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Abstract—Emotion recognition technology that utilizes 

physiological signals has become highly important because of its 

diverse purposes in healthcare fields and human-computer 

interaction and affective computing, which require emotional state 

understanding for enhanced user experience and mental health 

management. Support Vector Machines (SVM) and Random 

Forest (RF) serve as traditional machine learning approaches for 

emotion classification, but they struggle to accurately model 

spatial, temporal and long-range dependencies within multimodal 

physiological data, which leads to degraded overall performance. 

Created an Attention-Based CNN-BiLSTM-Transformer Model, 

which unites several neural network structures to extract features 

and classify information more effectively. This model implements 

Convolutional Neural Networks for detecting spatial patterns at 

the raw level of numerous physiological signals, which contain 

Electroencephalography, Electrocardiography, Galvanic Skin 

Response, and Electromyography. BiLSTM works as a temporal 

model which analyzes time-series physiological patterns through 

dual-directional contextual processing to create improved features 

from historical data patterns. The Transformer encoder serves to 

detect extended relationships between sequence items for better 

emotional change comprehension throughout time. The 

classification accuracy receives additional improvement because 

an attention-based fusion mechanism applies dynamic importance 

weights to different physiological signals, so the most significant 

features optimize the ultimate decision process. Testing of the 

proposed model using publicly accessible DEAP and AMIGOS 

resulted in 88.2% accuracy on DEAP while achieving 89.5% 

accuracy on AMIGOS, and both outcomes exceeded conventional 

machine learning methods as well as baseline deep learning 

approaches, which used CNN-LSTM and Transformer-only 

models. Testing showed that the attention mechanism successfully 

determined how to weigh multiple features, which resulted in 

better classification success. A deep learning framework based on 

TensorFlow and PyTorch operates throughout the 

implementation in Python to provide an efficient solution for 

emotion recognition in physiological signals. 
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I. INTRODUCTION 

Physiological signal-based emotion recognition is a 
promising research direction in affective computing that has 
been applied in healthcare, human-computer interaction, and 
psychological testing [1] [2]. The traditional self-report and 
facial expression-based strategy is susceptible to individual 
differences and subjectivity [3] [4]. Physiological signals such 

as Electroencephalography, Electrocardiography, Galvanic Skin 
Response, and Electromyography offer a more objective and 
less varied measure of emotion recognition [5] [6] [7]. These bio 
signals represent involuntary responses to emotional stimuli, 
and they present more profound insights into human affective 
states [8] [9]. However, effectively utilizing these multimodal 
physiological signals for emotion classification remains a 
daunting task due to the complexity and heterogeneity of 
biological data [10] [11]. 

Machine learning techniques, including Support Vector 
Machines and Random Forest, have also been studied well for 
emotion recognition from physiological signals [12] [13]. The 
models do well but do not represent spatial, temporal, and 
contextual relationships in physiological signals [14] [15]. Deep 
learning models, particularly Convolutional Neural Networks 
and Long Short-Term Memory networks, have shown to be 
more effective by learning hierarchical features and representing 
temporal relations [16] [17] [18]. Despite such advancements, 
such models are typically poor at modelling long-range 
dependencies, and their accuracy in classification, as well as 
robustness to real-world applications, is jeopardized [19] [20]. 

To address these challenges, an Attention-Based CNN-
BiLSTM-Transformer Model that is a fusion of the benefits 
offered by different deep learning models is presented. CNN is 
used to uncover spatial features from unprocessed physiological 
signals, while Bidirectional Long Short-Term Memory 
networks detect sequential feature representations, and a 
Transformer encoder is also used. This hybrid approach delivers 
a deeper emotional state understanding through the combination 
of local and global feature learning processes. 

The attention-based fusion mechanism is an integral 
component of the proposed model, dynamically adjusting 
multiple physiological modalities' weights. Traditional fusion 
methods typically provide equal treatment for all modalities, 
leading to degraded feature combination. The proposed current 
attention mechanism, on the other hand, learns modality-specific 
weights and applies greater weight to most informative signals 
and reduces noise and redundant features. Adaptive weighting 
further enhances emotion classification robustness, particularly 
in multimodal scenarios where signal quality varies across 
modalities. 

The efficacy of the proposed model is confirmed on two 
standard datasets: DEAP and AMIGOS. Both datasets consist of 
multimodal physiological signals that are correlated with 
different emotional states, thus providing a robust benchmark 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

106 | P a g e  

www.ijacsa.thesai.org 

for the testing of emotion recognition models. Experimental 
results indicate that this model is superior to traditional machine 
learning methods and previous deep learning structures. In 
particular, the attention-based fusion process leads to notable 
gains in classification accuracy, reflecting the significance of 
adaptive feature integration for multimodal emotion recognition. 

Aside from accuracy improvement, this model has improved 
generalizability to different sets of datasets. Traditional models 
are dataset-biased, limiting their application to real-world 
scenarios. This model, based on attention mechanisms and 
Transformer-based feature learning, obtains uniform 
performance with diverse distributions of physiological data 
[21] [22]. Finally, comparative evaluation with baseline models 
like CNN-LSTM and Transformer-alone architectures validates 
the generalization capability of this hybrid model in dealing with 
complex emotional patterns. 

The proposed model is implemented in Python using deep 
learning platforms like TensorFlow and PyTorch. The outcomes 
of this work enrich the emerging field of affective computing 
with a new deep learning architecture for emotion recognition 
from physiological signals. Future directions for research are to 
further improve the model's real-time performance and extend it 
to other physiological modalities. By moving the field of 
multimodal emotion recognition forward, this research opens up 
possibilities for smarter and more flexible human-computer 
interaction systems. Key contributions of this study are: 

1) This research introduced an Attention-Based CNN-

BiLSTM-Transformer model for enhanced emotion recognition 

from physiological signals. 

2) An attention-based fusion mechanism was implemented 

to dynamically assign importance weights to different 

physiological modalities. 

3) The model effectively extracted spatial, temporal, and 

long-range dependencies using CNN, BiLSTM, and 

Transformer architectures. 

4) Experimental results demonstrated superior 

classification performance, achieving 88.2% accuracy on 

DEAP and 89.5% on AMIGOS compared to baseline models. 

5) The proposed approach was validated using publicly 

available DEAP and AMIGOS datasets, ensuring robustness 

and generalizability. 

The rest of this study is organized as follows. Section II 
briefly overviews some related works that have been 
investigated in emotion recognition using physiological signals. 
Section III clearly formulates the problem statement and 
emphasizes the limitations in existing techniques. Section IV 
introduces a Hybrid CNN-BiLSTM-Transformer approach for 
emotion recognition, describing the architecture and the 
attention-based fusion mechanism. Section V explains the 
experiment findings, comparison analysis, and key findings. 
Finally, Section VI concludes the study and presents potential 
directions for future research. 

II. RELATED WORKS 

Zhongzheng et al. [23] investigated emotion recognition 
hardness from physiological signals with respect to having 
adequate labelled data for a single subject and how individual 

differences and inherent noise affect the recognition rate. 
Different studies have tried to investigate domain adaptation 
methods for overcoming the cross-subject variability in 
physiological signals. Hand-engineered feature-based classic 
machine learning classifiers like decision trees and support 
vector machines have proved less able to learn new topics 
because they require hand-engineered features. Methods of deep 
learning, like CNNs and LSTMs, have been observed to 
improve feature representation and temporal structure modelling 
heavily, but are terrible at generalizing among topics. Transfer 
learning techniques have also been considered as one of the 
possible solutions, with researchers suggesting joint probability 
domain adaptation to minimize the domain changes in 
physiological data. 

Dong Liu et al.[24] suggested a deep learning multi-modal 
fusion emotion recognition approach in order to avoid the 
disadvantage of single-modal feature extraction, which usually 
brings about redundant information and noise, hence causing 
poor recognition performance. Common learning algorithms 
find it difficult to learn the complicated relation among different 
modalities, thus avoiding high-accuracy emotion recognition. 
Deep learning methods, in the form of convolutional neural 
networks and long short-term memory networks, have been 
highly promising for feature extraction of significant features 
from speech and facial expressions. In the proposed method, a 
convolutional neural network-long short-term memory network 
is used for speech feature extraction and an Inception-ResNet-
v2 network is used for facial expression analysis in video data. 
Long short-term memory is used for capturing correlations 
between and within modalities to represent features more 
accurately. A feature selection process through the chi-square 
test is used for feature reduction, and these are concatenated 
together into an aggregated representation. 

Ayata et al.[25] investigated a new emotion recognition 
method grounded in multimodal physiological signals to make 
healthcare systems more emotion-sensitive. Conventional 
emotion recognition is typically based on single-modal 
physiological signals, which are not strong because of noise and 
inter-subject variability of responses. Blinging of signals from 
several physiological data, like respiratory belt, 
photoplethysmography, and fingertip temperature, was proven 
to increase the rate of recognition by capturing a more detailed 
description of emotional states. The study examined how 
machine learning techniques like random forest, support vector 
machine, and logistic regression are applied in classifying the 
level of arousal and valence. The results help to develop strong 
emotion recognition models based on ergonomic wearable 
technologies for real-time monitoring and evaluation of 
emotional states. 

Ghoniem et al. [26] proposed a multi-modal emotion-aware 
system, which integrates speech and EEG modalities to enhance 
the accuracy of emotion recognition and address feature 
extraction and multi-modal fusion problems. Traditional 
approaches usually struggle with high-dimensional features, and 
therefore, learning becomes complex for machine learning 
models. Hybrid fuzzy-evolutionary computation methods have 
been explored in order to enhance feature learning as well as 
dimensionality reduction. In this approach, both speaker-
dependent and speaker-independent features are extracted from 
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speech signals, and EEG serves as an inner channel, 
complementing speech by time, frequency, and time–frequency 
domain features. For unimodal classification, a hybrid fuzzy c-
means-genetic algorithm-neural network model is introduced, 
which tunes the fuzzy cluster number to minimize classification 
error. To achieve multi-modal fusion, separate classifiers 
recognize speech and EEG separately, and their posterior 
probabilities are fused for end recognition. 

Nakisa et al. [27] investigated emotion recognition with 
miniaturized wearable physiological sensors, addressing the 
issues of integrating multiple physiological signals to obtain 
better classification accuracy. Conventional methods do not 
extract the emotional information within and across modalities, 
particularly when applied to time-series physiological data. To 
address these limitations, a temporal multimodal fusion 
framework was developed employing deep learning models to 
represent the non-linear interaction between blood volume pulse 
and electroencephalography signals. Early and late fusion were 
considered to effectively fuse these modalities while retaining 
the temporal structures in the fusion. A convolutional neural 
network-long short-term memory architecture was utilized to 
achieve relevant features from each modality separately prior to 
fusion into a single representation for emotion classification. 
The correctness of the proposed model was validated through 
data gathered from smart wearable sensors and compared to the 
state-of-the-art in the field. 

Zhang et al. [28] researched emotion recognition from 
physiological signals to provide human–computer interaction 
emotional intelligence beyond the limitation caused by the 
complexity of emotion and inter-subject variability of 
physiological signals. Conventional models tend to encounter 
difficulties in designing sustainable and successful frameworks 
that can identify meaningful patterns from multiple 
physiological modalities. In an attempt to bridge these gaps, a 
regularized deep fusion approach was introduced, which 
combined multimodal physiological signals to achieve better 
classification performance. Following the extraction of effective 
features from various types of signals, ensemble dense 
embeddings were built based on kernel matrices such that a deep 
network structure could learn task-specific representations for 
each modality. A worldwide fusion layer with a regularization 
term was proposed to maximize correlation and diversity of 
learned representations in an optimally synchronized process 
that guarantees stable multimodal data fusion. 

Sharmeen et al.[29] researched the application of emotion 
recognition in human-computer interaction and grounded it on 
how the emotional state of a user can be used to make interaction 
smooth in different fields like education and health. 
Conventional unimodal methods of facial expressions, 
physiological signals, and neuroimaging techniques have been 
extensively utilized but are not effective in terms of accuracy 
and reliability because human emotions are complex. 
Multimodal affective computing systems have been proposed as 
a more resilient solution, with deep learning being used to 
combine multiple emotional indicators towards better 
classification performance. The reviewed work offered recent 
advancements in multimodal emotion recognition, comparing 
methodologies based on features extracted, classification 

techniques, and consistency of databases. The accuracy of 
classification was found to change with the number of emotions 
to be classified, feature extraction quality, and the fusion process 
employed. 

Tongjie et al. [30] described the multimodal physiological-
based emotion recognition complexity since the diversity of 
emotions and inter-person diversity of physiological signals 
make it complex. Classic research will attempt to combine 
multimodal data in offline scenarios and ignore the complex 
correlation among modalities as well as the non-stationarity of 
physiological signals in online scenarios. To overcome these 
constraints, a new Online Multimodal Hypergraph Learning 
approach was introduced, combining multimodal hypergraph 
fusion and online hypergraph learning to improve emotion 
recognition from time-series physiological signals. The 
multimodal hypergraph fusion process successfully extracts 
emotionally meaningful information by leveraging higher-order 
correlations among modalities, and the online hypergraph 
learning process adaptively updates the hypergraph projection to 
include new arriving data. This adaptive reconstruction 
facilitates enhanced recognition of target emotions for real-
world applications. Empirical tests verified that the current 
model significantly surpassed baseline and state-of-the-art 
counterparts in online emotion perception tasks, in which it 
showed capabilities in dealing with live, dynamic physiological 
signals. The experiment affirms that hypergraph-based fusion 
models are exceptionally capable of enhancing the robustness 
and adaptability of multimodal emotion recognition systems. 

Guo et al. [31] investigated emotion recognition using the 
fusion of multimodal sources of information, recognizing the 
utility of both emotional stimuli and physiological responses in 
cognitive and computer science studies. Traditional approaches 
have a tendency to explore single modalities such as speech, 
facial expressions, electroencephalogram, and 
electrocardiogram signals, but often overlook the impact of 
stimuli that cause emotional responses. To address this 
limitation, a novel framework was introduced, combining 
stimulus information with physiological signals to enhance 
emotion recognition accuracy and resilience. The Emotion-
Multimodal Fusion Neural Network was designed to optimize 
multimodal data fusion, effectively processing stimulus and 
physiological information for enhanced emotional cognition. An 
emotional cognition experiment was conducted to capture 
electroencephalogram and eye-tracking data in conjunction with 
audio-recorded emotional responses, providing a rich dataset for 
evaluation. 

Yang et al. [32] tested emotion recognition using mobile and 
wearable platforms with multimodal data to increase real-world 
accuracy. Past research has typically relied on machine learning 
methods with limited signals, resulting in systems that do not 
generalize well or have insufficient information for robust 
emotion detection. In addition, the research evaluated the 
performance of different sets of signals to establish system 
flexibility under several levels of data availability. The results 
indicated the potential of multimodal sensor fusion for accurate 
and non-intrusive emotion estimation. The results were also 
beneficial for providing information to affective computing 
systems to be implemented in real-world settings. 
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Song et al. [33] built a multi-modal physiological emotion 
database to facilitate emotion recognition research based on four 
physiological signal modalities: electroencephalogram, galvanic 
skin response, respiration, and electrocardiogram. Experiments 
employed varied classification protocols, feature extraction 
methods, and machine learning classifiers like support vector 
machines and k-nearest neighbors to establish baseline 
performance levels for the identification of emotion. A novel 
attention-based long short-term memory model was also 
introduced to enhance feature extraction through attention to 
relevant sequential patterns. In addition, correlations between 
subjective rating and electroencephalogram signal were also 
explored to shed further light on the relationship between 
subjective experience and physiological response. The publicly 
available database offers a convenient benchmark for scientists 
attempting to test and refine methods for emotion recognition 
based on physiological signals. 

Dai et al. [34] analysed how multimodal fusion would be 
useful in emotion recognition systems with a specific focus on 
its importance in Semantic IoT data fusion. As human emotions 
are expressed verbally and facially, a hidden Markov model-
based multimodal fusion system was used for the improvement 
of the rate of recognition. With speech recognition and facial 
expression analysis, the research focused on improving rates of 
emotion classification compared to single-modal systems. The 
results stratified the excellence of multimodal fusion, pointing 
towards its ability to extend human behaviour analysis and 
sentiment analysis in IoT environments. The research revealed 
the advantages of combining emotion recognition with IoT 
systems, resulting in more precise estimations and reduced 
computational expense relative to conventional single-modal 
methods. 

Xiang et al. [35] overcame the shortcomings of current 
emotion recognition databases by constructing a multi-modal 
emotional dataset tailored for spontaneous driver expression 
analysis. Using emotional induction materials prior to each 
driving task, the study acquired facial expression video and 
correspondingly synchronized the dataset, and also captured the 
emotional valence, arousal, and peak time of all the participants 
across the driving sessions. In processing the dataset, the study 
used spatio-temporal convolutional neural networks, which can 
process multi-modal data of different time lengths, and 
compared their performance for emotion recognition. 

Roshdy et al. [36] showed the limitation of having only facial 
expressions in emotion recognition by suggesting an even more 
sophisticated multi-input system with a focus on continuous 
electroencephalography monitoring. Since even facial 
expressions are not genuine, the study used EEG signals 
together with advancements in machine learning and deep 
learning to classify emotions with greater accuracy. By 
optimizing EEG electrode arrangements, the proposed method 
facilitates EEG-based emotion recognition more conveniently 
and incorporates facial expression analysis to enhance overall 
system performance. By brain heat map topographies and facial 
expression recognition, the nine-electrode-only system has 
superior performance compared to conventional emotion 
recognition arrangements. Experimental results confirm that 
integration of EEG signals with facial expression analysis 
provides a more comprehensive and accurate description of 

human emotions. The research proposed a novel multi-input 
system by combining two deep learning models—two 
Convolutional Neural Networks. 

Liu et al.[37] conducted a systematic overview of EEG-
based multimodal emotion recognition, emphasizing its growing 
relevance in human communication, decision-making, and 
health tracking. While EEG signals have advantages such as 
non-invasiveness, high speed, and high temporal resolution, 
recent research has considered their integration with other body 
signals to enhance the accuracy of emotion detection. Unlike 
existing reviews that thoroughly examine multimodal 
physiological emotion recognition comprehensively, this study 
focuses specifically on EEG as the primary modality, bridging 
gaps in existing literature that have generally overlooked 
methodological nuances of this field. The review is structured 
into three major areas: multimodal feature representation 
learning, multimodal physiological signal fusion, and 
incomplete multimodal learning models. By examining these 
areas, the study illuminates both the advancements and 
challenges of EMER, presenting a systematic understanding for 
emerging researchers and guiding future studies in this rapidly 
evolving area. 

Bota et al. [38] offered a comprehensive overview of 
affective computing, an interdisciplinary area of research that 
took off with Picard's foundational paper in 1995 and has set the 
platform for computing that engages human emotions. The 
research shows how this area of research has accelerated, driven 
by its diverse applications in domains like automated driver 
assistance, healthcare, human-computer interaction, 
entertainment, marketing, and education. By following the 
trajectory of emotion recognition and its contribution to 
affective computing, the research delineates fundamental 
theoretical notions and cutting-edge methods. Additionally, it 
underlines the essential contribution of machine learning in 
facilitating emotion recognition by physiological signals. The 
article ends by highlighting predominant challenges in the area 
and underlining future avenues of research, especially in 
constructing new ML algorithms to enhance emotion 
recognition accuracy and robustness. 

Wu et al.[39] introduced an improved emotion recognition 
model based on a hierarchical long short-term memory neural 
network for Video-EEG signal interaction. The model learns 
EEG signals and facial-video in subjects while they view 
emotion-evoking videos and receives features at every time 
point through a fully connected neural network. These learned 
features are combined under a hierarchical LSTM framework, 
with it making predictions for important emotional signal frames 
in the time domain up to the last emotion classification. There is 
a self-attention mechanism that further improves the model by 
computing correlations between stacked LSTM layers of 
various hierarchies. 

Luo et al. [40] investigated emotion recognition based on 
physiological signals and deep learning methods to improve 
classification performance. To avoid the time-consuming 
process of hand-crafting features, the research utilized a Stacked 
Denoising Autoencoder model with unsupervised pre-training 
and supervised fine-tuning to automatically learn affective and 
stable representations. The authors compared features and 
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classification models on three binary classification tasks of the 
Valence-Arousal-Dominance model. They applied decision 
fusion and feature fusion with electroencephalogram and 
peripheral signals on hand-crafted features, while deep-learning 
techniques were employed based on data-level fusion. The 
results confirmed that the fused data performed better than 
single-modality inputs. Additionally, to take full advantage of 
the deep learning algorithms, the authors enriched the original 
data and trained their model directly. 

Pradhan et al.[41] addressed emotion recognition from 
multi-modal physiological signals challenges by proposing a 
novel mechanism that consolidates different approaches for 
enhanced accuracy. Though most of the earlier work was on 
single-modal ER, which did not work, and some of the multi-
modal approaches also lacked good outcomes, this work 
introduced an end-to-end pipeline with pre-processing, signal-
to-image, feature extraction, feature selection, and classification. 
Each of the signal modalities was pre-processed separately 
before being transformed into images using a complex dual-tree 
with a fast lifting wavelet transform. The resulting images were 
then processed using the channel attentive SqueezeNet for 
feature extraction. 

Gahlan et al. [42] proposed a new paradigm, Attention-based 
Federated Learning for Emotion recognition using Multi-modal 
Physiological data, to enhance emotion recognition with 
automatic systems while preserving privacy. Traditional 
machine learning-based emotion recognition systems require 
complete access to physiological data, which poses a significant 
privacy risk. Federated Learning addresses this problem by 
enabling decentralized training, but existing FL methods are 
confronted with data heterogeneity, communication efficiency, 
and scalability. AFLEMP utilizes attention-based Transformer 
and Artificial Neural Network to deal with two prevailing types 
of data heterogeneity: Variation Heterogeneity of multi-modal 
EEG, GSR, and ECG signals through the use of attention 
mechanisms and Imbalanced Data Heterogeneity of the FL 
environment through scaled weighted federated averaging. 

Xu et al.[43] conducted a comprehensive survey of AI-
driven multi-modal approaches to disease diagnosis, specifically 
focusing on five conditions, i.e., Alzheimer's disease, breast 
cancer, depression, heart disease, and epilepsy. Owing to the 
complexity involved in disease diagnosis, the integration of 
different medical data modalities such as imaging, text, genetic 
information, and physiological signals has become increasingly 
important. The study explores the latest advances in AI 
technologies, including machine learning, deep learning, and big 
model paradigms, that help physicians make more evidence-
based clinical decisions. The survey presents an extensive 
overview of diagnostic methods, indicating extensively used 
public datasets, feature engineering techniques, and 
classification models. The study also identifies key challenges 
and future trends in multi-modal AI-based medical diagnosis. 
By integrating these innovations, Xu et al. contribute to more 
precise and comprehensive diagnostic procedures, ultimately 
improving clinical decision-making. 

Palanivel and colleagues [44] proposed a hybrid emotion 
recognition system, combining SVM with Tunicate Swarm 
Optimization to enhance classification accuracy in human-robot 

interaction. Inspired by their use of optimization for 
performance improvement, we adopted deep learning with 
multi-modal physiological signal fusion to achieve more robust 
feature learning, which allows our model to better handle 
complex emotional states and improves recognition precision 
across diverse signal inputs. 

Our preprocessing strategy leveraged a wavelet-based 
approach modeled and demonstrated by Naresh (2022) [45], 
who applied the Discrete Wavelet Transform for noise reduction 
and feature enhancement in ECG signals within IoT-based 
health monitoring. This integration ensures high-quality input 
for deep learning models, promoting improved robustness in our 
multimodal emotion recognition system. 

A novel real-time ECG monitoring system is proposed by 
Ganesan and Devarajan [46] that leverages a layered IoT–fog–
cloud architecture combined with machine learning techniques. 
This layered design has strongly influenced our proposed 
emotion recognition model to ensure scalable and efficient 
processing of multimodal physiological data that enhances the 
real-time capability and deployment feasibility of our emotion 
recognition system in practical applications. 

Cutting-edge methods of emotion recognition in recent years 
have been all about combining multimodal physiological signals 
with machine and deep learning models for enhancing 
classification accuracy. Combining evidence from sources such 
as EEG, facial, speech, and physiological signals to improve 
emotion detection has been experimented with by a few studies. 
Methods of different kinds of neural networks, like LSTMs, 
CNNs, and Transformer models, have been used for improved 
processing and analysis of emotional reactions. Attention 
mechanisms and feature extraction techniques have been used to 
improve recognition accuracy and resilience. Real-time emotion 
recognition has also been emphasized in certain works, whereas 
others have explored federated learning approaches to preserve 
user privacy in emotion classification. Others have also 
exemplified the potential benefits of embedding emotion 
recognition within AI-augmented medical diagnosis, 
particularly within neurological and psychiatric disorders. 
Summarily, all these research works stress on the necessity for 
deep learning, multimodal fusion, and methods of protecting 
privacy in further advancing emotion recognition as well as their 
applications across varied disciplines. 

III. PROBLEM STATEMENT 

Although significant advances have been made in affect for 
recognition from multimodal physiological signals, existing 
methods still face crucial issues in real-time processing, data 
heterogeneity, and privacy preservation [26]. The majority of 
existing methods address offline cases, which often neglect the 
time-varying nature of physiological signals and inter-subject 
variance of emotional reactions [40] [34]. Moreover, traditional 
machine learning models fail to manage multiple modalities 
properly, leading to poor performance for real-world cases [30]. 
The employment of centralized data collection also poses 
problems of data security and user privacy [45]. Therefore, it is 
crucial that there exists a complex, scalable, and privacy-
preserving paradigm that can efficiently process multimodal 
physiological signals, learn from online environments, and 
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enhance the accuracy of emotion detection for real-time 
applications. 

Objectives: 

1) Develop an Attention-Based CNN-BiLSTM-

Transformer model for improved emotion recognition from 

physiological signals. 

2) Implement an attention-based fusion mechanism for 

dynamically assigning importance weights to different 

physiological modalities. 

3) Extract spatial, temporal, and long-range dependencies 

using CNN, BiLSTM, and Transformer architectures. 

4) Evaluate the classification performance of the proposed 

model, achieving high accuracy on the DEAP and AMIGOS 

datasets. 

5) Validate the robustness and generalizability of the 

proposed approach using publicly available benchmark 

datasets. 

IV. PROPOSED HYBRID CNN-BILSTM-TRANSFORMER 

MODEL FOR EMOTION RECOGNITION 

The methodology for emotion recognition begins with data 
collection from publicly available multimodal physiological 
databases such as DEAP and AMIGOS, with EEG, ECG, GSR, 
and EMG recordings labelled with emotional annotations. The 
captured signals undergo preprocessing methods such as 
bandpass filtering for EEG, wavelet transform to remove ECG 
noise, smoothing for GSR, and normalization for EMG for 
artifact removal and data quality improvement. Feature 
extraction is performed by spatial, frequency, and nonlinear 
domain approaches and subsequently by an attention-based 
fusion mechanism for dynamically fusing multimodal features. 
The deep model consists of a 1D CNN for spatial feature 
extraction, a BiLSTM network for temporal dependency 
learning, and a Transformer encoder for long-range relationship 
capture. An attention-based fusion mechanism provides 

adaptive weights to different physiological modalities, 
emphasizing feature importance. Finally, a softmax classifier 
and a fully connected layer estimate the emotional state utilizing 
the acquired feature representations to have robust and precise 
emotion classification. Fig. 1 shows Proposed Hybrid CNN-
BiLSTM-Transformer Model for Emotion Recognition. 

 
Fig. 1. Proposed Hybrid CNN-BiLSTM-Transformer Model for Emotion 

Recognition. 

A. Data Collection 

Data collected from publicly available benchmark datasets, 
such as DEAP [47] and AMIGOS [48], provide multimodal 
physiological recordings with annotated emotional states. These 
datasets contain electroencephalogram (EEG), 
electrocardiogram (ECG), galvanic skin response (GSR), and 
electromyography (EMG) signals recorded from participants 
exposed to controlled emotional stimuli in the form of videos 
and audio clips. Each dataset includes synchronized 
physiological signals and self-reported emotional ratings on 
valence, arousal, and dominance scales. Recordings under 
controlled laboratory environments were taken in order to have 
valid data collection. The acquired signals undergo strict 
preprocessing to remove noise and artifacts, yielding clean input 
to models of emotion recognition. Table I shows data collection 
overview. 

TABLE I.  DATA COLLECTION OVERVIEW 

Dataset Participants Physiological Modalities Stimuli Type 
Emotion 

Annotations 
Environment Preprocessing Applied 

DEAP 32 EEG, ECG, GSR, EMG Video Clips 
Valence, Arousal, 

Dominance 
Controlled Lab 

Noise Filtering, Artifact 

Removal 

AMIGOS 40 EEG, ECG, GSR, EMG Video + Audio Clips 
Valence, Arousal, 
Dominance 

Controlled Lab 
Signal Smoothing, 
Normalization 

 

B. Data Preprocessing by Band Pass Filtering 

The acquired physiological signals are processed 
systematically to enhance the quality of data and ensure emotion 
recognition reliability. EEG signals are bandpass filtered (0.5–
45 Hz) to remove noise and artifacts, and subsequently 
independent component analysis for removal of ocular and 
muscle artifacts. ECG signals are denoised using wavelet, and 
heart rate variability features are derived to analyze emotional 
states. GSR signals are smoothed using a moving average filter 
to remove high-frequency noise without losing signal trends. 
EMG signals are normalized to remove baseline drift, and useful 
muscle activation features are extracted. Table II Summarizes 
data pre-processing steps. 

TABLE II.  SUMMARY OF DATA PREPROCESSING STEPS 

Signal Type Preprocessing Steps 

EEG Bandpass filtering (0.5–45 Hz), ICA for artifact removal 

ECG 
Wavelet transform for noise reduction, HRV feature 

extraction 

GSR Moving average filtering for smoothing 

EMG Normalization, muscle activation feature extraction 

The preprocessing steps can be represented as in Eq. (1): 

𝑆𝑐𝑙𝑒𝑎𝑛 = 𝑓𝑓𝑖𝑙𝑡𝑒𝑟(𝑆𝑟𝑎𝑤) + 𝑓𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡(𝑆𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)             (1) 

where, 𝑆𝑟𝑎𝑤  is the original signal, 𝑓𝑓𝑖𝑙𝑡𝑒𝑟  applies noise 

removal, and 𝑓𝑎𝑟𝑡𝑖𝑓𝑎𝑐𝑡 removes unwanted components, resulting 
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in 𝑆𝑐𝑙𝑒𝑎𝑛 , the preprocessed signal optimized for feature 
extraction. 

C. Feature Extraction and Fusion by Fourier and Wavelet 

Transforms 

Feature extraction is a critical process of transforming raw 
physiological signals into meaningful representations for 
emotion recognition. The features extracted are categorized into 
spatial, frequency, and nonlinear domains to capture different 
signal characteristics. Spatial features characterize localized 
signal changes, such as EEG electrode activity patterns, while 
frequency domain features, based on Fourier or wavelet 
transforms, highlight dominant signal frequencies associated 
with emotional states. Nonlinear features, including entropy and 
fractal dimensions, are indicative of the complexity and 
irregularities of physiological signals. Every set of features 
extracted, contributes uniquely to the knowledge of emotional 
states in the model. 

The extracted features can be mathematically represented as 
in Eq. (2): 

𝐹 = {𝑓𝑠(𝑆), 𝑓𝑓(𝑆), 𝑓𝑛(𝑆)}           (2) 

where, 𝑓𝑠(S),𝑓𝑓 (S), and 𝑓𝑛 (S) represent spatial, frequency, 

and nonlinear feature extraction functions, respectively, applied 
to the raw signal S. 

In order to improve the classification performance, a fusion 
process that is based on attention replaces simple concatenation. 
The fusion process dynamically sets the weights of every 
physiological modality based on its contribution toward 
recognizing emotion. Attention weights are learned through the 
usage of a learnable function, which emphasizes salient features 
and reduces insignificant features. Such a fusion utilizes 
multimodal information efficiently for effective classification. 
Fig. 2 shows feature extraction for emotion recognition. 

 

Fig. 2. Feature Extraction for Emotion Recognition. 

The attention-based fusion can be formulated as in Eq. (3): 

𝐹𝑓𝑢𝑠𝑒𝑑 = ∑ 𝛼𝑖
𝑁
𝑖=1 𝐹𝑖    (3) 

where, 𝛼𝑖 denotes the attention weight given to every feature 
set 𝐹𝑖, so that the most informative feature sets can contribute 
optimally to the end representation. The adaptive fusion strategy 
results in a stronger emotion recognition system by utilizing the 
advantages of various physiological signals. 

D. Hybrid CNN-BiLSTM-Transformer Model for Emotion 

Recognition 

The Hybrid CNN-BiLSTM-Transformer Model is 
specifically designed to efficiently extract, learn, and classify 

multimodal physiological signals for emotion recognition. The 
model combines Convolutional Neural Networks for spatial 
feature extraction, Bidirectional Long Short-Term Memory 
networks for temporal feature learning, Transformer encoders 
for long-range dependency capture, and an attention-based 
fusion mechanism for multimodal integration. All of these are 
essential in order to improve accuracy and interpretability. Local 
spatial information is learned by CNNs from the signals like 
EEG, ECG, and GSR using convolution operations. It can be 
mathematically formulated as in Eq. (4): 

𝑋(𝑙+1) = 𝑓(𝑊(𝑙) ∗ 𝑋(𝑙) + 𝑏(𝑙))  (4) 

where, 𝑋(𝑙)is the input feature map, 𝑊(𝑙)is the convolutional 

filter, * denotes the convolution operation, 𝑏(𝑙) is the bias term, 
and 𝑓(⋅) represents the activation function such as ReLU. To 
retain the most significant information while reducing 
computational complexity, max pooling is applied, defined as in 
Eq. (5): 

𝑋𝑝𝑜𝑜𝑙
(𝑙+1)

= 𝑚𝑎𝑥(𝑋(𝑙))     (5) 

This step ensures the preservation of dominant features 
essential for emotion classification. Fig. 3 shows architecture of 
CNN. 

 

Fig. 3. Architecture of CNN. 

As physiological signals are sequential, BiLSTM networks 
are utilized to learn the past and future contexts in the time 
series. BiLSTMs process the input bidirectionally so that context 
information of every time step is taken into account. Forward 
and backward pass hidden states are calculated as in Eq. (6) and 
(7): 

ℎ𝑡
⃗⃗  ⃗ = 𝜎(𝑊𝑓ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝑊𝑥𝑥𝑡 + 𝑏𝑓)    (6) 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝜎(𝑊𝑏ℎ𝑡+1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑊𝑥𝑥𝑡 + 𝑏𝑏)    (7) 

where, ℎ𝑡⃗⃗  ⃗  and ℎ𝑡⃖⃗ ⃗⃗  represent the forward and backward 
hidden states, 𝑊𝑓 and 𝑊𝑏 are weight matrices, and σ (⋅) is the 

activation function. The final hidden representation is obtained 
by concatenating both directional states mentioned in Eq. (8): 

ℎ𝑡 = ℎ𝑡
⃗⃗  ⃗ ⊕ ℎ𝑡

⃖⃗ ⃗⃗      (8) 

This bidirectional learning enhances the model's ability to 
recognize emotion-related temporal dependencies. Fig. 4 shows 
architecture of BiLSTM. 
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Fig. 4. Architecture of BiLSTM. 

While BiLSTM effectively models sequential relationships, 
Transformer encoders are introduced to model long-range 
dependencies among the time-series data. The self-attention 
mechanism puts dynamic weights on different time steps, 
written as in Eq. (9): 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉           (9) 

where, Q, K, and V are query, key, and value matrices, and 
d𝑘 is the dimension of the key vectors. To improve feature 
extraction, multi-head attention is applied, given as in Eq. (10): 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1,… , ℎ𝑒𝑎𝑑𝑛)𝑊𝑂 (10) 

where, 𝑊𝑂  is a learnable weight matrix. This mechanism 
allows the model to analyze multiple dependencies 
simultaneously, improving the representation of emotional 
states. 

An attention-based fusion mechanism is introduced to 
dynamically assign weights to each physiological modality, 

ensuring that the most relevant features are emphasized. The 
attention scores are computed as follows in Eq. (11): 

𝛼𝑖 =
𝑒𝑥𝑝(𝑊𝑎𝐹𝑖)

∑ 𝑒𝑥𝑝(𝑊𝑎𝐹𝑗)
𝑁
𝑗=1

    (11) 

where, 𝑊a   is a learnable weight matrix, and 𝐹𝑖 represents 

the extracted features from the 𝑖𝑡ℎ modality. The final fused 
feature representation is computed as in Eq. (12): 

𝐹𝑓𝑢𝑠𝑒𝑑 = ∑ 𝛼𝑖𝐹𝑖
𝑁
𝑖=1      (12) 

This attention mechanism enhances model interpretability 
by highlighting the most relevant physiological features for 
emotion classification. 

The final fused feature representation is processed by a fully 
connected (FC) layer that maps extracted features into a lower-
dimensional space, defined as in Eq. (13): 

𝑍 = 𝑊𝑓𝑐𝐹𝑓𝑢𝑠𝑒𝑑 + 𝑏𝑓𝑐     (13) 

where, 𝑊fc  and 𝑏𝑓𝑐  are learnable parameters. The 

classification is performed using the softmax function, which 
converts logits into probability scores mentioned in Eq. (14): 

𝑃(𝑦𝑖) =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑗)
𝐶
𝑗=1

     (14) 

where, C is the number of emotion classes, and P (𝑦i) is the 

probability of the  𝑖𝑡ℎ emotion class. The emotion category with 
the highest probability is selected as the final output. Table III 
depicts key components of the proposed model. 

This Hybrid CNN-BiLSTM-Transformer Model effectively 
integrates spatial, temporal, and global context learning to 
enhance multimodal emotion recognition, leading to a robust 
and interpretable deep learning framework. Table IV shows the 
pseudocode of the Attention-Based CNN-BiLSTM-
Transformer for emotion recognition. 

TABLE III.  KEY COMPONENTS OF THE PROPOSED MODEL 

Stage Technique Used Description 

Data Collection DEAP, AMIGOS Datasets 
Publicly available multimodal physiological databases with 
labelled emotional states. 

Preprocessing 
Bandpass filtering, wavelet transform, normalization, 

smoothing 

Removes artifacts and improves data quality across EEG, 

ECG, GSR, and EMG signals. 

Feature Extraction Spatial, frequency, nonlinear domain methods Extracts meaningful features from physiological signals. 

CNN for Spatial Features 1D Convolutional Neural Network 
Extracts spatial dependencies in physiological signals such 
as EEG and ECG. 

BiLSTM for Temporal Learning Bidirectional Long Short-Term Memory 
Captures sequential dependencies by processing forward and 

backward temporal information. 

Transformer Encoder Multi-head self-attention 
Models’ long-range dependencies among time-series 

physiological data. 

Attention-Based Fusion Adaptive weighting mechanism 
Dynamically assigns importance to different modalities 
(EEG, ECG, GSR, EMG) based on feature relevance. 

Final Classification Fully Connected Layer + Softmax 
Maps feature into emotion classes and determines final 

classification based on probability scores. 
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TABLE IV.  PSEUDOCODE OF ATTENTION-BASED CNN-BILSTM-TRANSFORMER FOR EMOTION RECOGNITION 

Pseudocode: Attention-Based CNN-BiLSTM-Transformer for Emotion Recognition 

Input: Multimodal Physiological Data (EEG, ECG, GSR, EMG) from DEAP and AMIGOS Datasets 

Output:  Emotion Category Prediction 

Load input data 

Collect multimodal physiological data (EEG, ECG, GSR, EMG) from DEAP and AMIGOS datasets // data acquisition 

Pre-processing  

Apply bandpass filtering to EEG  

Use wavelet transforms for ECG noise removal  

Smooth GSR signals  

Normalize EMG signals  

Feature extraction  

Compute spatial features //CNN 

Extract frequency features // Fourier and wavelet transform 

Non-Linear Features // Entropy 

Emotion Recognition // Hybrid CNN-BILSTM-Transformer 

Pass features through CNN for spatial learning  

Use BiLSTM for temporal dependency learning  

Apply Transformer for capturing long-range dependencies  

Classify emotions using a fully connected layer and softmax activation  
 

V. RESULTS AND DISCUSSION 

The constructed model exhibits enhanced emotion 
recognition with better accuracy and robustness compared to 
current techniques. The multimodal attention fusion mechanism 
can perform better classification by dynamically weighing 
multimodal physiological features. Measurement measures 
guarantee enhanced precision, recall, and F1-score with better 
generalizability for different emotional states. Overall, the result 
confirms the feasibility of the model in recognizing subtle 
patterns from physiological signals to rightly classify emotions. 

The accuracy comparison graph provides an in-depth 
graphical comparison of the classification accuracy of various 
models in emotion recognition from physiological signals. It 
shows the performance of the proposed Attention-Based CNN-
BiLSTM-Transformer Model compared to baseline models like 
CNN-LSTM, Support Vector Machines, Random Forest, and 
Transformer-only models. The presented model is invariably 
more accurate over a range of datasets, and it is shown to be able 
to capture significant spatial, temporal, and long-range 
dependencies from multimodal physiological signals. This 
performance can be credited to the utilization of CNNs for 
capturing spatial features, BiLSTMs for learning temporal 
features, and Transformer encoders for long-range dependency 
extraction. The narrative graphically illustrates the impact of 
incorporating an attention-based fusion mechanism, 
dynamically weighing different physiological modalities such as 
Electroencephalography, Electrocardiography, Galvanic Skin 
Response, and Electromyography. Fig. 5 shows the accuracy 
comparison of different models. 

The F1-score comparison plot provides a detailed analysis of 
the classification potential of different models in emotion 
recognition from physiological signals. F1-score is a significant 

metric because it weighs precision and recall equally and is an 
effective measure of model performance, especially in cases of 
imbalanced data. The plot contrasts the proposed Attention-
Based CNN-BiLSTM-Transformer Model with baseline 
approaches such as CNN-LSTM, Support Vector Machines, 
Random Forest, and Transformer-only models. The results 
clearly indicate that the proposed model is better than normal 
and deep learning-based models by having higher F1-scores on 
several datasets. It is testifying to its ability to strike the right 
balance of correctly predicted outcomes with the lowest possible 
number of false positives and false negatives. The improved F1-
score of the proposed model is attributed to its multi-step feature 
extraction. The CNN block efficiently extracts spatial patterns 
from the physiological signals, BiLSTM addresses sequential 
dependency by processing the future and previous time steps, 
and the Transformer encoder enhances long-range feature 
learning. Fig. 6 depicts the F1-score comparison across models. 

 
Fig. 5. Accuracy Comparison of Different Models. 
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Fig. 6. F1-score comparison across models. 

Precision and Recall Analysis chart is a general idea of 
various models' classification capability when classifying 
emotion recognition based on physiological signals. Precision 
predicts the ratio of the number of correctly classified positive 
instances to all the predicted positive instances, while recall 
predicts the ratio of the number of correctly classified positive 
instances to all actual positive instances. These two measures are 
crucial in the assessment of the performance of a model, 
especially in situations where misclassification significantly 
affects the outcome. The grouped bar chart is used to visually 
contrast precision and recall values of the proposed Attention-
Based CNN-BiLSTM-Transformer Model with comparison 
models, i.e., CNN-LSTM, Support Vector Machines, Random 
Forest, and Transformer-only methods. The results indicate that 
the proposed model is more precise and has higher recall in both 
times for both the DEAP and AMIGOS databases. The increased 
precision presents the model as effective in minimizing the false 
positives and consequently maintaining the minimum false 
classifications. Fig. 7 depicts precision and recall analysis. 

 
Fig. 7. Precision and recall analysis. 

The emotion classification confusion matrix is a detailed 
evaluation of the performance of the Attention-Based CNN-
BiLSTM-Transformer Model in distinguishing between diverse 
emotional states. It is a critical tool in understanding 
classification accuracy since it presents the number of correct 

and incorrect predictions for each category of emotion. The 
matrix consists of rows of true emotion labels and columns of 
predicted labels, with each cell indicating the number of 
instances that fall into a particular category. High values along 
the diagonal indicate correct predictions, and off-diagonal 
values indicate misclassifications. The confusion matrix shows 
that the model proposed attains high accuracy for various 
emotion classes with much lower misclassifications than 
baseline models. Fig. 8 shows a confusion matrix for emotion 
classification. 

 

Fig. 8. Confusion matrix for emotion classification. 

Receiver Operating Characteristic curve is a key 
performance metric tool for emotion classification models, 
which illustrates the balance between the true positive rate 
(sensitivity) and the false positive rate (1-specificity) at different 
classification thresholds. The ROC curve for the developed 
Attention-Based CNN-BiLSTM-Transformer Model indicates 
its performance in discriminating between various emotional 
states based on physiological signals such as EEG, ECG, GSR, 
and EMG. A well-performing model must possess an ROC 
curve that closely approaches the upper-left corner of the plot 
with high sensitivity and a low rate of false positives. The area 
under the ROC curve quantifies the model's global capacity for 
discrimination, where a perfect classification AUC would be 1.0 
and a random guess is 0.5. Fig. 9 shows the ROC curve for 
emotion classification. 

Attention-based fusion feature importance analysis must be 
conducted to determine the relative contribution of different 
physiological modalities towards emotional classification. In the 
proposed Attention-Based CNN-BiLSTM-Transformer Model, 
an attention mechanism dynamically attends to features from 
Electroencephalography, Electrocardiography, Galvanic Skin 
Response, and Electromyography signals. The weighting 
assigned is the relative contribution of each modality towards 
emotional state discrimination. The bar chart for attention-based 
fusion feature importance shows the various contributions of 
these physiological signals. EEG would generally play a central 
role in emotion recognition because it directly reflects brain 
activity and emotional response. ECG, which is the 
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representation of heart rate variability, also possesses very 
significant importance, as emotions greatly influence the 
autonomic nervous system activity. Fig. 10 shows feature 
importance in Attention-Based Fusion. 

 
Fig. 9. ROC curve for emotion classification. 

 

Fig. 10. Feature importance in attention-based fusion. 

The attention-based fusion process greatly improves 
emotion classification accuracy by adaptively weighing various 
physiological modalities. Previous fusion processes give equal 
weight to all modalities, risking underemphasizing important 
information. Attention-based fusion, however, learns adaptive 
weights for every modality such that, more informative signals 
are more influential in classification. Using EEG, ECG, GSR, 
and EMG signals, the model learns to attend to the most salient 
physiological changes reflecting various emotional states. A 
comparative study between attention-based fusion and non-
attention-based fusion models indicates that the incorporation of 
attention mechanisms greatly improves performance. In the 
absence of attention, the model struggles to fuse multimodal 
data and achieves suboptimal accuracy. Fig. 11 shows the effect 
of Attention-Based Fusion on accuracy. 

 

Fig. 11. Effect of attention-based fusion on accuracy. 

Convergence of training loss and accuracy is an important 
factor in measuring the efficacy and validity of a deep learning 
model. Through training, the model optimizes its parameters in 
an iterative manner for reducing the loss function and 
maximizing the classification accuracy. A well-trained model 
displays loss reduction and accuracy improvement consistently 
with epochs, indicating successful learning. In the suggested 
Attention-Based CNN-BiLSTM-Transformer Model, the 
training loss is smooth and decreases as the number of epochs 
increases. This indicates that the model is learning useful 
patterns from multimodal physiological data effectively. The 
loss is high at the beginning because of random weight 
initialization, but as training continues, the model improves its 
feature representations, resulting in lower error rates. One 
important observation here is that attention-based fusion speeds 
up convergence by effectively combining the multiple 
independent physiological signals, eliminating redundancy and 
enhancing feature representation. Fig. 12 shows the training loss 
and accuracy convergence. 

 
Fig. 12. Training loss and accuracy convergence. 

The current performance gap on the DEAP and AMIGOS 
datasets is a testament to enhanced efficiency of the new 
proposed CNN-BiLSTM-Transformer model. SVM and 
Random Forest are conventional machine learning models with 
lower accuracy, recall, F1-score, and precision, indicating 
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inefficiency in spatial, temporal, and long-range dependency 
analysis. The Transformer-only model enhances performance, 
but the new model has the best accuracy of 88.2% on DEAP and 
89.5% on AMIGOS. They also have increased precision, recall, 
and F1-score. These results suggest that combining CNN, 

BiLSTM, and Transformer with an attention-based fusion 
mechanism improves emotion recognition from multimodal 
physiological signals. Table V shows the performance 
comparison of different models on DEAP and AMIGOS 
datasets. 

TABLE V.  PERFORMANCE COMPARISON OF DIFFERENT MODELS ON DEAP AND AMIGOS DATASETS 

Model Dataset Accuracy (%) F1-Score Precision Recall 

CNN-LSTM (Baseline) [49] DEAP 81.3 0.79 0.80 0.78 

CNN-LSTM (Baseline) [49] AMIGOS 83.1 0.81 0.82 0.80 

SVM [50] DEAP 75.2 0.73 0.74 0.72 

SVM 50] AMIGOS 76.5 0.74 0.75 0.73 

Random Forest [50] DEAP 78.6 0.76 0.77 0.75 

Random Forest [50] AMIGOS 79.8 0.78 0.79 0.77 

Transformer-only Model DEAP 85.4 0.84 0.85 0.83 

Transformer-only Model AMIGOS 86.7 0.85 0.86 0.84 

Proposed Model (CNN-BiLSTM-Transformer) DEAP 88.2 0.87 0.88 0.86 

Proposed Model (CNN-BiLSTM-Transformer) AMIGOS 89.5 0.88 0.89 0.87 
 

 
Fig. 13. Performance comparison of emotion recognition models. 

Fig. 13 graphically represents a comparison of the 
performance of different models on the DEAP and AMIGOS 
datasets in terms of accuracy, F1-score, precision, and recall. 
Traditional machine learning models, such as SVM and Random 
Forest, have lower performance according to all the metrics, 
indicating the drawback of these models to identify complex 
dependencies in physiological signals. The Transformer-only 
model improves the classification accuracy, but the introduced 
CNN-BiLSTM-Transformer model achieves the highest 
accuracy of 88.2% and 89.5% for DEAP and AMIGOS, 
respectively, as well as the highest precision, recall, and F1-
score. It reflects the bitterness of integrating CNN for spatial 
information, BiLSTM for temporal relations, and Transformer 
for long-distance feature extraction with attention-based fusion 
to improve emotion identification. 

A. Discussion 

Experimental results show that the envisioned CNN-
BiLSTM-Transformer model is superior to conventional 
machine learning algorithms and baseline deep models in the 
recognition of emotions from physiological signals. With 

precision, recall, and F1-score values higher than 88.2% for 
DEAP and 89.5% for AMIGOS, while achieving high accuracy 
levels of 88.2% on DEAP and 89.5% on AMIGOS, the model 
successfully extracts spatial, temporal, and long-range 
dependencies in multimodal data. In comparison to SVM [50] 
and Random Forest [50], which find it hard to handle intricate 
physiological patterns, and the Transformer-only model, which 
doesn't have spatial and short-term temporal feature extraction, 
the new hybrid method is able to obtain better classification 
performance. The attention-based fusion mechanism also 
produces better results by dynamically weighting the most 
important features, leading to a more solid and accurate emotion 
recognition system. 

VI. CONCLUSION AND FUTURE WORKS 

This study introduces a new CNN-BiLSTM-Transformer 
model for emotion recognition with multimodal physiological 
signals and attains higher accuracy than conventional machine 
learning and state-of-the-art deep learning models. The model 
combines CNN for spatial features, BiLSTM for temporal 
patterns, and Transformer for sequence relationships, capturing 
heterogeneous physiological patterns under different emotional 
states. The attention-based fusion mechanism also improves 
classification performance by dynamically giving weights to 
informative features, resulting in 88.2% accuracy on the DEAP 
dataset and 89.5% accuracy on the AMIGOS dataset. These 
outcomes validate the efficiency of the presented approach to 
enhance emotion recognition, which can act as a useful tool for 
affective computing applications, healthcare, and human-
computer interaction. 

Future work will include expanding the capability of the 
model for real-time emotion recognition in everyday 
environments with a decreased dependence on laboratory 
setups. Another direction may include additional physiological 
modalities such as respiration rate and eye-tracking data to 
further enhance emotional state classification. Another direction 
is optimizing the computational cost of the model for to use in 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

117 | P a g e  

www.ijacsa.thesai.org 

wearables and mobiles. Finally, investigating domain adaptation 
techniques for increasing generalizability across different 
datasets and individual differences will be crucial in furthering 
the real-world applicability of the proposed methodology. 
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