
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

90 | P a g e  

www.ijacsa.thesai.org 

The Anomaly Detection Algorithm Based on Random 

Matrix Theory and Machine Learning 

Yongming Lu* 

Ganzhou Teachers College, Ganzhou Jiangxi, 342800, China 

 

 
Abstract—This study focuses on anomaly detection algorithms. 

Aiming at the limitations of traditional methods in complex data 

processing, an innovative algorithm that integrates random 

matrix theory and machine learning is proposed. First, different 

types of data, such as numerical values, texts, and images, are 

preprocessed, and random matrices are constructed. Hidden 

abnormal features are mined through specific transformations 

and then classified by optimized machine learning models. In the 

experimental stage, multiple data sets, such as KDD Cup 99, are 

selected to compare with classic algorithms such as DBSCAN and 

Isolation Forest. The results show that the innovative algorithm 

has a detection accuracy of 95%, a recall rate of 93%, and an F1 

value of 94% on the KDD Cup 99 data set, which is significantly 

improved compared with the comparison algorithm. It also 

performs well on other data sets, with an average accuracy 

increase of seven percentage points and a recall rate increase of 

eight percentage points. The results demonstrate that the 

proposed algorithm can effectively mine data anomaly patterns, 

achieve efficient and accurate anomaly detection in complex data 

sets, and provide strong support for applications in related fields. 
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I. INTRODUCTION 

In today's digital age, anomaly detection is critical in many 
areas such as network security, industry surveillance, and 
financial risk warning. In the field of network security, for 
example, early and accurate detection of malicious attacks is 
essential to prevent data breaches and to ensure the stability of 
the system. Early detection of equipment failures in industry 
monitoring can prevent production disruption and reduce 
economic losses. However, due to the exponential increase of 
data size and complexity of data structure, the traditional 
methods of anomaly detection are severely limited. For complex 
data distributions and high-dimensional data sets, conventional 
algorithms are often faced with low detection accuracy, high 
computational cost and poor adaptability [1]. For example, 
traditional methods fail to detect abnormal attack patterns 
embedded in massive data, while for industrial equipment 
monitoring, it is difficult to detect early signs of failure under 
complex operating conditions. 

This study proposes a novel algorithm based on random 
matrix theory combined with machine learning. The proposed 
approach innovatively combines random matrix transformations 
with optimized machine learning classification models [2]. 
Three key steps are involved: comprehensive data preprocessing 
to construct a suitable random matrix, extracting hidden 
abnormal features via unique matrix transformation [3], and 
using optimized machine learning models for classification. It 

aims at improving detection efficiency, accuracy, and 
adaptability in complex data environments, meeting rigorous 
requirements for practical applications. 

II. ANOMALY DETECTION ALGORITHM DESIGN 

A. Unsupervised Algorithms 

Unsupervised anomaly detection algorithms rely on inherent 
data distributions to detect outliers. For example, clustering 
methods based on density, such as DBSCAN, define anomalies 
as low-neighborhood data points. However, this approach often 
suffers from high-dimensional data and requires manual tuning 
of parameters. Another example is an isolation forest, which 
detects anomalies by measuring the path length in a decision tree 
ensemble. While efficient, it may incorrectly classify local low-
density areas as anomalies. 

1) Data preprocessing and matrix construction 

For numerical data, normalization maps values to [0, 1] 
using Formula (1): 

𝑥̂ =
𝑥−𝑥min

𝑥max−𝑥min
     (1) 

 𝑥min  and 𝑥max  are the minimum and maximum values of 
the feature in the dataset, respectively. 

Text data are collected to word vectors using the Skip-Gram 
model. For a text with 𝑛 words, the word vectors form an 𝑛 × 𝑑 
matrix 𝑊, where each row is the vector representation of a word 
[4]. 

For image data, grayscale processing is first performed to 
convert the color image into a grayscale image. The grayscale 
value calculation formula is as follows [Formula (2)]: 

Gray = 0.299𝑅 + 0.587𝐺 + 0.114𝐵 (2) 

𝑅, 𝐺, 𝐵 are the red, green, and blue component values of the 
image pixels, respectively. Then, the image is resized to a fixed 
size. The size is set to m×n and converted into an m×n grayscale 
value matrix I. 

After preprocessing, a 𝑁 × 𝐷  random matrix 𝑅  is 
constructed. For numerical data, elements are [Formula (3)]: 

𝑟𝑖𝑗 = 𝛼𝑥̂𝑖𝑗 + 𝛽𝜖𝑖𝑗   (3) 

𝑥𝑖𝑗  is the normalized feature, 𝛼 = 0.8, 𝛽 = 0.2, and 𝜖𝑖𝑗 ∼
𝒩(0,1). 

2) New method for extracting features using random 

matrix transformation. Transformations such as rotation, 

scaling, and singular value decomposition based on random 
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matrices are the core means of extracting features in this study. 

First, consider the rotation transformation [5]. Let the rotation 

matrix be 𝑹𝜃. For the random matrix 𝑹, the matrix 𝑹′ after the 

rotation transformation can be obtained by Formula (4): 

𝐑′ = 𝐑𝜃𝐑    (4) 

The rotation matrix 𝐑𝜃  can be constructed based on the 
rotation angle 𝜃. For a two-dimensional rotation, 𝐑𝜃  is in the 
form of [Formula (5)]: 

𝐑𝜃 = (
cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃

)  (5) 

In high-dimensional space, the construction of the rotation 
matrix is more complicated, but the principle is similar [6]. 
Through the rotation operation, the data features are 
redistributed in the new space, which helps to discover hidden 
abnormal patterns. 

Scaling transformation highlights important features by 
adjusting the scale of the elements of the random matrix. Let the 
scaling matrix be 𝐒, and its diagonal elements are the scaling 
factors 𝑠1, 𝑠2, ⋯ , 𝑠𝐷 . Then the matrix 𝐑′′  after scaling 
transformation is Formula (6): 

𝐑′′ = 𝐒𝐑   (6) 

𝐒 = diag (𝑠1, 𝑠2, ⋯ , 𝑠𝐷) . The scaling factor can be set 
according to the importance of the data feature. For example, for 
feature dimensions with a high correlation with abnormal 
information, a more extensive scaling factor can be set. 

Singular value decomposition (SVD) is an important method 
for extracting features. Singular value decomposition of the 
random matrix 𝐑 can be expressed as Formula (7): 

𝐑 = 𝐔Σ𝐕𝑇   (7) 

𝐔 and 𝐕 are the left singular matrix and the right singular 
matrix, respectively, Σ  is a diagonal matrix, and its diagonal 
elements 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝐷 ≥ 0  are the singular values of 𝐑. 
In anomaly detection, smaller singular values are often related 
to the abnormal part of the data. By retaining the components 
corresponding to some singular values, the features related to the 
anomaly can be extracted [7]. Assume that the first 𝑘 singular 
values are retained. The corresponding left singular vector 
matrix is 𝐔𝑘, the singular value diagonal matrix is Σ𝑘, and the 
right singular vector matrix is 𝐕𝑘 , then the extracted feature 
matrix 𝐅 can be expressed as Formula (8): 

𝐅 = 𝐔𝑘Σ𝑘𝐕𝑘
𝑇   (8) 

Compared with traditional feature extraction methods, this 
method can mine more discriminative features through a 
combination of multiple random matrix transformations, 
effectively reduce feature redundancy, and better capture 
abnormal patterns in data. 

B. Supervised Algorithms 

Supervised methods use labeled data to train classification 
models. Support Vector Machine (SVM) aims at finding the 
optimal hyperplane for separating normal samples from 

abnormal samples [8]. The optimization problem for SVM is 
expressed as Formula (9): 

 min
𝑤,𝑏

 
1

2
‖𝑤‖2 + 𝐶 ∑  𝑁

𝑖=1   𝜉𝑖

 s.t. 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁
(9) 

𝑤  is the hyperplane normal vector, 𝑏  is the bias, 𝐶  is the 
penalty parameter, and 𝜙(𝑥) maps data to a high-dimensional 
space.  𝜉𝑖   is the slack variable, and 𝜙(𝑥) is the function that 
maps data to a high-dimensional feature space. By solving this 
optimization problem, the optimal 𝐰  and 𝑏  are obtained, 
thereby determining the classification hyperplane. Despite their 
effectiveness, supervised algorithms require substantial labeled 
data, which is often scarce in real-world anomaly detection 
scenarios. 

Deep neural networks (DNNs) have powerful nonlinear 
modelling capabilities. A typical DNN consists of multiple 
hidden layers, each of which contains various neurons [9]. Let 
the number of neurons in the input layer be 𝐷 (right now, the 
data feature dimension), and the number of neurons in the l-th 
hidden layer be 𝑛𝑙, and the number of neurons in the output layer 
be 2 (representing normal and abnormal categories). For the 
input data 𝐱 ∈ ℝ𝐷 , the transformation after the 𝑙 hidden layer 
can be expressed as Formula (10): 

𝐡𝑙 = 𝜎(𝐖𝑙𝐡𝑙−1 + 𝐛𝑙)  (10) 

𝐖𝑙  is the weight matrix of the 𝑙 layer, 𝐛𝑙  is the bias vector, 
and 𝜎(⋅) is the activation function, such as the ReLU function 
𝜎(𝑥) = max(0, 𝑥) . Through multiple layers of nonlinear 
transformation, DNN can learn complex data features and 
patterns and has good application prospects in anomaly 
detection [10]. 

C. Semi-Supervised Algorithms 

Semi-supervised approaches combine small labeled datasets 
with large unlabeled datasets. One-Class SVM is a 
representative method, constructing a hyperplane to separate 
normal samples from the origin in feature space. The kernel 
function parameter 𝛾  in One-Class SVM can be adaptively 
adjusted based on local data density as in Formula (11): 

𝛾𝑖 =
𝛼

𝜌𝑖+𝛽
    (11) 

𝛼 and 𝛽 are adjustment parameters. 𝜌𝑖 is the local density of 
data point 𝑥𝑖, calculated as Formula (12): 

𝜌𝑖 = ∑  𝑁
𝑗=1 exp (−

‖𝑥𝑖𝑥𝑗‖
2

2𝜎2 ) (12) 

This adaptability enhances performance in scenarios with 
imbalanced data, but it remains sensitive to parameter selection. 

D. Algorithms based on Statistical Modeling 

Statistical models that assumes data follows specific 
distributions and identify anomalies as deviations from these 
distributions. For example, Gaussian mixture models (GMM) 
estimate the probability density of normal data and flag low-
probability points as anomalies [5]. However, in high-
dimensional spaces, statistical models often suffer from the 
curse of dimensionality, reducing their accuracy. 
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E. Neural Network Algorithms 

Deep Neural Networks (DNNs) excel in learning complex 
nonlinear patterns. A typical DNN for anomaly detection 
includes multiple hidden layers, with the transformation of the 
𝑙-th layer expressed as Formula (13): 

ℎ𝑙 = 𝜎(𝑊𝑙ℎ𝑙−1 + 𝑏𝑙)  (13) 

where, 𝑊𝑙 and 𝑏𝑙 are the weight matrix and bias vector, and 
𝜎 is an activation function like ReLU. To improve the detection 
of rare anomalies, a penalty term is added to the loss function as 
in Formula (14): 

𝐿 = 𝐿𝑐𝑒 + 𝐿penalty 

𝐿penalty = 𝜆 ∑  𝑖 Canomaly  ‖ℎ𝑖
𝑙 − ℎ

mean 

𝑙 ‖
2  (14) 

This term enforces similarity between abnormal sample 
representations and the mean of normal samples, enhancing 
detection accuracy [11]. 

F. Time-Series Anomaly Detection 

Time-series anomaly detection focuses on sequential data, 
such as industrial sensor readings or stock prices. Methods often 
combine statistical models with deep learning. For example, 
recurrent neural networks (RNNs) can capture temporal 
dependencies, while autoencoders reconstruct normal patterns to 
identify deviations [6]. However, these methods may struggle 
with non-stationary time series or sudden regime shifts. 

G. Modern and Hybrid Methods 

Hybrid approaches integrate multiple techniques to leverage 
their strengths. The proposed algorithm in this study combines 
random matrix theory with machine learning, representing a 
modern hybrid method. The workflow includes: 

1) Data preprocessing. Normalizing numerical data, 

converting text to word vectors, and grayscaling images. 

2) Random matrix construction. Forming a 𝑁 × 𝐷 matrix 

𝑅 with elements as in Formula (15): 

𝑟𝑖𝑗 = 𝛼𝑥𝑖𝑗 + 𝛽𝜖𝑖𝑗   (15) 

𝑥𝑖𝑗  is the normalized feature, 𝛼 and 𝛽 are parameters, and 

𝜖𝑖𝑗 is standard normal noise. 

3) Feature Extraction via Random Matrix 

Transformations. 

 Rotation Transformation: 𝑅′ = 𝑅𝜃𝑅 , where 𝑅𝜃  is a 
rotation matrix [e.g., 2D form in Formula (5)]. 

 Scaling Transformation: 𝑅′′ = 𝑆𝑅, with 𝑆 as a diagonal 
scaling matrix. 

 Singular Value Decomposition (SVD): 𝑅 = 𝑈Σ𝑉𝑇 , 
retaining the top 𝑘 singular values to form the feature 

matrix 𝐹 = 𝑈𝑘Σ𝑘𝑉𝑘
𝑇 [7]. 

4) Optimized machine learning classification. Using SVM 

with adaptive kernel parameters or DNN with a penalty term 

for anomaly samples. 

III. EXPERIMENTAL SIMULATION 

A. Experimental Dataset 

1) Dataset source and selection basis. The KDD Cup 99 

dataset, sourced from the 1998 DARPA intrusion detection 

project, contains 4.9 million network connection records with 

forty-one features, including nine numerical and thirty-two 

discrete attributes [12]. This dataset was chosen for its large 

scale, diverse attack types (DoS, Probe, R2L, U2R), and clear 

labeling, enabling comprehensive algorithm evaluation in 

complex network environments. 

Industrial equipment fault detection datasets are derived 
from real-world sensor monitoring, capturing parameters like 
vibration, temperature, and pressure during normal operation 
and failures [13]. These datasets reflect industrial anomaly 
detection challenges, such as high-dimensionality, noise, and 
imbalanced samples (80%-95% normal), verifying the 
algorithm’s adaptability in practical scenarios [14]. 

2) Introduction to dataset features and scale. The KDD 

Cup 99 dataset includes 3.9 million normal samples (79.2%) 

and one million abnormal samples across twenty-two attack 

types [15]. Industrial datasets typically have 10s to 100s of 

features and 1000s of samples, e.g., a motor fault dataset with 

4500 normal and 500 abnormal samples, presenting imbalanced 

challenges [16]. 

B. Experimental Environment and Parameter Settings 

1) Hardware and software environment for experimental 

operation. To ensure the repeatability of the experiment, this 

study records the hardware and software environment of the 

experiment in detail. The experimental computer is configured 

with an Intel Core i7-10700K CPU (8 cores and 16 threads), 

with 32GB DDR4 3200MHz memory and NVIDIA GeForce 

RTX 3060 graphics card. This hardware combination can meet 

the needs of complex algorithm operations and deep learning 

model training [17]. The operating system is Windows 10 

Professional Edition 64-bit, and the programming language is 

Python 3.8, with its rich third-party libraries for data processing 

and model training. The machine learning frameworks include 

TensorFlow 2.5 and Scikit-learn 0.24.2, which are used for the 

implementation of deep neural networks and traditional 

machine learning algorithms, respectively. This environmental 

information provides clear guidance for other researchers to 

reproduce this experiment. 

2) Algorithm and comparison algorithm parameter 

settings. The key parameters of the innovative anomaly 

detection algorithm proposed in this study have been debugged 

many times in experiments. In the feature extraction part based 

on a random matrix, the adjustment parameters α and β are set 

to 0.8 and 0.2, respectively, to enhance the adaptability of the 

algorithm to data changes. In the classification model, if the 

support vector machine (SVM) is used, the kernel function 

parameters α and β are set to 0.5 and 0.1, respectively; if the 

deep neural network (DNN) is used, the number of hidden layer 

nodes is set to [128, 64, 32], and the Dropout ratio is 0.2 to 
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balance the model complexity and computational efficiency. 

The parameters of the comparison algorithm are also carefully 

set: the epsilon and minPts of DBSCAN are set to 0.5 and 5, 

respectively; the number of trees of Isolation Forest is 100, and 

the maximum depth is 25; the kernel function parameters γ and 

nu of One-Class SVM are set to 0.1 and 0.1 respectively. These 

parameter settings ensure that the comparison algorithm is 

pretty similar to the proposed method at the best performance 

state. 

C. Comparison of Algorithm Selection 

1) List of classic anomaly detection algorithms. DBSCAN 

(density-based), Isolation Forest (tree-based), and One-Class 

SVM (hyperplane-based) were selected as baselines. DBSCAN 

identifies anomalies via neighborhood density with parameters 

𝜖 = 0.5 and min Pts = 5 [18]. Isolation Forest uses 100 trees 

with a max depth of 25 [19]. One-Class SVM sets kernel 

parameter 𝛾 = 0.1 and 𝜈 = 0.1. 

2) Reasons for selecting comparison algorithms. These 

classic algorithms are selected for comparison mainly based on 

their wide application and mature research in the field of 

anomaly detection, which can provide reliable standards for 

evaluating new algorithms. In addition, they represent different 

detection ideas: DBSCAN is based on density clustering, 

Isolation Forest is based on isolation degree, and One-Class 

SVM is based on hyperplane partitioning. 

IV. EXPERIMENTAL RESULTS ANALYSIS 

A. Key Performance Indicator Data Presentation 

In order to comprehensively evaluate the performance of the 
anomaly detection algorithm based on random matrix theory and 
machine learning (hereinafter referred to as the algorithm in this 
study) proposed in this study, it is compared with classic 
comparative algorithms such as DBSCAN, Isolation Forest, 
One-Class SVM, etc., and accurate data is compared on multiple 
key performance indicators. Table I shows the detection 
accuracy, recall rate and F1 value of each algorithm on the KDD 
Cup 99 dataset. 

TABLE I.  COMPARISON OF ALGORITHM PERFORMANCE 

INDICATORS ON THE KDD CUP 99 DATASET 

Algorithm Detection accuracy Recall 

Algorithm in this study 95.00% 93.00% 

DBSCAN 88.00% 85.00% 

Isolation Forest 90.00% 88.00% 

One-Class SVM 92.00% 90.00% 

The algorithm in this study performs well on the KDD Cup 
99 dataset. The detection accuracy reaches 95.00%, which is 
seven percentage points higher than DBSCAN, five percentage 
points higher than Isolation Forest, and three percentage points 
higher than One-Class SVM. In terms of recall rate, the 
algorithm in this study is 93.00%, which is also ahead of other 
compared algorithms. The F1 value is an indicator that 

comprehensively considers accuracy and recall rate. The 
algorithm in this study reaches 94.00%, further highlighting its 
advantages on this dataset. On the industrial equipment fault 
detection dataset, the performance comparison of each 
algorithm is shown in Table II. 

TABLE II.  COMPARISON OF ALGORITHM PERFORMANCE 

INDICATORS ON THE INDUSTRIAL EQUIPMENT FAULT DETECTION 

DATASET 

Algorithm Detection accuracy Recall 

Algorithm in this study 96.50% 94.50% 

DBSCAN 85.00% 82.00% 

Isolation Forest 88.00% 86.00% 

One-Class SVM 90.00% 88.00% 

B. Performance Comparison Chart Analysis 

Fig. 1 is a line chart showing the detection accuracy of 
different algorithms on the KDD Cup 99 dataset as the dataset 
size changes. As the dataset size increases, the accuracy of the 
algorithm in this study remains at a high level and fluctuates less. 
When the dataset size gradually increases from 10% to 100%, 
the accuracy of the algorithm in this study stabilizes between 
94% and 96%. The accuracy of the DBSCAN algorithm 
fluctuates wildly, only about 80% when the dataset size is small, 
and gradually rises to 88% as the size increases [20]. Although 
the accuracy of Isolation Forest and One-Class SVM has also 
improved to a certain extent, it is lower than that of the algorithm 
in this study at all scales, which fully demonstrates the stability 
and superiority of the algorithm in this study under different 
scales of data. 

 

Fig. 1. Accuracy on KDD Cup 99 dataset changes with dataset size. 

Fig. 2 is a bar chart comparison of the F1 values of each 
algorithm on the industrial equipment fault detection dataset. 
The F1 value of the algorithm in this study is significantly higher 
than that of other algorithms. The F1 value of the algorithm in 
this study is 95.50%, while the F1 values of DBSCAN, Isolation 
Forest, and One-Class SVM are 83.47%, 87.00%, and 89.00%, 
respectively. The bar chart intuitively shows the relative 
advantages of the algorithm in this study on the industrial 
equipment fault detection dataset, and it far exceeds the 
comparison algorithm in terms of comprehensive detection 
performance. 
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Fig. 2. Comparison of F1 values on industrial equipment fault 

detection datasets. 

Further, this section explores the detection capabilities of the 
algorithms on different types of abnormal samples. Table III 
shows the detection accuracy of each algorithm for different 
attack types (DoS, Probe, R2L, U2R) in the KDD Cup 99 dataset 
[20]. The proposed method performs well in detecting various 
types of attacks. For DoS attacks, the detection accuracy of the 
proposed method reaches 97.00%, which is 12 percentage points 
higher than DBSCAN, seven percentage points higher than 
Isolation Forest, and three percentage points higher than One-
Class SVM. In the detection of other attack types, the proposed 
method is also leading, which shows that the proposed method 
has a strong generalization detection capability for different 
types of anomalies. 

TABLE III.  DETECTION ACCURACY OF DIFFERENT ATTACK TYPES IN 

THE KDD CUP 99 DATASET 

Algorithm 
DoS attack 

accuracy 

Probe attack 

accuracy 

Algorithm in this study 97.00% 96.00% 

DBSCAN 85.00% 88.00% 

Isolation Forest 90.00% 92.00% 

One-Class SVM 94.00% 95.00% 

Fig. 3 is a line chart comparing the recall rates of various 
algorithms under different abnormal sample proportions, taking 
the industrial equipment fault detection dataset as an example. 
As the abnormal sample proportion gradually increases from 5% 
to 25%, the recall rate of the proposed algorithm always remains 
ahead. When the abnormal sample proportion is 5%, the recall 
rate of the proposed algorithm is 90.00%, while DBSCAN is 
only 70.00%, Isolation Forest is 75.00%, and One-Class SVM 
is 80.00%. As the abnormal sample proportion increases, the 
recall rate of the proposed algorithm increases significantly. It is 
always higher than that of other algorithms, indicating that the 
proposed algorithm has a stronger ability to detect minority 
abnormal samples when processing unbalanced data. 

 

Fig. 3. Comparison of recall rates under different abnormal sample 

proportions in industrial equipment fault detection datasets. 

V. CONCLUSION 

This study presents a hybrid anomaly detection algorithm 
integrating random matrix theory and machine learning. 
Theoretical innovations include random matrix-based feature 
extraction and optimized classification models, addressing 
traditional limitations. Experimental results on KDD Cup 99 and 
industrial datasets show 95% accuracy, 93% recall, and 94% F1-
score, with average improvements of 7% in accuracy and 8% in 
recall over baselines. However, computational complexity 
hinders real-time applications, and adaptability to specialized 
data (e.g., medical imaging) requires improvement. Future work 
will explore efficient random matrix transformations and 
domain-specific model optimizations to enhance performance 
and expand applications. 
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