memory usage. The applied QAT approach reduced
the model size by 75% with a drop in computational cost
across all methods. In addition, the 8-bit quantitative assessment
allowed for substantial system compression alongside increased
speed delivery with minimal impact on accuracy. The highest
compression and sparsity achieved by 4-bit QAT was 48 %, which
was not effective as it reduced accuracy on complex datasets,
with additional computational overhead on T4 GPU. Structured
pruning resulted in faster inference, but unstructured pruning
also demonstrated a good result in retaining accuracy and even
improving it. To simplify the VGG19 structure, pruning and
quantization mechanisms are suggested in order to simplify the
architecture to implement the model on edge devices sufficiently,
without compromising prediction performance.

Keywords—VGG19 Model optimization; model compression;
pruning, quantization; structured pruning; unstructured pruning;
memory management; quantization-aware training; 8-bit; 4-bit

I. INTRODUCTION

CNNs have experienced significant advancements during
the last few years to solve a wide range of computer vision
[1] problems that include simple image classification [2] tasks
alongside complex object detection [3] problems. The VGG19
CNN model stands among multiple models as a significant
impactor because it significantly contributes to deep learn-
ing by accurately addressing challenging image classification
tasks [4]. Although efficient, direct deployment of VGG19 on
resource-limited devices, i.e., smartphones and edge computing
setups, is infeasible because of its enormous parameter size and
excessive computational demands in terms of floating-point op-
erations per second (FLOPs) [5]. Model compression methods,
which include pruning and quantization, have addressed these
challenges effectively. Quantization achieves maximum sav-
ings in memory usage plus computation requirements through
its usage of weight and activation bit widths, which makes
it ideal for devices with minimal resources [6], [7]. Model
performance enhancement through pruning strategies involves

connection reduction for both size reduction and computational
complexity reduction [8].

Although the advancement in model compression has been
remarkable, most of the current research mainly concentrates
on large-scale data and high-resource computing settings.
However, their performance is hardly well-tested in environ-
ments where datasets are comparatively small and computer
resources are modest. The testing of their performance needs
more investigation in situations that use small datasets along-
side minimal computer resources. Different pruning techniques
like layer-wise pruning [9], structured pruning [10], activation-
based pruning [11], and different quantization techniques like
mixed-precision and post-training quantization [12], [13], have
been studied separately on different models. There is lim-
ited modeling understanding of where the efficiency of these
techniques is jointly implemented on the VGG19 model with
constrained availability of resources. This study attempts to
solve this gap by making a thorough evaluation of pruning
and quantization techniques performed on VGG19.

To address this gap, the following research questions are
asked:

e RQI: What level of impact do various pruning meth-
ods (structured versus unstructured) have on the
performance considering trade-offs of VGGI9 on
resource-limited datasets?

e RQ2: Which bit-width (8-bit QAT versus 4-bit QAT)
of the encoded quantization is the best to keep the
accuracy and simultaneously maximize the compres-
sion?

e RQ3: What are the performance of these optimization
methods on data with different complexities (MNIST,
CIFAR-10, Oxford-IIIT Pet)?

The gap is to be filled by comparing the accuracy, size,
and processing costs of models, then evaluating the weight
distribution and parameter sparsity norms [14]. To the best
of our knowledge, such an in-depth, visual comparison of
VGG19 with different reporting conditions, namely structured
and unstructured pruning and 8-bit and 4-bit QAT.

This study compares and contrasts these approaches and
studies their behavior under both isolated and combined set-
tings and resource-limited data. The key contributions of this
study are: i) an empirical evaluation of many pruning and
quantization techniques on VGG19 and ii) their analysis of
utility-by-constraints of usefulness under resource-constrained
conditions, hence generalizing beyond the large-scale studies

www.ijacsa.thesai.org

1076 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

done typically in the literature on model compression tech-
niques.

The structural framework of the study is as follows: the
literature review is given in Section II, methodology in Section
III, the experimental results in Section IV, detailed discussion
of the results in Section V, the future directions in Section VI,
and conclusion with final remarks in Section VII.

II. RELATED WORK

Research into deep learning model improvement seeks to
enhance VGGI19 and its contemporaries. Different research
studies investigated pruning alongside quantization and trans-
fer learning methods to minimize complex model sizes with no
negative impact on accuracy levels. Resource-restricted devices
such as mobile devices and embedded systems benefit most
from optimization techniques because optimizing performance
takes priority on such devices.

Researchers adopted VGG19 for detecting defects on
strip steel surfaces through successive solutions of restricted
datasets, according to study [15]. The team obtained 97.8%
accomplishment in accuracy through the implementation of
new preprocessing approaches and model enhancement strate-
gies. Until it conducted another training process, the detec-
tion model failed to detect recently introduced defect types
and missed apparent defects in its evaluation. The authors
conducted a comprehensive research study of diverse pruning
and quantization methods in [16]. According to the research
findings, model pruning results in an accurate yet significantly
smaller model, approximately 13 times smaller compared
to the original version, while quantization offers efficiency
benefits, although this comes at a cost to precision levels [17].

The fusion filter and channel pruning approach from ref-
erence number [18] eliminated 83.8% of model parameters
and 71% of computations but obtained slightly better accuracy
results. The reinforcement learning-based pruning techniques
[19] use automatic management for pruning speeds to achieve
73% maximum computation reduction before accuracy starts
to degrade beyond traditional methods of kernel pruning along
with guided pruning and soft filter pruning. Scientists across
the board have conducted substantial research that led to the
development of various quantization techniques. Many scien-
tists have extensively researched and developed various tech-
niques for quantization. The study in [20] analyzed VGG19
along with MobileNet when their parameters were quantized
to 8 bits. VGG19 demonstrated higher quantization resilience
since it maintained only an 8.58% decline in accuracy, whereas
MobileNet experienced substantial accuracy degradation. Re-
search indicates that combined quantization and pruning meth-
ods create effective solutions for the objective. Using a 4-
bit quantization on the models, it has shown more than 30%
variable reduction and as much as 50% memory reduction in
CNN models, with minimal damage to accuracy on real-world
edge devices [21].

The improvement of VGG19 and ResNet34 model accu-
racy and complexity comes from Minimax Concave Penalty
(MCP)-based pruning techniques [22]. The technique adopted
DeepPruningES by [23] along with its evolutionary strategy-
based method to achieve up to 80.89% FLOPs reduction on
ResNet56 through the generation of multiple model variants

Vol. 16, No. 6, 2025

with various trade-off selections. A technique that merges
weight and feature-level pruning with quantization method-
ology benefits MobileNetV2 by sustaining a 0.37% accuracy
decrease after pruning 50% of the weights while improving
operational performance [24].

VGG19 demonstrates its deployment capabilities in real-
world applications apart from optimization purposes, thus
showecasing its usable nature and versatility. Several improved
forms of VGG19 demonstrate high performance levels when
used for medical diagnosis applications. The proposed E-
VGG19 system by Kandhro et al. detected skin cancer in
real-time through pooling/dense layers and the combination
of CNN features and SVM and KNN classifiers [25]. The
collaboration between Faghihi and colleagues led to 98.18%
skin lesion classification accuracy when using VGG19/VGG16
together with feature-modified AlexNet through transfer learn-
ing and dropout [26]. The combination of VGG19 along with
morphological features and Otsu thresholding and watershed
segmentation resulted in more than a 99% success rate for par-
asitic organism detection per Kumar et al. [27]. Tuned VGG19
models showed better performance than pipeline workflow
combinations of previous architectural models for the detec-
tion of COVID-19 and pneumonia on X-ray dataset analysis
[28], [1]. Research findings proved VGG19’s superiority in
medical imaging applications over newer structures, DenseNet
and ResNet [29]. Enhancing the performance on imbalanced
COVID-19 datasets greatly relied upon data augmentation
along with hyperparameter optimization techniques [30].

The study by Ahmad et al. demonstrated how VGG19 suc-
cessfully detected tomato leaf diseases by fine-tuning its last
layers when trained on combined field and laboratory samples
[31]. Remote sensing technology reached peak performance
in small aerial target detection under class imbalance through
the hybrid VGG19 and ResNet50 architecture combined with
the Spiral Search Grasshopper Algorithm [32]. Accounting for
road infrastructure monitoring involved the optimization of
VGG19 through Q-learning applied on a two-layer optimizer
that managed redundancy in filters and reached a 96.4% F1-
score in drone-based road damage detection [33]. The VGGI19
network underwent minor modifications to create a face anti-
spoofing system, which achieved a 100% success rate in
detecting spoofed attacks [34]. The Table Extraction Model
(TEM) developed by Igbal et al. used VGGI19 as its base
structure to exceed heuristic scanning methods in extracting
document tables [35]. The VGG19 model functions as part
of content-based image retrieval (CBIR) systems for image
retrieval purposes. By adding texture and color features to its
design, the model delivered better accuracy for images with
semantic similarities [36].

Despite its dated design, VGG19 remains a flexible and
effective baseline for optimization research. The model’s basic
design makes it an optimal choice for optimization research
through pruning and quantization and transfer learning and
hybrid approaches. The analyzed studies possess various areas
that still need improvement. However, some of the biggest
VGG19 struggles are in the sense that it has not worked on
small datasets or subsets of datasets as appropriate, imbalances,
compromises with precision and compression, and not being
able to generalize outside of the domain without transfer learn-
ing, and there do not exist efficient compression frameworks.

www.ijacsa.thesai.org

1077 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Constructing accurate and highly deployable VGG19 versions
requires the resolution of particular challenges to service data-
scarce and resource-limited systems.

III. METHODOLOGY

The research applied pruning and quantization processes to
VGG19 architecture when assessing three benchmark datasets
consisting of MNIST, CIFAR-10, and Oxford-IIIT Pet. The
datasets contain visual data categories with original dimensions
of 28x28 and 32x32 pixels, thus providing efficient computa-
tion while supporting complex image identification. Data aug-
mentation procedures and preprocessing methods allowed all
images to be uniformly resized to 224x224 pixels, even though
VGG19 maintained its fixed input requirements. Among the
available datasets, the MNIST provides 70,000 grayscale digits
of handwriting distributed across 10 classes, and CIFAR-10
shows 60,000 color object pictures divided into 10 categories.
A total of 7,349 images derived from the Oxford-IIIT Pet
dataset with 2 classes were utilized, but training and evaluation
occurred using 5,000 strategically chosen illustration samples
from each collection. The data was split into training and
experimental samples, where the data partitioned itself into
training and experimental parts, keeping an 8:2 ratio, which
ensured model training with diverse datasets while maintaining
testing reliability on new data samples. The decision to split
the data 80:20 was made by evaluating how training robustness
relates to testing strength.

The torchvision library in PyTorch provides comprehensive
image processing capabilities through data loading and prepro-
cessing features that contain built-in functionality to control
datasets alongside transform functionalities and augmentation
options.

Fig. 1. VGGI19 Architecture.

The VGG19 convolutional neural network developed by the
Oxford Visual Geometry Group introduces a total of 19 layers
composed of 16 convolutional layers together with 3 fully
connected layers and 5 max-pooling layers (see Fig. 1) [37].

Through its 3x3 kernel with 1 stride, the model can
master small-scale spatial features within each layer. After
each convolutional layer, the model passes through ReLLU non-
linearity for introducing complexity. The max-pooling layers

Vol. 16, No. 6, 2025

progressively shrink the spatial dimensions but keep the most
important of the feature representations. To begin the multi-
class classification process, the last fully connected (FC) layer
will include the final softmax activation function, and binary
classification will be applied to the Oxford-IIIT Pet dataset.

Load VGG19
& Modify Final FC

Preprocess Dataset

Resize to 224x224 Model

Compression

layer Grayscale - RGB

Evaluate Train Model

Export Model
& - Accuracy
Visualization - Model Size
- FLOPs

- SGD Optimizer

- Cross Entropy Loss
- Gradient Clipping

- Early Stopping

Fig. 2. VGG19 Model optimization and evaluation pipeline.

Fig. 2 represents the operational sequence of modifying,
compressing, training, and evaluating the VGG19 model. Test-
ing and training using optimization methods serve as inter-
mediate steps before exporting the model using compression
methods.

A. Pruning

The model simplification technique of pruning functions
by removing insignificant weights and layers or neurons to
maintain performance quality. This process substantially de-
creases both memory usage and computational expenses for
the model. Deploying models on low-end devices makes for
efficient performance and function use.

Train and Evaluate
Sparse Model Sxportioce) J

Fig. 3. Unstructured pruning training.

Unstructured Pruning

- Gradual pruning

Load Pretrained
VGG19 - L1 magnitude-based

& Preprocess - Step-wise pruning
- Remove izati
- Make pruning permanent

- Compute sparsity

[)
2}

1) Unstructured pruning: In unstructured pruning, the im-
portance of the weights is analyzed, and less important weights
are removed. This is usually determined by a gradient-based
method during backpropagation. Although this technique sig-
nificantly reduces the size of the model, the sparse weight
matrix has a limited impact on improving the efficiency of
standard hardware implementations.

The removal of unimportant weights through unstructured
pruning produces reduced models that preserve most of their
operational accuracy. Fine-tuning post-pruning is used to re-
cover any possible accuracy loss.

The methodology for unstructured pruning implementation
on a pre-trained VGG19 model is illustrated in Fig. 3. L1
magnitude-based pruning uses step-wise methods to remove
parameterization before enforcing permanent sparsity, followed
by training and evaluation to export the model.

www.ijacsa.thesai.org

1078 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

a) Mathematical representation: L1-norm Based Un-
structured Pruning: For each weight tensor w in a module, the
importance of each weight is computed as the L1-norm, as
shown in Eq. (1).

importance = |WV| (D

b) Gradual pruning strategy: In the implementation of
this strategy, the pruning is applied in several iterations and
does not remove a fixed percentage of the weights in one
pass, as shown in Eq. (2). The pruning amount is gradually
increased over a series of steps, starting from an initial amount
and progressing to a target amount, as shown in Eq. (3).

A nal — Aini
Step Increment: Ageps = % @)

Pruning Amount Update: A; = Ajpit + ¢ X Ageps (3)

c) Sparsity calculation: After applying pruning, the
sparsity of each module is calculated as Eq. (4) as the
percentage of weights that have been set to zero.

number of zero weights

sparsity = () x 100 4

total number of weights

d) Overall pruning summary: Individual layers are then
pruned, a summary is calculated overall, and parameters are
aggregated across all layers, as given by Eq. (5).

T—-R
overall_sparsity = (T) x 100 o)

where, T = total parameters and R = remaining parameters

2) Structured pruning: Structured pruning functions dif-
ferently from unstructured pruning because it removes entire
neurons, channels, or filters, which results in hardware-friendly
and deployment-ready implementation. The implementation of
this technique becomes more feasible in practical applications
because hardware compatibility surpasses unstructured pruning
methods. The method shows outstanding success in minimiz-
ing accuracy losses while reducing the convolutional layers of
VGGI19.

Structured Pruning

Load Pretrained - Compute L1 norm
VGG19 - Prune filters

- Adjust next layers

- FC reconfiguration

- Fliter comparison, FLOPs

and Params

Train and Evaluate

Export model
& Preprocess

Fig. 4. Structured pruning training.

Fig 4 illustrates structured pruning on VGG19 pretraining.
The system first calculates L1 norm values to locate insignif-
icant filter elements for pruning while it readjusts subsequent
layers, reorganizes the fully connected layers, measures FLOPs

Vol. 16, No. 6, 2025

and parameter reduction, and then retrains and generates an
exported model.

Structured pruning creates compatibility with hardware
accelerators because it allows stable memory patterns that
enhance inference speed significantly. The process cuts down
the model size with computational complexity because it omits
unnecessary channels and neurons to maintain both model
performance levels and feature extraction capacity.

3) Mathematical formulation: Filter Importance Computa-
tion: For each convolutional filter, its importance is measured
by the L1-norm of its weights, Eq. (6).

Ii=> |wl (6)
J

a) Pruning decision: For a convolutional layer with
Niers filters and a pruning ratio r, the number of filters to
prune is given by Eq. (7).

Nprune = LT X nﬁltersJ (7)

Filters are ranked by their L1-norm importance I; =
> ; |w;j], and the npuge filters with the smallest I; are re-
moved.

b) Adjusting subsequent layers: The input channels for
the next convolutional layer are modified according to the
output channels that were previously trimmed, according to
Eq. (8). This is done by re-indexing the weight tensor along
the channel dimension:

new input channels = previously kept indices ®)

B. Quantization

Quantization is a model compression technique that takes
high-precision 32-bit floating-point weights and activations to
low bit-value such as 8-bit or 4-bit integer. This heavily cuts
down the memory usage and computational cost at the price
of a little loss of accuracy in edge devices. So it is possible to
guarantee good performance along with model functionality.

1) Precision-based quantization: Precision-based quanti-
zation, especially fixed-point quantization, is widely used to
reduce the bit-width of weights and activations. When applied
to the convolutional, activation, and fully connected layers of
VGG19 [38]. The model implements 8-bit and 4-bit quanti-
zations for all its convolutional layers in addition to ReLU
activations and fully connected layers.

2) Quantization-aware training: QAT is a training proce-
dure in which the quantization operation is applied during the
forward operation of the model, i.e., the low-bit representation
used for inference[39]. But the full precision of the parameters
is saved in the backward pass, that is, the back-propagation,
so that the model can learn and correct the quantization errors.
This allows the model to be aware of quantization effects
during the training phase, and it retains high performance
and efficiency at the inference period. Mathematically, the
quantized forward pass is represented as Eq. (9).

www.ijacsa.thesai.org

1079 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Tquant = Q(ﬂﬁ))

g(z) is the quantization function. This way, inference-time
quantization’s accuracy is preserved, and QAT is one of the
best methods for compressing deep learning models.

3) Module fusion: Efficient quantization, together with
faster inference speed, needs module fusion to serve as a
critical preparation step. The model gains advantages from
reduced overhead, lower quantization error, and improved
runtime efficiency through single fused modules retaining the
same computed output resulting from combining convolution
and ReL.U layers.

4) Quantization and dequantization: These equations de-
scribe the dictionary defining the mapping of floating-point
numbers to their integer representation: The quantized value
was calculated with Eq. (10), and the dequantized float value
was calculated with Eq. (11).

Quantization: ¢ = round (%) + z (10)

Dequantization: z = s X (q — 2) (11)

5) 8-Bit QAT: The forward pass of quantized VGG19 mod-
els is composed of a sequence of quantized convolutions and
fully connected layers, with in-between ReLUs and average

pooling.

Fig. 5. 8-bit Quantization aware training.

8 bit Quantization

Load Pretrained
VGG19
& Preprocess

Train Model
& Convert to
Quantize

- Fuse Conv+ReLU
- Prepare QAT Observers

Fig. 5 shows the pipeline for the quantization of 8-
bit VGG19 models during preprocessing. The quantification
method starts with convolutions and ReLLUs before preparing
QAT observers, then conducts training followed by quantized
model conversion and evaluation and final export processing.

6) Kaiming normal initialization for weights: This method
makes the weights have the appropriate value such that the
variance of the activations remains roughly the same across
layers. It is also good at signalling in deep nets using ReLU
activations, helping to deal with issues with the vanishing or
exploding gradients. The weights w are sampled from a normal
distribution defined as Eq. (12).

w~ N (0, 2> (12)

Nin

7) 4-Bit QAT: A structure similar to the 8-bit configura-
tion was followed, but all quantization functions and weight
representations were replaced with their 4-bit counterparts.

The workflow for 4-bit QAT to apply on the VGGI19
model appears in Fig. 6. The procedure starts with importing
the model while performing the required input preparation.

Vol. 16, No. 6, 2025

4 bit Quantization
Loadvlg(e;f‘rglned Warm-up Train & Export
Pt Training - Fuse Conv+ReLU Evaluate model
- Prepare QAT Observers

/

Fig. 6. 4-bit Quantization Aware Training

After weight stabilization, the short warm-up training begins.
The implementation of QAT begins when 4-bit quantization
combines convolution and ReLU layers and then adds QAT
observers for all the layers. The model proceeds to fine-tuning
through a training and evaluation stage, after which it becomes
exportable for deployment.

The choice of pruning rates and quantization bits was done
under the premise of preliminary testing that optimized the
trade-offs. It was found that a pruning rate of 30% yields
the best trade-off between compressing and maintaining the
accuracy gained from the preliminary experiments. Training
the hyperparameters was performed based on known model
compression methods. In the process, it was found that cosine
annealing learning rate is an absolute requirement for achiev-
ing stable QAT convergence.

8) Cosine annealing learning rate equation: Eq. (13) gives
the dynamical learning rate during the period of training
epochs by implementing a cosine that provides a progressive
decay within the process of learning.

2 max

1 Tour
Nt = Nmin + 7(nmax - nmin) (1 -+ cos (Tcu X 7T>) (13)

C. Combined Metrics for Performance Evaluation

1) Model size: Eq. (14) was used in calculating the model
size.

Z numel(p) x element_size(p)

Model Size (MB) = 10242

pEparameters

(14)

2) Inference Time (T): Eq.(15) defines the inference time.

T
Tbatch,avg — 2171 batch (15)

3) Parameter Reduction (R): The percentage decrease in
model size due to compression [see Eq. (16)]:

SCO[H IesSse
R= (1 - "d) x 100 (16)
Soriginal

4) Incremental memory usage: Eq. (17) defines incremen-
tal memory usage.

AM = Mcurrent - Mbaseline (17)

www.ijacsa.thesai.org

1080 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

5) FLOPs counting: Eq. (18) defines FLOPs counting.

ndim(p)

FLOPs = 2 x Z H dim(p) (18)

pEparameters (=1

6) Early stopping: The early stopping mechanism contin-
uously monitors the validation loss Ly ;. If, for a given epoch
t, the loss difference

Lval,t - Lval,t+At (19)

Eq. (19) is less than min_delta for patience consecutive
epochs, the algorithm concludes that further training is un-
likely to yield significant improvements and stops the training
process.

IV. EXPERIMENTAL RESULTS

The evaluation in this part utilizes experimental tests on
VGG19 optimizations to study structured and unstructured
pruning together with quantization effects on performance out-
comes. Three popular benchmark datasets—MNIST, CIFAR-
10, and Oxford-IIIT Pet Dataset—are used for the evaluation
to measure the actual performance of these optimizations. The
tests are mainly conducted based on several important indi-
cators, including model size, FLOPs, classification accuracy,
inference latency, CPU utilization, and memory consumption.

In this study, the training and evaluations are run on
Kaggle P100 GPUs to maximize computational efficiency.
After the training phase, the developed models were exported
and subsequently subjected to evaluation. The experimental
benchmarking of the models was conducted using CPUs on
Google Colab. The 4-bit model inference overhead was specif-
ically measured on Google Colab CPUs during this evaluation
phase. Although 4-bit quantization significantly reduces model
size and memory consumption, the overhead arises because
standard CPUs are optimized for 8-bit or higher precision
operations. In the absence of native 4-bit hardware support,
additional computational cost is incurred due to packing,
unpacking, and emulating low-bit arithmetic during inference.

The optimization process of VGG19 baseline models starts
through standard training interventions on each dataset. The
model then undergoes both structured and unstructured pruning
procedures, which enhance resource utilization. The efficiency
of parameter utilization in the model has improved since
unnecessary parameters are now being removed. Tests of both
4-bit and 8-bit quantization techniques seek to enhance the
model compression efficiency.

The collected findings help to determine the impact of
these optimization methods on system performance. Model
efficiency faces an opposing force against inferential perfor-
mance when implementing these optimization techniques. The
findings from the research demonstrate valuable information
regarding the realistic implementation prospects of the opti-
mized VGG19 model.

Vol. 16, No. 6, 2025

1) Model efficiency summary: Examination of the advan-
tages of pruning and quantization on the VGGI19 architec-
ture was conducted via inspection of performance metrics,
including decreased parameters, increased FLOPs, and overall
sparse network. Eq. (14) was used in calculating the model
sizes of each configuration. The performance metrics of the
baseline model and its structured and unstructured pruning
implementations appear in Table I, Eq. (16), and Eq. (17).

TABLE I. MODEL EFFICIENCY COMPARISON

Metric Original | Structured | Unstructured 8-bit 4-bit
Parameters (M) 139.58 98.70 80.27 139.58 139.58
Pruning Rate (%) - 30 30 - -
FLOPs (G) 0.28 9.77 0.28 0.28 0.28
Sparsity (%) 0 0 42.50 1.59 48.10
Model Size (MB) 532.57 376.64 532.57 13342 | 133.20
Size Reduction (%) - 29.28 0 74.95 74.99

The VGG19 system requires 139.58 million model param-
eters and computation of 0.28 GFLOPs Eq. (18). A structured
pruning technique with a 30% rate allows our model to
maintain 98.70 million parameters while lowering FLOPs to
9.77 GFLOPs. In contrast, the unstructured pruning presents a
higher pruning ratio of 42.50%; thus, the total parameter in the
compressed model is reduced to 80.27 million. Overall spar-
sification of the pruned network is 42.50%, greatly reducing
computational complexity. For 8-bit QAT and 4-bit QAT, the
observed model size reduction is almost 75% [38].

For training efficiency, the pruned model was trained
over 30-45 epochs with early stopping with a batch size of
32. The optimization method decreases algorithm processing
complexity without affecting accuracy performance[40].

2) Best weight distribution after model quantization: These
experiments show that this approach effectively can compress
the model, reduce the number of FLOPs, and keep a balance
between efficiency and performance, potentially demonstrating
the most effective technique to compress deep neural networks
with a slight loss in accuracy.

3) Best layer comparison after model compression: In
summary, the results from Fig. 14 and Fig. 13 show that,
although it offers compression benefits, structured pruning
keeps accuracy. Excessive quantization methods, like using
4-bit, need exact calibration precision when working with
challenging dataset materials.

4) Inference performance and norm-based metrics: Table
IIT shows the effect of the comparison depending on inference
time [Eq. (15)], CPU consumption, memory consumption,
norm-based weight measures (L1, L2), and sparsity.

The best way for real-time inference with a minimal loss
of model goodness was 8-bit quantization, which reliably
delivered the fastest inference time and less memory usage
across all datasets. 4-bit quantization provided the highest
sparsity (up to 48%) and considerable model compression
along with competitive inference speed with overhead.

The structured pruning method decreased inference time
and memory consumption, though it did not introduce weight
sparsity because it primarily modified network architecture
instead of parameter numbers.

www.ijacsa.thesai.org

1081 |[Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

TABLE II. CLASSIFICATION PERFORMANCE

Dataset Approach Epochs Accuracy Top-1 Acc. Top-5 Acc.
Baseline Model 13 98.00% 98.00% 100.00%
Structured Pruning 30 97.60% 97.60% 100.00%
MNIST Unstructured Pruning 16 98.10% 98.10% 100.00%
8-bit Quantization 17 97.50% 97.50% 100.00%
4-bit Quantization 9 98.30% 98.30% 100.00%
Baseline Model 11 86.30% 86.30% 99.80%
Structured Pruning 30 71.80% 71.80% 98.10%
CIFAR-10 Unstructured Pruning 19 86.50% 86.50% 99.70%
8-bit Quantization 21 85.70% 85.70% 99.60%
4-bit Quantization 11 71.80% 71.80% 84.80%
Baseline Model 9 96.74% 96.74% -
Structured Pruning 18 94.02% 94.02% -
Oxford-1IIT Pet | Unstructured Pruning 15 97.96% 97.96% -
8-bit Quantization 13 97.42% 97.42% -
4-bit Quantization 10 89.67% 89.67% -
Note: Top-5 accuracy was not computed for the Oxford-IIT Pet dataset due to its binary classification nature.
TABLE III. INFERENCE PERFORMANCE AND NORM-BASED METRICS
Dataset Approach Inference Time (ms) | CPU Usage (%) | Peak Memory (MB) | L1 Norm | L2 Norm | Sparsity
Baseline Model 849.286 98.530 41762 772058 100.57 0%
Structured Pruning 483.952 99.700 35.641 536877 83.23 0%
MNIST Unstructured Pruning 829.155 99.547 24.812 665095 98.75 7.93%
8-bit Quantization 472216 99.827 0 771630 100.09 1.59%
4-bit Quantization 489.674 99.352 0 622668 96.62 48.10%
Baseline Model 842.537 99.675 30.719 772053 100.57 0%
Structured Pruning 473.458 99.819 23.977 536882 83.23 0%
CIFAR-10 Unstructured Pruning 837.766 99.562 30.699 666228 98.75 0.12%
8-bit Quantization 480.096 99.626 0 771622 100.09 1.59%
4-bit Quantization 485.351 99.577 0 616684 95.94 48.42%
Baseline Model 837.163 99.610 30.594 771776 100.55 0%
Structured Pruning 475.043 99.717 36.094 536555 83.20 0%
Oxford-IIT Pet | Unstructured Pruning 836.408 99.533 36.816 664427 98.67 0.66%
8-bit Quantization 471.534 99.866 0.258 771024 100.01 1.59%
4-bit Quantization 488.039 99.521 0 648955 100.61 48.11%
The results from unstructured pruning methods were incon- led Total Parameter Count
sistent because memory consumption improved in certain use
cases, yet inference speed boosts, along with sparsity degrees 1227
remained dependent on the dataset and generally low. Con- L 0T
sidering smaller and less redundant models, all optimization g 0757 139.6M 139.6M o o
methods lowered L1 and L2 norms from the baseline. 0.50 4 (ggsgs'.:e)
0.25 -
V' DISCUSSION 000 Basel\lne Strucltured Unstru‘ctured Bblt‘QAT 4b|t‘QAT

This research demonstrates that both pruning and quanti-
zation methods are effective in improving the VGG19 model
efficiency for deep learning functions. The experimental figures
make visible the different trade-offs and benefits produced by
each optimization method implemented in this study.

Fig. 7 demonstrates. Both quantization techniques reduced
the model size extensively, although they left the actual

Fig. 7. Total parameter count of VGG19 variants.

parameter count unchanged because quantization modifies
computational bit representation instead of parameter number.
Structured pruning maintained a higher parameter count at

www.ijacsa.thesai.org

1082 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

98.7 million, but the parameter total in unstructured pruning
dropped to 80.27 million.

Layer classifier.6.weight weight distribution

uuuuu

1000

-ouzs oo
Weight Values Weight Values Weight Values

Q) (b) (©)

Fig. 8. Best QAT weight distribution.

The effectiveness of QAT was depicted in Fig. 8 by its
weight distribution. The baseline distribution is plotted as
shown in Fig. 8(a), and the 8-bit quantization, which is plotted
in Fig. 8(b), still has a relatively smooth distribution. Fig. 8(c),
however, shows that the use of 4-bit quantization leads to the
doubling of weights around the zero value, which means that
the model weights itself to the larger quantization error and
reduced precision.

Weight Distribution Weight Distribution

B Baseline
S Pruned

500000 W Baseline
S Pruned

400000+

300000

Frequency
Frequency

2000001

1000004

o -
-olo -0.05 0.00 0.05 010 010 -0.05 0.00 0.05

Weight Values Weight Values

(a) (b)

L1 Norm L1 Norm
30000 30000
25000 25000 +
20000 20000 «
13 13
.] 4 .
Rl Baseline el Baseline
10000 10000 -
5000 5000 +
[J 0~ J
Baseline Pruned Baseline Pruned
(c) (d)
L2 Norm L2 Norm
£ |
o . .
z Baseline Baseline
Baseline Pruned : Baseline Pruned)

(e) ()

Structured Pruning: features.32.weight Unstructured Pruning: features.32.weight

Fig. 9. Best pruned layer compression.

Fig. 9 displays particular impacts of pruning, since this
model compression comparison acts at the level of a layer.

Vol. 16, No. 6, 2025

Structured pruning [Fig. 9(a),Fig. 9(c),Fig. 9(e)] preserved the
functionality of convolutional layers by removing the most
redundant parts of deeper fully connected layers. In particular,
Fig. 9(a) is the distribution of weight before and after pruning,
Fig. 9(e) and Fig. 9(c) show the decreasing L2 and L1 norms,
which means sparsity of parameters. The effect of unstructured
pruning is shown in Fig. 9(b),Fig. 9(d) and Fig. 9(f), with
the more focused post-pruning weight distribution shown in
Fig. 9(b) and the L2 and L1 norm comparison seen in Fig. 9(d)
and Fig. 9(e), respectively. The pruning was used to maintain
the feature extraction capability of the model and to trim its
structure.

As it is presented in Table II, five different architectures
of VGG19 were assessed on three different datasets: MNIST,
CIFAR-10, and Oxford-IIIT Pet Dataset. The models will be
denoted as Baseline, Structured Pruning, Unstructured Pruning,
8-bit Quantization, and 4-bit Quantization. All tested models
in the MNIST evaluation exceeded 97.5% accuracy levels.
With a 4-bit quantized model, the accuracy level reached
98.30% while exceeding baseline standards at 98.00%. The
9-epoch training duration marked the minimum needed for
this model. Unstructured pruning added slightly to the base-
line with the accuracy of 98.10%, indicating sparsity-based
pruning also works for lesser complexity of datasets. Despite
being marginally reduced (97.60% and 97.50% in structured
trimming and 8-bit quantization, respectively), they maintained
complete top 5 accuracy. Using unstructured pruning proved
to be a slightly better option when it was applied to CIFAR-
10 as multi-class (86.50% vs. 86.30%). This was because
it could keep the accuracy high for the more complicated
dataset. 8-bit quantization hit a good accuracy (85.70%) with
just small losses. The performance of the models deteriorates
extensively to 71.80% when applying structured pruning and 4-
bit quantization techniques to the dataset. The Oxford-IIIT Pet
dataset by binary classification proved the substantial perfor-
mance improvement brought up through unstructured pruning,
achieving 97.96%, better than the basic 96.74%. Both 8-bit
quantization and structured pruning resulted in comparable
results to the baseline, with performances of 97.42% and
94.02%, respectively. However, 4-bit quantization decreased
the most.

1) Results: Training figures using MNIST, Oxford-IIIT
Pet, and CIFAR-10 datasets appear in Fig. 10(a), Fig. 11(a),
Fig. 12(a) to show training behavior and validation and cor-
responding training and validation accuracies are presented
in Fig. 10(b), Fig. 11(b), Fig. 12(b) to show training and
validation accuracies. The training curves show that unstruc-
tured pruning techniques, together with other pruning methods,
brought stability to training operations while achieving accu-
rate test results throughout all epochs. The results in Fig. 12
show that structured pruning and 4-bit QAT [41] struggle on
the complex CIFAR-10 dataset because they produce slow con-
vergence and an enlarged generalization gap during aggressive
compression efforts.

Devices that operate at edge points need maximum per-
formance throughout inference procedures to qualify for de-
ployment. The optimization algorithms in Fig. 14 reveal lower
norm values than basic model protocols for L1 and L2 norm
metrics. Their functionality depends on parameter sets, which
must be minimal and simple. The structured pruning approach

www.ijacsa.thesai.org

1083 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

Training and Validation Losses

2.01

1.5

Loss

1.0

0.5

0.0

—— Baseline train loss

—— Unstructured pruning train loss
= = Unstructured pruning val loss
—— B8-bit QAT train loss

== 8-bit QAT val loss

= 4-bit QAT train loss

== 4-bit QAT val loss

= Baseline val loss
Structured pruning train loss
Structured pruning val loss

Epoch

(a)

20 25 30

Training and Validation Accuracies

100 A

80

60

Accuracy (%)

40 4

20

—— Baseline train acc
= = Baseline val acc
Structured pruning train acc
Structured pruning val acc
= Unstructured pruning train acc
== Unstructured pruning val acc
8-bit QAT train acc
8-bit QAT val acc
bit QAT train acc
-bit QAT val acc

Epoch

(b)

20 25 30

Fig. 10. MNIST training and validation.

Training and Validati

on Losses

—— Baseline train loss
—— Baseline val loss
Structured pruning train loss
Structured pruning val loss
= Unstructured pruning train loss
== Unstructured pruning val loss
—— B-bit QAT train loss
== B-bit QAT val loss
—— 4-bit QAT train loss
== 4-bit QAT val loss

T
2.5 5.0 75 10.0

100 1

95

90

85

80

Accuracy (%)

75 4

70

65

—— Baseline train acc
== Baseline val acc
Structured pruning train acc
Structured pruning val acc
—— Unstructured pruning train acc
== Unstructured pruning val acc
8-bit QAT train acc
8-bit QAT val acc
—— 4-bit QAT train acc
—— 4-bit QAT val acc

25 5.0 75 10.0
Epoch

(b)

125 150 175

Fig. 11. The Oxford-IIIT pet training and validation.

Vol. 16, No. 6, 2025

Training and Validation Losses

—— Baseline train loss
—=— Baseline val loss
—— Structured pruning train loss
== Structured pruning val loss
= Unstructured pruning train loss
== Unstructured pruning val loss
—— 8-bit QAT train loss
— = B-bit QAT val loss

4-bit QAT train loss
4-bit QAT val loss

2.04

1.5

Loss

1.0

0.5 1

80

Baseline train acc
—— Baseline val acc
—— Structured pruning train acc
== Structured pruning val acc
= Unstructured pruning train acc
== Unstructured pruning val acc
~ 8-bit QAT train acc

= — B-bit QAT val acc

4-bit QAT train acc

4-bit QAT val acc

60 4

Accuracy (%)

20 4

T T T T T
] 10 20 30 40
Epoch

(b)
Fig. 12. CIFAR-10 training and validation.

effectively reduces both norms while preserving parameter
density because network reduction outperforms weight re-
moval in performance improvement.

Baseline Structured Pruning Unstructured Pruning 8bit Quantized 4bit Quantized

Weight Values

Fig. 13. Average weight distribution of VGG19 variants.

Fig. 13 shows the typical weight distribution statistics
across all variants, which validates this observation. The pre-
cise and uniform weight distribution that occurs when pruning
methods are structured leads to better hardware efficiency and
more foreseeable inference behavior. The weight bins of the 4-
bit quantized model became discrete from heavy quantization
because of this pattern, which allowed it to achieve sparsity
levels exceeding 48%, according to performance data.

The numerical data found in Table III proves the findings
presented previously. The deployment times for 8-bit quantiza-
tion kept its approximate duration at ~472 milliseconds while
simultaneously demonstrating zero memory consumption and
minimal deviations in L1 and L2 norms when compared to
the baseline model. 4-bit quantization outpaced 8-bit QAT

www.ijacsa.thesai.org 1084 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

regarding inferential speed, even though it achieved peak
sparsity levels together with minimum memory usage. This
makes 8-bit QAT the most effective option for achieving
performance-quality equilibrium.

Pruning methods that do not follow structured guidelines
prove to be the most suitable techniques for preserving exact
accuracy on complex datasets. The sparse retraining technique
achieved superior results to baseline measurements across the
Oxford-IIIT Pet data through its 97.96% accuracy, which
surpassed the 96.74% baseline score, thus indicating that
the method enhances generalization effectiveness. The model
limitation was reduced through data augmentation and early
stopping techniques, although no regularization methods such
as dropout or L2 penalties were implemented. A minor degree
of model bias may result from this implementation when
applying it to complex datasets.

The use of four bits during quantization resulted in substan-
tial accuracy deterioration when implementing it for CIFAR-10
and Oxford-IIIT datasets. Researchers need to develop com-
plex quantization methods that choose the best quantization
parameters when sensitivity levels change between different
network parts.

L1 Norm
800000
2 600000
©
=
4 771K
g 400000 665K oAk 662K
= T72K 536K (13.85%) (19.35%)
— (30.46%)
— 200000
0 T T T T T
Baseline Structured Unstructured 8bit QAT 4bit QAT
(a)
L2 Norm
100 4
v 80
=
m
> 604
E 100.57 98.75 100.03 9.62
= 83.23 (1.81%) (0.47%) (3.93%)
= 404 (17.24%)
~
—
20
T T T T T
Baseline Structured Unstructured 8bit QAT 4bit QAT
(k)

Fig. 14. L1, L2 norm of VGGI9 variants.

The computational efficiency of quantized models is unde-
niable, according to Fig. 14 and Table III, thus making them
optimal picks for mobile devices that require energy-efficient
approaches, research shows.

A. Parameter Influence Analysis
According to our findings in the three datasets:

1) Pruning rate (30%): The one chosen when unsuccessful
experimental tests indicated optimum accuracy-compression
balance. Both the larger rates (40%) resulted in a significant
loss in accuracy on the CIFAR-10, and the lower ones (20%)
did not provide enough beneficial compression.

Vol. 16, No. 6, 2025

2) Quantization precision: Inference speed remained high
on 8-bit with the same baseline accuracy as the more digitally
prioritized architectures. The 4-bit had the best compression
(75%), but it experienced brittle accuracy loss (10 to 15%)
and overhead, as non-native compute code had to run on the
T4 GPU.

3) Learning rate schedule: Cosine annealing was crucial to
quantized models, and a fixed learning rate was not working
well during QAT fine-tuning runs.

4) Batch size (32): Trade-off memory limitations and sta-
bility of training under all compression methods and data sets.

VI. FUTURE WORK

Future investigations should explore mixed-precision quan-
tization methods, a scenario in which various layers of the
network are quantized (i.e., encoded to reduce precision)
at different bit depths in order to achieve the best out of
precision and out of the computational budget. The search for
hardware acceleration optimization methods, like Tensor Pro-
cessing Units (TPUs) or Application-Specific Integrated Cir-
cuits (ASICs), might enable the adoption of quantum models,
especially in resource-constrained environments. An additional
and more promising region of research is the development of
adaptive rephrase precision in real-time in accordance with the
behavior of the input or application-defined constraints, thus
providing robust and flexible models.

Moreover, combining structured pruning with QAT is an
attractive research area that can achieve the highest compu-
tational efficiency with little loss of model accuracy. Bench-
marking those optimization techniques against huge sets of
various types of datasets, including realistic large-scale ones,
would bring valuable knowledge to their generic acceptability.
Finally, energy usage trend analysis among available quantized
models in the deployment environment will be done to identify
which models are energy efficient. This would be a major step
in making greener artificial intelligence (AI) solutions without
sacrificing Al performance and with less environmental impact
of deep learning models.

VII. CONCLUSION

In this study, we optimized the model VGG19 by model
compression techniques, structured pruning, unstructured prun-
ing, and QAT 8-bit and 4-bit precision. We aimed at speeding
up deep convolutional networks through limited resource plat-
forms without compromising the accuracy of classification.

Experimental tests performed on the three benchmarks
MNIST, CIFAR-10, and Oxford-IIIT Pet have shown that
unstructured pruning and 8-bit QAT provided the best tradeoff
between model sizes and predictive accuracy. The inference
time and the model size were well-traded, and the same
produced an acceptable accuracy by structured pruning. At the
same time, the 4-bit QAT achieved the best compression rate
(approximately 75%) and sparsity (approximately 48%), but
degradation in accuracy occurred on more complex datasets,
such as CIFAR-10 and Oxford-IIIT Pet.

These findings indicate that structured connectivity and
lower-bit quantization-based pruning have the potential to
greatly improve deploying VGG19 to edge devices and that

www.ijacsa.thesai.org

1085 |Page

(IJACSA) International Journal of Advanced Computer Science and Applications,

they can be further improved with the help of training strategies
such as early stopping and cosine annealing. Nonetheless, the
active quantization, such as 4-bit QAT, has to be tuned a little
further to eliminate the inaccuracy, particularly with complex
visual information.

Future work will look at the hybrid approaches to the com-
pression of neural networks, especially at the intersection of
mixed-precision quantization and structured pruning, towards
pursuing an ideal balance between performance and intellec-
tual accuracy of the inference. In addition, evaluating energy
usage and optimization in comparison to edge-concentrated
hardware acceleration will also be ideal in making these
techniques practical in real-world low-power applications.

REFERENCES

[1] J.Ma, G. Wang, L. Zhang, and Q. Zhang, “Restoration and enhancement
on low exposure raw images by joint demosaicing and denoising,”
Neural Networks, vol. 162, pp. 557-570, 2023.

[2] J. Sun, W. Yao, T. Jiang, D. Wang, and X. Chen, “Differential evolution
based dual adversarial camouflage: Fooling human eyes and object
detectors,” Neural Networks, vol. 163, pp. 256-271, 2023.

[3] S.Mascarenhas and M. Agarwal, “A comparison between vggl6, vggl9,
and resnet50 architecture frameworks for image classification,” in Proc.
Int. Conf. Disrupt. Technol. Multidiscip. Res. Appl. (CENTCON), 2021,
pp. 96-99.

[4] J. Chen, S.-h. Kao, H. He, W. Zhuo, S. Wen, C.-H. Lee, and S.-
H. G. Chan, “Run, don’t walk: Chasing higher flops for faster neural
networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), 2023, pp. 12021-12031.

[5] J.-H.Luo and J. Wu, “Autopruner: An end-to-end trainable filter pruning
method for efficient deep model inference,” Pattern Recognition, vol.
107, p. 107461, 2020.

[6] A.Kuzmin, M. Nagel, M. Van Baalen, A. Behboodi, and T. Blankevoort,
“Pruning vs quantization: Which is better?” Advances in neural infor-
mation processing systems, vol. 36, pp. 62414-62427, 2023.

[71 X. Qu, D. Aponte, C. Banbury, D. P. Robinson, T. Ding, K. Koishida,
I. Zharkov, and T. Chen, “Automatic joint structured pruning and
quantization for efficient neural network training and compression,” in
Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, 2025, pp. 15234-15244.

[8] Y. Ding and D.-R. Chen, “Optimization based layer-wise pruning
threshold method for accelerating convolutional neural networks,”
Mathematics, vol. 11, no. 15, p. 3311, 2023.

[91 Y. He and L. Xiao, “Structured pruning for deep convolutional neural
networks: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 45, no. 11, pp. 12-34, 2023.

[10] T. Ganguli and E. K. P. Chong, “Activation-based pruning of neural
networks,” Algorithms, vol. 17, no. 1, p. 48, 2024.

[11] X. Liu, M. Ye, D. Zhou, and Q. Liu, “Post-training quantization
with multiple points: Mixed precision without mixed precision,”
arXiv preprint arXiv:2002.09049, 2020. [Online]. Available:
https://arxiv.org/abs/2002.09049

[12] X. Wu, E. Hanson, N. Wang, Q. Zheng, X. Yang, H. Yang, S. Li,
F. Cheng, P. P. Pande, J. R. Doppa, K. Chakrabarty, and H. Li, “Block-
wise mixed-precision quantization: Enabling high efficiency for prac-
tical reram-based dnn accelerators,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 43, no. 1, pp.
1-14, 2024.

[13] H.Zhang, L. Wang, and T. Chen, “An improved vgg19 transfer learning
strip steel surface defect recognition deep neural network based on few
samples and imbalanced datasets,” Applied Sciences, vol. 11, no. 6, pp.
1-15, 2021.

[14] J. Kim, P. Luo, and F. Wu, “Pruning and quantization for deep neural

network acceleration: A survey,” Neurocomputing, vol. 512, pp. 23-45,
2021.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(371

Vol. 16, No. 6, 2025

R. Das, A. Kumar, and S. Mehta, “A transfer learning with structured
filter pruning approach for improved breast cancer classification on
point-of-care devices,” Computers in Biology and Medicine, vol. 125,
pp. 55-67, 2021.

Y. Huang and B. Singh, “A compact parallel pruning scheme for deep
learning model and its mobile instrument deployment,” Mathematics,
vol. 10, no. 12, pp. 1-17, 2022.

F. Wang, J. Li, and T. Xu, “Automatic group-based structured pruning
for deep convolutional networks,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 34, no. 5, pp. 2345-2356, 2022.

J. Brown and M. White, “Do all mobilenets quantize poorly? gaining
insights into the effect of quantization on depthwise separable con-
volutional networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops (CVPRW), 2021, pp. 77-88.

V. Kulkarni, A. Sharma, and P. Dubey, “Methodologies of compressing
a stable performance convolutional neural network in image classifica-
tion,” Neural Processing Letters, vol. 51, no. 3, pp. 567-580, 2020.

B. Shah and A. Mehra, “Pruning deep neural network models via
minimax concave penalty regression,” Applied Sciences, vol. 14, no. 9,
pp. 1-18, 2024.

H.-H. Chin, R.-S. Tsay, and H.-I. Wu, “A high-performance adap-
tive quantization approach for edge cnn applications,” arXiv preprint
arXiv:2107.08382, 2021.

K. Ghosh, R. Patel, and D. Narang, “Training deep neural networks with
joint quantization and pruning of features and weights,” in International
Conference on Learning Representations (ICLR), 2022, pp. 1-12.

I. A. Kandhro et al., “Performance evaluation of e-vggl9 model:
Enhancing real-time skin cancer detection and classification,” Heliyon,
vol. 10, p. 31488, 2024.

1. Ahmad et al., “Optimizing pretrained convolutional neural networks
for tomato leaf disease detection,” Complexity, vol. 2020, p. Article ID
8812019, 2020.

B. K. Nyaupane, “Pneumonia of chest x-ray images detection using vgg
architectures,” LEC Journal, vol. 4, no. 1, pp. 43-48, 2022.

R. Siddiqi and S. Javaid, “Deep learning for pneumonia detection in
chest x-ray images: A comprehensive survey,” Journal of Imaging,
vol. 10, no. 8, p. 176, 2024.

M. M. A. Monshi et al., “Covidxraynet: Optimizing data augmentation
and cnn hyperparameters for improved covid-19 detection from cxr,”
Computers in Biology and Medicine, vol. 133, p. 104375, 2021.

H. Samma er al., “Evolving pre-trained cnn using two-layers optimizer
for road damage detection from drone images,” IEEE Access, 2021,
early access.

S. D. Thepade et al., “Face presentation attack identification optimiza-
tion with adjusting convolution blocks in vgg networks,” Intelligent
Systems with Applications, vol. 16, p. 200107, 2022.

M. Z. Igbal, N. Garg, and S. B. Ahmed, “Table extraction with table
data using vgg-19 deep learning model,” Sensors, vol. 25, no. 1, p. 203,
2025.

A. Stateczny, G. U. Kiran, G. Bindu, K. R. Chythanya, and K. A.
Swamy, “Spiral search grasshopper features selection with vggl9-
resnet50 for remote sensing object detection,” Remote Sensing, vol. 14,
no. 21, p. 5398, 2022.

K. T. Ahmed et al., “Maximum response deep learning using markov,
retinal & primitive patch binding with googlenet & vgg-19 for large
image retrieval,” IEEE Access, 2021, early access.

A. Faghihi, M. Fathollahi, and R. Rajabi, “Diagnosis of skin cancer
using vggl6 and vggl9 based transfer learning models,” arXiv preprint
arXiv:2404.01160, 2024.

Y. Kumar et al., “Enhancing parasitic organism detection in microscopy
images through deep learning and fine-tuned optimizer,” Scientific
Reports, vol. 14, no. 5753, 2024.

M. Fu, H. Yu, J. Shao, J. Zhou, K. Zhu, and J. Wu, “Quantization
without tears,” arXiv preprint arXiv:2411.13918, 2024.

F. E. Fernandes and G. G. Yen, “Pruning deep convolutional neural
networks architectures with evolution strategy,” Information Sciences,
vol. 541, pp. 345-361, 2020.

A. Bouguettaya and H. Zarzour, “Cnn-based hot-rolled steel strip

surface defects classification,” The International Journal of Advanced
Manufacturing Technology, 2024.

www.ijacsa.thesai.org 1086 |Page

[38]

[39]

(IJACSA) International Journal of Advanced Computer Science and Applications,

X. Li, Y. Chen, and J. Wang, “A mutual learning framework for pruned
and quantized networks,” Journal of Computer Science & Technology,
vol. 38, no. 23, 2023.

C. Gernigon, S.-I. Filip, O. Sentieys, C. Coggiola, and M. Bruno,
“Adaqat: Adaptive bit-width quantization-aware training,” in 2024 IEEE
6th International Conference on Al Circuits and Systems (AICAS).

[40]

[41]

Vol. 16, No. 6, 2025

IEEE, 2024, pp. 442-446.

Q. Lu, “Tinyml computer vision using coarsely-quantized log-
gradient input images,” Stanford University, 2023. [Online]. Available:
https://purl.stanford.edu/fb372vt6975

P. P. F. Delgado, “Real-time implementation of 3d lidar point cloud
semantic segmentation in an fpga,” University of Minho, 2022.

www.ijacsa.thesai.org

1087 |Page

