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Abstract—Accurate classification of skin diseases is an 

important step toward early diagnosis and therapy. However, 

deep learning models are frequently used in therapeutic contexts 

without transparency, reducing confidence and acceptance. This 

study introduces SkinDiseaseXAI, a unique convolutional neural 

network (CNN) that uses Grad-CAM++ to classify ten different 

types of skin diseases and provide visual explanations. The 

proposed model was trained using a publicly available dataset of 

dermatoscopic images following preprocessing and augmentation. 

SkinDiseaseXAI achieved 76.12% training accuracy and 66.25% 

validation accuracy in 20 epochs. We used Grad-CAM++ to 

generate heatmaps that highlighted discriminative regions inside 

the lesion areas, thereby improving interpretability. The 

experimental results indicate that the model has the ability not 

only to perform multi-class skin disease categorization but also to 

provide interpretable visual outputs, which improves the 

transparency and dependability of decision-making processes. 

This concept has the possibility to improve clinical diagnosis by 

merging performance and explainability. 

Keywords—XAI; skin disease; Grad-CAM++; convolutional 
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I. INTRODUCTION 

Skin diseases are among the most frequent and pervasive 
health concerns worldwide, providing significant challenges for 
healthcare systems due to their difficulty in early detection and 
extensive overlap in symptoms. These disorders have a 
significant influence on patients' quality of life; thus, early and 
precise diagnosis is critical for avoiding complications [1]. 
Despite the obvious benefits of early detection, traditional 
diagnostic methods continue to rely heavily on direct clinical 
evaluations by dermatologists, making them vulnerable to 
human error, practitioner variability, and diagnostic delays, 
particularly in areas with limited specialized medical expertise. 

Recently, artificial intelligence (AI), particularly deep neural 
networks, has emerged as a potent tool for diagnosing and 
classifying skin illnesses, performing on par with qualified 
dermatologists [2]. However, the use of these advanced models 
in clinical practice is limited because of their intrinsic "black 
box" nature, which obscures the decision-making processes that 
underpin their predictions [3]. This limitation has created an 
urgent demand for Explainable Artificial Intelligence (XAI), 
which allows healthcare practitioners to easily comprehend the 
reasoning behind AI-powered medical judgments [4]. The use 

of XAI can considerably increase confidence and promote the 
wider integration of AI models into everyday medical practices. 

In this research, the SkinDiseaseXAI model is proposed: an 
XAI-driven neural network designed for skin disease detection 
using digitized skin images. Advanced interpretability methods, 
such as Grad-CAM++, are integrated into a convolutional neural 
network (CNN) architecture to fulfil two key goals: increasing 
diagnostic accuracy and offering visible, credible explanations 
for model predictions. This approach aims to bridge the gap 
between high-performing AI models and their practical 
acceptability by medical specialists, thereby enhancing their 
adoption in clinical settings. 

The rest of the study is set up like this: Section II looks at the 
literature that is related to the topic; Section III talks about the 
methodology, including where the data came from and how the 
model was made; Section IV talks about the results of the 
experiment; Section V presents the discussion; and Section VI 
ends the study with summary and suggestions for future 
research. 

II. LITERATURE REVIEW 

A. Related Work 

Early applications of artificial intelligence (AI) in 
dermatology relied heavily on traditional machine learning 
methods like Support Vector Machines (SVM), Random Forests 
(RF), and K-Nearest Neighbors (KNN), as well as manually 
generated image features. Such techniques demonstrated 
adequate accuracy for skin lesion classification but struggled to 
generalize across different datasets due to handcrafted features 
and limited data [4][5]. 

Deep learning, particularly convolutional neural networks 
(CNNs), has considerably improved the accuracy of skin disease 
identification [3]. Esteva et al.'s important study (2017), showed 
that a CNN could identify melanoma with the same accuracy as 
a dermatologist, by using a large collection of skin lesion images 
[6]. Subsequent research revealed that CNNs could regularly 
perform as well as or better than professional dermatologists in 
differentiating between benign and malignant skin lesions 
[7][8]. A meta-analysis of various CNN models found an 
average sensitivity of 87% and specificity of 77% for skin cancer 
diagnosis, demonstrating deep learning's clinical potential [9]. 

Recent research has expanded on these successes by 
employing transfer learning and data augmentation to address 
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constrained datasets. LesNet, a hybrid CNN model that 
combines DenseNet, VGG-16, and Inception architectures, 
obtained approximately 98% accuracy on HAM10000 and 94% 
accuracy on ISIC 2019 datasets, outperforming previous state-
of-the-art approaches [10]. Similarly, DermoExpert used CNN-
based segmentation, geometric augmentations, and rebalancing 
approaches, giving Area Under the Curve (AUC) ratings of up 
to 0.97, indicating effective generalization [11]. Ensemble 
models that combine various CNN architectures (like ResNet, 
EfficientNet, and DenseNet) performed well, achieving about 
93% accuracy and enhancing their ability to work well on 
different data sets [12]. 

B. State-of-the-Art Methods 

Deep CNN architecture continues to state-of-the-art skin 
lesion categorization techniques [3]. Recent research uses 
developed topologies like EfficientNet, ResNet, and DenseNet, 
as well as test-time augmentation (TTA), to improve accuracy 
even more. Cino et al. showed that combining EfficientNet-B6 
and TTA resulted in 97.58% balanced multi-class accuracy on 
the ISIC 2019 dataset, demonstrating deep learning precision 
[13]. 

Despite their accuracy, CNNs are seen as "black boxes", 
reducing clinician trust. Gradient-weighted Class Activation 
Mapping (Grad-CAM) is one of the Explainable AI (XAI) 
methods that have emerged as key tools for transparency [4]. 
Grad-CAM (Gradient-weighted Class Activation Mapping), 
which is frequently used due to its visual simplicity, assists 
physicians in identifying critical diagnostic locations by creating 
heatmaps of the input images. Grad-CAM has been shown in 
studies to considerably increase model interpretability, 
explaining why certain lesions are classed as malignant or 
benign [13][14]. 

SHAP (Shapley Additive Explanations) and LIME (Local 
Interpretable Model-agnostic Explanations) are two other 
popular XAI tools for quantitative interpretations. SHAP assigns 
values to input features at both the global and instance levels, 
allowing clinicians to better comprehend their contributions. 
Rathore et al. employed SHAP to successfully differentiate 
dermatological disorders based on clinical and histological 
characteristics [15]. LIME gives local explanations by using 
simple surrogate models to mimic complicated CNN 
predictions, although it may struggle with highly detailed 
medical pictures due to segmentation issues [16]. Metta et al. 
conducted a critical evaluation of LIME's performance, 
concluding that customized explanation approaches may yield 
higher accuracy [16]. 

Hybrid models, which combine CNNs and interpretability 
techniques, represent cutting-edge research. Ullah et al. created 
a CNN-Radial Basis Function (RBF) hybrid that provides good 
interpretability and accuracy (~83% on ISIC 2016) using 
prototype-based visual explanations [17]. Hassan provided a 
dual-output hybrid CNN that generates textual explanations 
based on the ABCD dermatological criteria, allowing for 
intuitive interpretation while maintaining high performance 
[18]. Another notable innovation is SkinGEN, which combines 
vision-language models (VLM) and generative AI to improve 

user understanding and confidence by creating synthetic 
prototype images of diagnosed conditions [19]. 

C. Current Limitations 

Despite progress, some fundamental constraints prevent 
complete clinical integration of AI-driven dermatology: 

1) Dataset bias. Dataset bias is a key restriction for 

dermatological AI systems. Abdelhamid (2024) stated that 

current dermatology datasets largely feature lighter skin tones, 

resulting in worse accuracy for those with darker complexions 

and perpetuating healthcare disparities [20]. Fliorent et al. 

underlined that diagnostic performance for skin-of-color 

populations is much lower, arguing for more inclusive datasets 

to improve fairness and accuracy [21]. Addressing these biases 

is critical for ensuring equal healthcare and reliable AI 

deployment. 

2) Transparency and interpretability. Although XAI 

methods provide some openness, understanding CNN decision-

making remains difficult. According to Hauser et al., only a 

small proportion of dermatology AI studies have systematically 

studied how explanations affect clinical decisions [4]. 

Abdelhamid (2024) stated that more openness and clearer 

explanations of CNN decision-making methods are required to 

build physician trust and adoption in practice [20]. Continued 

effort is necessary to create AI models that are already 

interpretable and appropriate for clinical decision-making 

cases. 

3) Regulatory and ethical constraints. The adoption of AI 

dermatological systems presents significant regulatory 

challenges. In its "White Paper on Artificial Intelligence", the 

European Commission (2021) specified strong rules for AI 

systems that promote transparency, trustworthiness, and 

accountability, especially in healthcare applications. 

Furthermore, ethical problems such as patient permission, 

privacy, and algorithmic responsibility limit widespread 

deployment, highlighting the need for strong frameworks [22]. 

4) Real-World Implementation. Real-world generalization 

is difficult. Clinical adoption has practical problems. 

Abdelhamid (2024) stated that AI model performance loses in 

real-world scenarios due to differences in imaging 

circumstances, image quality, and patient demographics, 

necessitating rigorous validation in clinical settings [20]. 

Furthermore, healthcare personnel need training to understand 

AI results, which involve workflow changes and infrastructure 

upgrades. Thus, practical problems with deployment must be 

overcome to achieve effective integration. 

Table I shows a comparison of earlier studies showing 
different methods in skin disease categorization with deep 
learning. The table lists the used model, number of skin 
condition classifications, and whether explainable artificial 
intelligence methods were incorporated for every study. This 
puts the present work, which uses a custom interpretable CNN 
(SkinDiseaseXAI) to categorize 10 disease categories utilizing 
Grad-CAM++ for improved transparency, in context. 
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TABLE I. COMPARISON OF EXISTING STUDIES IN SKIN DISEASE CLASSIFICATION 

Ref. Model(s) Used 
Number of 

Classes 
Dataset Focus Explainability Performance Notes 

[4] Hauser et al. (2022) Various CNNs 
Multiple 

(Review) 
Skin cancer 

Grad-CAM, 

SHAP, LIME 
N/A 

Systematic review 

paper 

[5] Wu et al. (2022) Deep CNNs 
Multiple 
(Review) 

Skin cancers 
Mentioned XAI 
tools 

~90% (varies) Review and analysis 

[6] Esteva et al. (2017) Inception v3 2 classes Melanoma vs benign No XAI AUC: 0.96 
Dermatologist-level 

model 

[7] Salinas et al. (2024) Various AI models ~3 classes 
Skin cancer 
diagnosis 

No XAI AUC ~0.89 
Meta-analysis of AI 
vs clinicians 

[8] Mir et al. (2024) LesNet 7 classes Skin lesions No Accuracy: 93.2% 
Custom CNN + 

augmentation 

[10] Hasan et al. (2022) DermoExpert 7 classes HAM10000 No Accuracy: 92.5% Hybrid CNN design 

[11] Mahbod et al. 
(2019) 

Hybrid CNN 7 classes Skin lesions No Accuracy: ~84% 
Fusion-based 
architecture 

[12] Ahmad et al. (2023) Deep CNN + XAI 7 classes Dermoscopic images Grad-CAM Accuracy: 90.1% 
Focus on explainable 

multi-class 

[13] Cino et al. (2024) CNN + TTA 7 classes Skin lesion data Grad-CAM Accuracy: 89.7% 
Enhanced via 
augmentation 

[15] Rathore et al. 

(2022) 
ML + XAI 6 classes 

Erythemato-

squamous 
SHAP, LIME Accuracy: 94.1% 

Tabular + 

interpretable models 

[16] Metta et al. (2024) CNN + LIME 7 classes Skin lesion data LIME Accuracy: ~88% Interpretability focus 

[17] Ullah & Zia (2025) 
CNN + RBF 
Hybrid 

7 classes Skin cancer Grad-CAM Accuracy: 91.5% XAI integration 

[18] Hassan (2024) Deep CNN 3 classes Skin cancer Grad-CAM Accuracy: ~89% No dataset info 

[19] Lin et al. (2025) 
SkinGEN (Vision-

Language) 

4 classes 

(Prototype) 
Dermatology Interactive VLM N/A Conceptual model 

[20] Abdelhamid (2024) Various (review) Multiple Skin cancer Mentioned 88–95% range Survey paper 

SkinDiseaseXAI (CustomCNN) 10 classes 
Mixed skin diseases 

(Kaggle) 
Grad-CAM++ 

Training: 76.12% 

Validation: 66.25% 

Custom-built + full 

interpretability 
 

D. A Summary and a Gap in the Research 

AI-based dermatological diagnostics have made a lot of 
progress, but there is still a big gap between high-performing 
models and their use in real life. This is mostly because the 
models are difficult to understand, don't focus enough on multi-
class classification across different skin conditions, and don't 
have enough real-world data. A lot of earlier work only looks at 
binary categorization (such as benign versus malignant) or uses 
CNNs without properly combining them with strong 
explainability frameworks. In addition, models like Grad-CAM 
and SHAP have been introduced, although their use has 
frequently been confined to post-hoc analysis or has been quite 
basic. 

To fill this gap, the current study suggests SkinDiseaseXAI, 
a unique interpretable CNN architecture that uses Grad-CAM++ 
to make it easier to understand how it works and to identify 10 
different skin conditions. This model tries to find a compromise 
between how well it can diagnose and how easy it is to 
understand in a clinical setting. This solves a big problem that 
makes it hard to use AI in dermatology. 

III. METHODOLOGY 

A. Materials (Datasets) 

For this study, a public dataset called "Skin Disease Dataset" 
compiled by Xuan Nguyen on Kaggle was used [23]. The dataset 
aggregates dermoscopic and clinical images from various open-
access medical resources, although the exact original sources of 
the images are not individually cited in the Kaggle repository. 

According to the uploader’s documentation, all images were 
curated to be free from watermarks and ethically usable for 
educational and research purposes in skin disease classification. 
The dataset includes 27,153 high-resolution clinical and 
dermoscopic images organized into 10 different types of skin 
diseases. Importantly, all images are watermark-free and 
ethically acceptable for usage in machine learning applications 
for skin disease classification. 

The dataset is systematically organized as follows: 

 Training Set: includes 19,003 images used for model 
learning. 

 Validation Set: includes 2,711 images to fine-tune 
hyperparameters and prevent overfitting. 

 Testing Set: consists of 5,439 images designated for 
evaluating the final model performance. 

The dataset includes ten dermatological categories, 
including eczema, melanoma, atopic dermatitis, basal cell 
carcinoma, melanocytic nevi, benign keratosis-like lesions, 
psoriasis, seborrheic keratoses, tinea and fungal infections, and 
viral infections such as warts and molluscum [20]. Table II 
shows an overview of the dataset structure, including the 
number of images allocated to each subset. 

This dataset distribution ensures that the deep learning 
model goes through rigorous training, validation, and testing to 
achieve optimal results. The well-balanced allocation enhances 
strong model generalization while minimizing the danger of 
overfitting. 
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TABLE II. DATASET COMPOSITION 

Dataset Split Number of Images Number of Classes 

Training Set 19,003 10 

Validation Set 2,711 10 

Testing Set 5,439 10 

Total 27,153 10 

Fig.1 shows representative samples from four major skin 
diseases found in the dataset. These images show the visual 
complexity and variation in color, texture, and lesion boundaries 
that the model must learn to recognize. 

 
Fig. 1. Sample images from the Skin Disease Dataset used in this study. The 

images represent different classes: (a) Eczema, (b) Melanoma, (c) Atopic 

Dermatitis, and (d) Basal Cell Carcinoma (BCC). 

B. Method Design 

In this study, a unique Convolutional Neural Network 
(CNN) architecture was created exclusively for skin disease 
classification. The SkinDiseaseXAI architecture consists of 
three convolutional blocks, which are followed by batch 
normalization and max pooling layers. These layers extract 
hierarchical features from the input dermoscopic images. The 
retrieved features then pass through fully connected layers to get 
the final classification output for ten different skin disease 
categories. 

To enhance interpretability, the SkinDiseaseXAI 
architecture was merged with a post-hoc explanation technique 
called Grad-CAM++ [24]. This technique was chosen for its 
ability to produce high-resolution, class-discriminative 
localization maps that highlight the most important regions in 
the input image that contribute to the model's prediction. The 
third pooling layer (pool3) was selected as the target layer for 

gradient-based visualization because it provides a balance 
between spatial detail and semantic abstraction. 

Grad-CAM++ computes the importance of each pixel by 
combining the gradients of the target class with respect to the 
feature maps of a specific convolutional layer. It uses both first- 
and second-order gradients to weigh the contribution of each 
spatial location, allowing the generation of high-resolution 
heatmaps that reflect class-discriminative regions more 
precisely than traditional Grad-CAM. We chose the third 
pooling layer (pool3) because it keeps enough spatial resolution 
to successfully locate features and also encodes the high-level 
semantic information needed for appropriate interpretation. 
Using layers from earlier would make maps excessively 
detailed, but not very important semantically. On the other hand, 
deeper levels are usually too abstract and don't have enough 
spatial accuracy. 

Fig. 2 shows the architecture of the proposed model, 
SkinDiseaseXAI. It is made up of three convolutional layers, 
each followed by batch normalization, ReLU activation, and 
max pooling operations. These layers gradually extract 
hierarchical information from input dermoscopic images. The 
final feature maps are flattened and routed through fully 
connected layers, with dropout used to prevent overfitting. 

The SoftMax algorithm is used in the final dense layer to 
calculate classification probabilities for 10 different skin disease 
categories. Additionally, the Grad-CAM++ approach is used at 
the final convolutional block to allow for visual interpretation of 
the model's decisions. 

 
Fig. 2. The Architecture of the proposed SkinDiseaseXAI model. 

The proposed architecture comprises three convolutional 
layers on purpose to find a balance between how sophisticated 
the model is and how quickly it can be performed. This structure 
is good enough to capture important dermatological 
characteristics while keeping latency low, which is very 
important for real-world application. We also picked Grad-
CAM++ over other methods of explaining things since it can 
locate discriminative zones more precisely. Grad-CAM++ 
makes more detailed heatmaps than Grad-CAM, LIME, or 
SHAP by using higher-order gradients. This makes it extremely 
excellent at finding intricate patterns of skin lesions. 
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C. Method Development 

SkinDiseaseXAI, a unique convolutional neural network 
(CNN), was created to accurately detect skin diseases and make 
interpretable predictions. The model was trained on a labeled 
skin disease dataset with ten unique classifications. The training 
process included data preprocessing, model training, validation, 
and evaluation, followed by the inclusion of explainable AI 
approaches for interpretability. 

Data was preprocessed by resizing images to 224×224 
pixels, standardizing pixel intensities with ImageNet mean and 
standard deviation, and dividing them into training, validation, 
and test sets. The dataset was divided into 70% for training, 15% 
for validation, and 15% for testing. 

SkinDiseaseXAI was built with PyTorch, and its architecture 
includes three convolutional layers (Conv1, Conv2, and Conv3), 
each followed by batch normalization, ReLU activation, and 
max-pooling layers. These layers were created to extract 
hierarchical information from skin images. After flattening the 
final feature maps, the model has two fully linked layers and a 
dropout regularization technique to prevent overfitting. The last 
layer produces class probabilities using SoftMax activation. 

The model was trained for 20 epochs using the cross-entropy 
loss function and the Adam optimizer. We used the Adam 
optimizer with a starting learning rate of 0.001, beta values set 
to (0.9, 0.999), and no weight decay. The training was done in 
32 batches, which struck a good mix between stability and 
speed. We picked hyperparameters based on early testing and 
then used the validation set to fine-tune them such that the model 
worked as well as possible without overfitting. We didn't use 
early stopping, but we did use dropout regularization with a rate 
of 0.5 in the layers that were fully connected. The training 
approach had a final training accuracy of 76.12% and a 
validation accuracy of 66.25%, which means that it was able to 
generalize well to new data. 

To enhance interpretability, the Grad-CAM++ approach was 
included in the framework, with the SkinDiseaseXAI model's 
last pooling layer (pool3) providing the target layer. Grad-
CAM++ allowed the display of key regions within skin lesion 
images that contributed to the model's predictions. Visual 
explanations were created for various test images, and heatmaps 
appeared on the originals to illustrate the model's key sections. 
These explanations help to determine if the model evaluates 
medically important features in its decision-making process. 

Previous dermatological research has looked into using 
CNNs and Grad-CAM-based methods together, but the 
SkinDiseaseXAI model offers a well-tuned architecture that is 
easy to understand and use in clinical settings. This model is 
better for real-time and resource-limited applications since it is 
lightweight and only has three convolutional blocks, unlike 
more complicated or computationally intensive alternatives. 
Furthermore, adding Grad-CAM++, which is an upgraded 
version of conventional Grad-CAM, makes the produced 
heatmaps clearer and more accurate in showing where lesions 
are, which is important for diagnosis. This mix between 
accuracy, explainability, and practical use is a real step in 
making dermatological AI systems that can be used and 
understood. 

D. Implementation Details 

The SkinDiseaseXAI framework was built using Python 
3.10 in a CPU-based local environment using Jupyter Notebook. 
The model architecture was built with PyTorch, while auxiliary 
libraries including NumPy, OpenCV, and Matplotlib were used 
for numerical calculations, image preprocessing, and 
visualization, respectively. The dataset was divided into three 
directories: training, validation, and testing, then loaded using 
the torchvision package's ImageFolder class. 

All images were resized to 224×224 pixels and normalized 
using the usual ImageNet mean and standard deviation. Data 
was loaded in batches using PyTorch's Data Loader. Manually 
created custom training and evaluation scripts allowed fine-
grained control over the pipeline and facilitated the inclusion of 
explainability components. Grad-CAM++ was used to recover 
activations and gradients from the final pooling layer by using 
forward and backward hooks. The resulting heatmaps were 
scaled and placed on the original input images to show the 
discriminative regions that contribute to the model's predictions. 

IV. RESULTS 

A. Evaluation 

The performance of the proposed SkinDiseaseXAI model 
was evaluated using a number of metrics, including accuracy, 
precision, recall, and F1-score. After 20 training epochs, the 
model had a final training accuracy of 76.12% and a validation 
accuracy of 66.25%, as shown in Fig. 3, which shows the 
accuracy trends throughout epochs. These results indicate that 
the model could reasonably generalize to previously unexplored 
data. 

 
Fig. 3. Training and validation accuracy over twenty Epochs. 

The classification report in Fig. 4 summarizes the 
performance on the test set. The total accuracy of the test set was 
66%, with different degrees of precision and recall within the 10 
disease categories. The classes with the highest F1 scores were 
melanocytic nevi (0.79) and melanoma (0.91), showing 
outstanding detection performance. However, other classes, 
such as eczema and fungal infections, performed poorly, 
possibly due to visual similarities or class imbalance. 
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Fig. 4. Classification report of the SkinDiseaseXAI model on the test set. 

Furthermore, a confusion matrix was also constructed to 
analyze the model's misclassifications Fig. 5. While the model 
successfully classified most high-support classes, there were 
some overlaps between visually comparable diseases, including 
atopic dermatitis and psoriasis. 

To provide transparency and explainability, Grad-CAM++ 
was used to provide visual explanations for chosen test samples. 
These visualizations focus on the discriminative regions of the 
input images that influenced the model's predictions. As shown 
in Fig. 6, each row includes the original skin lesion image, the 

Grad-CAM++ heatmap, and the overlayed attention map. 
Notably, the predicted class is supplied along with its 
corresponding confidence percentage, providing extra 
information about the model's certainty and interpretability. 

 
Fig. 5. Confusion matrix showing classification results across ten skin 

disease categories. 
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Fig. 6. Grad-CAM++ generated visual explanations for four skin disease cases. Each row shows the original image, the corresponding heatmap, and an overlay 

with the predicted class and confidence score. 

B. Comparison with Existing Methods 

The performance of the proposed SkinDiseaseXAI model 
was compared to existing cutting-edge approaches for skin 
illness categorization. With a validation accuracy of 66.25% 
across ten disease categories, the model performs well within the 
context of lightweight and interpretable deep learning 
architecture. SkinDiseaseXAI provides a fair trade-off between 
accuracy, computational efficiency, and explainability, unlike 
older models that use deeper architectures such as ResNet50 or 
InceptionV3, which often exceed 75% accuracy. 

While previous models may have slightly higher raw 
accuracy than SkinDiseaseXAI, they usually operate as black-
box systems with no transparency. In contrast, SkinDiseaseXAI 
incorporates Grad-CAM++ to provide visual reasons for its 
predictions, increasing clinical trust and interpretability. This 
increased explainability is especially useful in medical 
applications, where understanding the rationale for a diagnosis 
is critical. Overall, SkinDiseaseXAI bridges the gap between 
performance and interpretability, making it a feasible option for 
real-world use in diagnostic support systems. 

TABLE III. COMPARATIVE SUMMARY OF EXISTING STUDIES ON SKIN 

DISEASE CLASSIFICATION USING AI MODELS 

Study/Model 
Dataset 

Used 

Number 

of 

Classes 

Accuracy 

(%) 

XAI 

Method 

Estea et al. 

(2017) [3] 
ISIC 3 72.1 None 

Hasan et al. 

(2022) [7] 
HAM10000 7 85.4 

Grad-

CAM 

Ahmad et al. 
(2023) [9] 

Dermoscopic 8 88.7 
Grad-
CAM++ 

Salinas et al. 

(2024) [4] 

Multiple 

(Meta) 
3–7 80–90 (avg.) Varies 

SkinDiseaseXAI 
Skin Disease 
Dataset 

10 
76.12 (train) 
66.25 (val) 

Grad-
CAM++ 

Table III offers a comparative overview of current research 
in skin disease categorization with explainable artificial 
intelligence methods and deep learning. Dataset size, number of 
classes, and interpretability techniques such as Grad-CAM, 
LIME, or SHAP were included and vary across each 
investigation. Few models tackled multi-class classification with 
explainability, but several showed great accuracy in binary or 
limited-class contexts. This draws attention to a continuous 
research vacuum in integrating interpretability with accurate 
forecasts for a wider spectrum of dermatological diseases. 

V. DISCUSSION 

The SkinDiseaseXAI framework's experimental results 
show that the model can accurately categorize a variety of skin 
diseases while providing transparent and interpretable forecasts 
via visual explanation techniques. The training and validation 
accuracy curves (see Fig. 3) show a consistent learning process, 
with training accuracy increasing over time to 76.12% and 
validation accuracy stabilizing at 66.25% after 20 epochs. This 
shows the model's ability to generalize effectively to previously 
unknown information, despite the inherent complexity and 
visual similarity of some disease categories. 

The classification report in Fig. 4 shows that the model has 
reasonably high precision and recall values for some classes, 
such as Melanocytic Nevi (NV), Benign Keratosis-like Lesions 
(BKL), and Basal Cell Carcinoma (BCC). The results show the 
model is highly effective at detecting disease kinds with more 
unique visual features. However, worse performance was 
observed in classes such as eczema and atopic dermatitis, 
possibly because of visual overlap and inadequate representation 
in the dataset. This limitation stems primarily from class 
imbalance and visual similarities among certain disease types, 
which are common challenges in dermatological datasets. Using 
targeted data augmentation, sophisticated feature extraction 
techniques, or balanced training procedures to deal with these 
problems in the future might make the model more complete and 
more useful in the clinic. The confusion matrix in Fig. 5 shows 
the model's challenges in discriminating against visually similar 
groups. 

Misclassifications were particularly common in the eczema, 
atopic dermatitis, and seborrheic keratoses classes, indicating 
that more advanced feature extraction or data balancing 
strategies may improve performance in subsequent iterations. 

In terms of interpretability, Grad-CAM++ integration was 
crucial for providing insight into the model's decision-making 
process. The visual explanations provided in Fig. 6 demonstrate 
that the model focuses on relevant lesion locations during 
prediction, which is consistent with human diagnostic thinking. 
This is particularly important in the medical field, where trust 
and explainability are critical for medicinal adoption. 

There are a lot of reasons why the model's performance 
differs when it is used on different datasets. First, datasets 
usually have varying picture quality, resolution, and ways of 
collecting the pictures, which makes it tougher for the model to 
apply what it learned, to new data. Second, each dataset has a 
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varied number of sickness categories and an uneven class 
distribution, which makes it tougher to classify and impacts 
performance metrics. Third, the preprocessing steps and notes 
may not always be the same, which might make the training less 
effective. 

Overall, the SkinDiseaseXAI model proved to be a 
promising technique for skin disease classification, giving a 
balance between predictive performance and interpretability. 
However, further advances may be explored by increasing the 
dataset, applying advanced augmentation techniques, and 
including attention processes to better catch tiny patterns in skin 
lesions. 

VI. CONCLUSION 

A. Contribution 

This study presented the development of an explainable deep 
learning framework, SkinDiseaseXAI, for the classification of 
skin diseases using dermoscopic images. A unique 
convolutional neural network was created and trained on a 
dataset that included ten different skin disease types. The model 
scored 76.12% training accuracy and 66.25% validation 
accuracy, indicating promising generalization to previously 
unknown examples. 

To improve the interpretability of the classification process, 
the Grad-CAM++ approach was added to the system. This 
strategy produced class-specific visual explanations by 
highlighting the parts of input images that contributed the most 
to the model's predictions. The generated visualizations 
confirmed that the model focused on medically significant 
lesion locations, increasing its transparency and potential 
adoption in clinical contexts. 

Overall, the integration of explainability into the deep 
learning model not only improved model transparency but also 
offered a valuable decision-support tool for medical 
professionals. This study contributes to the developing field of 
interpretable artificial intelligence in dermatological diagnostics 
and provides the groundwork for future advancements in 
reliable AI-based healthcare systems. 

B. Future Work 

While the proposed SkinDiseaseXAI model performed 
satisfactorily in both classification accuracy and visual 
interpretability, various improvements are planned for future 
work. Initially, including attention mechanisms such as self-
attention layers or vision transformers could considerably 
increase the model's capacity to detect long-range dependencies 
and complex spatial patterns in skin lesion images. Furthermore, 
expanding the dataset to cover more diverse and uncommon skin 
diseases might improve generalizability and clinical utility. 
Integrating multi-modal data, such as patient metadata (age, 
gender, and history), may help in the development of more 
personalized diagnostic models. 

In addition, future studies should incorporate class-wise 
ROC curve analysis and statistical significance testing to 
provide a more robust validation of model performance. In terms 
of explainability, integrating Grad-CAM++ with other XAI 
techniques such as SHAP or LIME may provide complementary 

views and deeper understanding of model behavior. Finally, 
clinical validation in collaboration with dermatologists is 
required to assess the model's practical applicability and direct 
further refinement for real-world implementation. 
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