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Abstract—Passive underwater acoustic target recognition 

(UATR) involves analyzing acoustic waves captured by passive 

sonar to extract valuable information about submerged targets. 

The underwater acoustics community has increasingly turned its 

attention to deep learning techniques, owing to their remarkable 

success in image recognition tasks. This study presents a 

comprehensive overview of the evolution of UATR techniques, 

categorizing them into three distinct groups: early methods, 

conventional machine learning approaches, and modern deep 

learning-based techniques. Additionally, it provides an in-depth 

summary of the recognition process utilizing deep learning, 

detailing various deep network architectures, classifiers 

specifically designed for underwater acoustic target recognition, 

and different data input modalities. Finally, the study synthesizes 

current research findings and outlines potential future directions 

for advancements in this field, emphasizing opportunities for 

innovation across these three categories. 
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I. INTRODUCTION 

Underwater acoustic target recognition (UATR) is 
grounded in the production, transmission, and reception of 
sound waves in water. This technology has extensive 
applications in military operations, marine exploration, sonar 
systems, marine life monitoring, and underwater 
communication through sound navigation and ranging systems 
[1]. Despite the influence of variables such as temperature, 
salinity, and pressure on sound propagation in the ocean, sound 
waves remain the most efficient medium for long-distance 
underwater detection, transmission, and communication [2],[3]. 
Passive-sonar systems, which operate by quietly detecting 
transmitted noise, are gaining popularity due to their enhanced 
stealth capabilities. Consequently, the analysis of passive sonar 
underwater target radiation noise data has emerged as an 
effective method for studying underwater objects. Renowned 
research institutes in this field include the Woods Hole 
Oceanographic Institution, the Chinese Naval University of 
Engineering, Harbin Engineering University, the Pakistan 
Naval Research Institute, the Institute of Acoustics of the 
Chinese Academy of Sciences, and the Applied Physics 
Laboratory at Washington University [4]. 

Lei et al. [5] highlight that advancements in technology 
have facilitated the extensive application of earlier 
methodologies, classical machine learning techniques, and 
deep learning-based network designs in UATR. Early 
approaches, though effective, relied on the recognition abilities 
of skilled sonar operators, leading to high costs and significant 
susceptibility to subjective factors. Conventional machine 
learning methods, often dependent on manually crafted 
features, face significant challenges such as loss of feature 
information and difficulty in extracting optimal features. In 
contrast, deep learning techniques are expected to achieve 
greater accuracy and robustness as computational power 
continues to grow [6]. By enabling end-to-end recognition 
processes, these techniques address many of the limitations 
posed by human involvement in early and traditional 
approaches. 

II. MOTIVATION 

The UATR process is typically divided into three key 
components: the model's input, the model itself, and the 
model's output, as illustrated in Fig. 1. Based on the execution 
of each phase and the interconnections between them, recent 
review studies have categorized various approaches to 
underwater target identification [7],[8],[9]. For instance, in 
deep learning models, feature extraction and classification are 
integrated into a unified process, whereas in traditional 
approaches, feature design and extraction are performed 
manually or automatically before data is input into the model. 
However, a few studies provide comprehensive explanations of 
each component in a detailed, step-by-step manner. In this 
context, this study aims to review the latest research on passive 
UATR from three perspectives: model input, the model itself, 
and output types. By examining the use of different data input 
techniques, models, and task output formats, we seek to 
identify key challenges in current research and propose 
promising directions for future exploration. 

III. CONTRIBUTION 

This study provides a novel perspective on the evaluation 
and analysis of UATR tasks through comprehensive research 
from three key aspects: model input, the model itself, and 
model output. Unlike conventional viewpoints that focus on 
different approaches to UATR tasks, this study emphasizes a 
structured analysis of the entire process. 
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Fig. 1. General process and research architecture of UATR. Feature extraction, classification and recognition modeling, and model output constitute the three key 

stages in the fundamental process of both deep learning and conventional machine learning approaches for UATR. 

Moreover, it highlights critical challenges that must be 
addressed in existing deep learning-based UATR tasks. By 
systematically examining and summarizing the input modes of 
underwater acoustic signals, model types, and model input 
strategies, this research provides a comprehensive synthesis of 
the strengths and limitations of various approaches. These 
insights serve as a valuable reference for researchers advancing 
UATR methodologies, facilitating future advancements in the 
field. 

IV. ORGANIZATION 

Section I introduces the comprehensive situation and basic 
issues in current research on UATR, serving as the foundation 
for this study. Section II presents the research motivation, 
emphasizing the significance of this study. By adopting a novel 
analytical and review approach based on the fundamental 

process of underwater target detection, it provides researchers 
with a broader perspective for understanding these challenges. 

Sections III and IV outline the primary contributions and 
methodological framework of this work. Sections V, VI, and 
VII discuss different underwater acoustic signal input options, 
network topologies used in UATR, and the various task output 
types of the model, respectively. Furthermore, Sections VIII 
and IX explore the challenges of applying deep learning to 
UATR, propose potential directions for future research, and 
summarize the study’s key insights. While previous studies 
have extensively examined the application of various 
technologies in underwater target detection, this review takes a 
more structured approach, delving into the specifics of each 
component. The overall organization of this study is illustrated 
in Fig. 2. 

 

Fig. 2. Organization of the study. 
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V. INPUT MODES OF UNDERWATER ACOUSTIC SIGNALS 

Deep learning-based UATR technology effectively 
addresses the issue of feature loss caused by human 
intervention. It typically employs an end-to-end learning 
framework, where neural networks replace manually designed 
components [10],[11]. To ensure the generation of high-quality 
underwater signals, appropriate preprocessing is usually 
necessary before inputting the target signal into the model [12]. 
The following sections will explore four approaches: the 
artificial feature-based approach, the image feature-based 
approach, the raw data-based approach, and the feature fusion-
based approach. 

A. Artificial Feature-Based Approach 

A set of feature values that are manually crafted and 
extracted to characterize the properties of the target signal is 
known as artificially designed features. These features are 
highly interpretable, possess clear mathematical and physical 
significance, and are rooted in prior knowledge and experience. 

In the field of underwater target identification, Mel 
frequency cepstral coefficients (MFCC) and DEMON spectra 
are widely utilized. MFCC captures the characteristics of 
underwater acoustic signals through a series of steps, including 
pre-emphasis, frame windowing, fast Fourier transform (FFT), 
power spectrum computation, Mel filter bank filtering, 
logarithmic transformation, and discrete cosine transform 
(DCT). Similarly, DEMON extracts the features of underwater 
acoustic data through preprocessing, envelope extraction, FFT, 
feature extraction, and subsequent analysis. This process is 
illustrated in Fig. 3. 

Mel-frequency cepstral coefficients (MFCCs) are a widely 
used example of manually crafted features, extensively applied 
in language and speech recognition due to their ability to 
reduce feature map size, suppress noise interference, and 
withstand temporal variations [13]. On the ShipsEar dataset, 
Liu et al. [14] achieved an impressive 99.34% identification 
accuracy using MFCCs as input features for the RACNN 
model. Additionally, other studies have confirmed that MFCCs 
outperform models like VGG16 and ResNet34 in terms of 
computational complexity and parameter efficiency [15],[16]. 
However, standard MFCCs primarily capture static spectral 
envelope information, making it difficult to represent dynamic 
signal properties effectively. To address this limitation, Chen et 
al. [17] proposed using 3D MFCCs as input features. By 
incorporating first-order and second-order differential features, 
3D MFCCs can capture dynamic characteristics such as the 
rate of change and acceleration of signals over time. Using 3D 
MFCC features as input for the Attention Mechanism Residual 
Concatenate Network (ARescat) model, an accuracy of 95.80% 
was achieved on the ShipsEar dataset. 

The improvement in model recognition accuracy can be 
attributed to two main factors: the extraction of features that 
better represent the original data and the design of models with 
more advanced performance. However, it remains unclear 
whether 3D MFCC, an enhancement of traditional MFCC 
features, can more effectively represent the characteristics of 
raw data and is better suited for designing deep learning 
models. It is worth noting that numerous studies have 
compared MFCC features with other alternatives, such as 
FMSE and GFCC [18], [19]. Fig. 4 illustrates the performance 
of various feature extraction techniques on the same model 
using the ShipsEar dataset. 

 

Fig. 3. MFCC and DEMON feature extraction process. 
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Fig. 4. Comparison of accuracy for different artificial and image features. 

A broadband demodulation method, known as DEMON 
analysis, can distinguish between ship-radiated noise signals 
and the modulation envelope caused by propeller cavitation. 
By employing spectral analysis and line spectrum detection, it 
is possible to determine the number of propeller shafts, shaft 
frequencies, and blade counts [20]. Using the DEMON 
spectrum as input for the DEMONet model, Xie et al. [21] 
achieved an accuracy of 80.45 ± 0.67% on the DeepShip 
dataset. It is noteworthy that the feature extraction and model 
design in their study aimed for consistency. Furthermore, 
techniques such as Wavelet Packet Decomposition, Low-Pass 
Filtering, Gamma Frequency Cepstral Coefficients (GFCC), 
Multiscale Entropy Decomposition (MEMD), and LPS Feature 
Extraction, along with enhanced MFCC-based feature 
extraction methods, have been extensively studied and applied 
[22],[23],[24],[25]. Notably, Luo et al. [26] evaluated a range 
of feature extraction methods, including DEMON, LOFAR, 
MFCC, GFCC, EMD, and HHT, discussing their performance 
and suitability in different scenarios. 

Manual feature design has several drawbacks, including 
low flexibility, limited expressive capacity, and high labor 
costs [27]. Additionally, manually crafted features often suffer 
from insufficient automated feature learning, as they cannot 
effectively capture or adapt to the inherent structure of data. In 
contrast, deep learning automatically extracts hierarchical 
features from data and enables end-to-end optimization, 
whereas manual feature extraction typically requires a separate 
design for classifiers or regressors [28]. As a result, researchers 
are increasingly focusing on technologies that leverage visual 
features [17],[29]. 

B. Figures and Tables 

UATR based on image features is achieved by converting 
underwater acoustic signals into images and applying pattern 
recognition theory and image processing techniques to extract 
and analyze image features. This approach involves three main 
stages: image feature extraction, feature selection and 
optimization, and classification recognition. Image feature 
extraction involves using feature extraction algorithms to 
obtain representative and discriminative features from the 
transformed images. Feature selection and optimization focus 
on choosing the most relevant subset of features for target 

identification, removing unnecessary and redundant features, 
reducing feature dimensionality, and ultimately improving 
recognition accuracy and efficiency. Classification recognition 
involves using classification algorithms in pattern recognition 
to compare the extracted and optimized image data with pre-
existing target feature libraries, enabling the identification of 
unknown underwater acoustic targets. 

In terms of expressive power, interpretability, and 
adaptability, the image feature-based approach has 
demonstrated significant advantages [16]. Common image 
features include the amplitude spectra derived from LOFAR 
and STFT. Chen et al. [30] extracted the LOFAR spectrum of 
underwater sound waves and identified key characteristics 
using a multi-step decision-based line spectrum augmentation 
method. They combined the reconstructed line spectrum with 
the original LOFAR spectrum using a dual-threshold 
calculation approach. A convolutional neural network (CNN) 
was then trained on the reconstructed LOFAR spectrum, 
achieving an average recognition accuracy of 95.22% on the 
ShipsEar dataset. Despite the high recognition accuracy of this 
method, data augmentation techniques not only improve 
recognition performance but also mitigate noise interference 
from the marine environment. However, further research is 
needed to evaluate their impact on the recognition performance 
of neural networks. Additionally, Xu et al. [31] applied Mel (or 
Bark) filter banks to the FFT-generated spectrum to compute 
the STFT amplitude spectrum through complex FFT 
calculations, achieving an identification accuracy of 82.97% on 
the ShipsEar dataset. Yao et al. [32] further compared the 
LOFAR spectrum with other feature extraction methods, such 
as MFCC and CQT, using statistical histograms to analyze 
feature information across different ship types. Experimental 
results revealed that LOFAR image features lack low-
frequency information, highlighting a limitation in capturing 
certain aspects of feature information. 

Tang et al. [33] utilized Mel spectrograms as feature 
representations for model input. After feeding the data into the 
Transformer model, they conducted experiments on a small 
sample dataset, achieving a 90% identification accuracy with 
the Swin Transformer. Similarly, Xie et al. [34] achieved 
identification accuracies of 77.14%, 74.85%, and 95.48% on 
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the ShipsEar, DeepShip, and DTIL datasets, respectively, using 
Mel spectrograms as input. Studies employing spectrograms as 
input features have also yielded positive results 
[25],[35],[36],[37]. In Fig. 5, the recognition accuracy based on 
image features in UATR tasks is presented. 

 
Fig. 5. Recognition accuracy based on image features. 

Fig. 5 provides an overview of feature extraction methods 
based on image representations. Different deep learning 
architectures exhibit varying levels of recognition performance 
when using image features as model inputs. Notably, 
employing STFT features as input to ResNet-18 achieves a 
high recognition accuracy of 97.80%. Furthermore, due to the 
strong time-frequency correlation inherent in underwater 
acoustic signals, the use of raw time-domain signals as model 
inputs has been extensively investigated to preserve as much 
detailed information as possible. In contrast, image-based 
feature extraction methods may struggle to capture complex or 
high-dimensional patterns and are more susceptible to the loss 
of critical information [38], [39]. 

C. Raw Data-Based Approach 

Raw signal-based UATR technology aims to identify 
underwater targets by directly utilizing the received raw 
underwater acoustic signals without performing complex 
transformations. This approach leverages various signal 
processing and pattern recognition algorithms. During the 
feature extraction stage, three main methods are employed: 
time domain, frequency domain, and time-frequency domain 
feature extraction. Time domain feature extraction involves 
directly obtaining amplitude information from the raw signal, 
such as peak values, mean, variance, and other statistical 
characteristics. Frequency domain feature extraction involves 
calculating the power spectral density of the raw signal using 
the Fourier transform and other operations, enabling target 
identification based on the distribution of signal power across 
different frequencies. Time-frequency domain feature 
extraction divides the raw signal into multiple short-time 
segments and performs a Fourier transform on each segment to 
obtain the distribution of signal components across both time 
and frequency domains. This approach provides a 
comprehensive view of how signal characteristics vary over 
time and frequency. 

The intrinsic time-frequency correlation of underwater 
acoustic signals can lead to the loss of significant frequency 
domain information, even though image-based techniques can 

moderately enhance UATR [40]. Consequently, the direct use 
of raw data as input has become a prominent area of research 
to ensure the preservation and accuracy of information in 
underwater acoustic signals [41]. Hu et al. [42] investigated a 
technique for identifying ship-radiated noise using raw time-
domain waveforms. They employed a depth-wise separable 
convolutional network to extract deep features that mirrored 
the auditory system's acoustic information processing. The 
model achieved an average classification accuracy of 90.9% 
when tested on a dataset of real acoustic signals from civilian 
ships. Additionally, extreme learning-based approaches have 
also shown promising results [43],[44]. 

However, using raw data directly as input for the model 
requires substantial computational resources, particularly for 
high-sampling-rate underwater acoustic signals [45]. 
Moreover, in the context of UATR with limited sample sizes, 
insufficient data can quickly lead to overfitting or poor model 
training. 

To address the issue of inadequate underwater acoustic 
samples, several studies have explored segmenting and 
resampling original sound data. Yang et al. [46] resampled raw 
data at 16,000 Hz and divided it into 1-second non-overlapping 
intervals. Ji et al. [47] resampled underwater acoustic at 20 
kHz, truncating each frame into 4096 samples with a 2048-
sample overlap between successive frames. Similarly, Yang et 
al. [48] segmented each 5-minute WAV audio clip into 6-
second intervals representing sound events and normalized the 
data for each segment. Li & Yang [49] split each audio 
recording into 3-second parts, normalizing each segment based 
on unprocessed raw time-domain data. In Fig. 6, the 
recognition accuracy with raw data as input is presented. From 
Fig. 6, it can be seen that the highest recognition rate can reach 
95.30%. 

 
Fig. 6. Recognition accuracy based on raw data. 

While resampling techniques can somewhat alleviate the 
issue of insufficient samples, they have limitations, including 
the potential amplification of noise and reduced diversity in the 
generated data. Therefore, methods based on fused features are 
becoming increasingly popular as a research direction. 

D. Feature Fusion-Based Approach 

Feature-based fusion is widely utilized in UATR 
technology to enhance accuracy and reliability by integrating 
various types of feature information. The main components of 
this approach include multi-domain feature fusion, multi-modal 
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feature fusion, and multi-scale feature fusion. Multi-domain 
feature fusion involves combining time domain, frequency 
domain, and time frequency domain characteristics of 
underwater acoustic signals to capture comprehensive signal 
properties. Multi-modal feature fusion integrates data collected 
from different sensors or based on different physical principles. 
For example, sonar signal features can be combined with 
underwater target features captured by optical sensors. Multi-
scale feature fusion involves utilizing features at different 
scales, such as integrating fine local details with broader global 

target characteristics in image processing, to achieve a more 
robust and detailed representation of the target. 

The fusion feature approach enhances identification 
accuracy by combining multiple feature types, such as time 
domain, frequency domain, and time frequency domain 
features, effectively addressing the limitations of single feature 
information. Additionally, integrating diverse features 
improves the system's robustness and adaptability to 
challenging conditions, such as interference and noise [50], 
[51]. Table I provides a summary of techniques for fused 
feature extraction. 

TABLE I.  SUMMARY OF FEATURE FUSION-BASED APPROACH 

Author (s) Feature performance Advantage Disadvantages 

Cao et al., 

(2019) 

Axis frequency 

characteristics; LPS 

characteristics; 
WPCE 

characteristics 

89.68% Acc 

Adopting the SSAE model provides stronger 
discriminability; Constructing a joint feature set 

based on spectral and wavelet domain 

information 

Underwater target classification tasks that require 

high real-time performance face challenges due to 

the   complexity,   cost,  and   time   involved   in 
obtaining a substantial amount of representative 

underwater target data. 

Hong et al., 

(2021, 

May) 

Log - Mel 

Spectrogram; MFCC; 

CCTZ 

94.30% Acc 

Using ResNet18, combined with embedding 

layers, early stopping, and adaptive  learning rate 
strategies for training, Adopting data 

augmentation strategy SpecAugment 

The universality of the method may be limited by 
the experimental validation, which was restricted 

to the ShipsEar dataset and did not include testing 

on a broader variety of datasets with different 
types and scales. 

Domingos 
et al., 

(2022) 

CQT; Gammatone 
Spectrograms; Mel 

Spectrograms 

97.00% Acc 
Compare  various  optimizers,  neural  network 

architectures, and preprocessing filters; Combine 

multiple filters into a three-channel signal 

Accurately determining which scenario yields the 

best results under different testing conditions is 

challenging due to the varying number of instances 
in each case. 

Chen et al., 
(2023) 

CQT; delta MFCC; 
double - delta MFCC 

99.10% Acc 
(DeepShip) 

Propose a new loss function that only adds three 

hyperparameters to transform multi 
classification    tasks    into    multiple    binary 

classification tasks 

In terms of model interpretability, the underlying 

mechanisms of each module are not thoroughly 
examined, leaving unclear how they influence the 

final outcomes. 

Wu et al., 

(2023) 

FBank; delta FBank; 

delta - delta FBank 
90.50% 

Combining cross domain pre training 

effectively improves recognition accuracy and 
saves a lot of training time 

Insufficient  exploration  of  innovative  feature 

extraction   techniques   and   potential   feature 
combinations. 

Pu et al., 
(2024) 

Original wave; CQT; 

Mel 

spectrogram 

96.37% 

Design   Scale   ResNet   module   and   RHAF 

module to improve information fusion 
efficiency and model adaptability to underwater 

acoustic data 

In feature fusion, the lack of comparison with 

more advanced fusion techniques makes it 
difficult to determine its optimality across all 

scenarios. 
 

Wu et al. [52] developed fusion features as model inputs by 
combining Mel filter-bank (F-Bank), delta F-Bank, and double 
delta F-Bank. To better capture the characteristics of 
underwater acoustic targets, they extracted neigh-boring 
dynamic features by computing delta features. Experimental 
results showed that this fusion approach improved 
identification accuracy by 0.9% and 1.2% on CNN and 
ResNet18 models, respectively. Chen et al. [53] proposed the 
FEFM method, which extracts multidimensional features from 
ship-radiated noise signals using various feature extraction 
techniques based on signal analysis and brain-inspired 
properties. These features are then fused using the proposed 
feature fusion technique to create high-dimensional fused 
features, which are used as inputs for the Multi-Gradient Flow 
Global Feature Enhancement Network (MGFGNet) network. 
Feature ablation tests were conducted on the Deepship dataset, 
comparing the fusion feature approach with other feature 
extraction methods. The fusion technique achieved a total 
accuracy of 99.1%. 

Hong et al. [54] calculated various features, including the 
Log Mel Spectrogram (LM), Mel Frequency Cepstral 
Coefficients (MFCC), and CCTZ (which comprises the 
following features: Chroma, Contrast, Tonnetz, and Zero-cross 

ratio). These features were then fused and enhanced to create a 
three-dimensional feature matrix, which was used as input to 
the model. Domingos et al. [55] divided the raw dataset into 
one-second segments, padding shorter segments with zeros. 
They applied three preprocessing techniques—Mel 
spectrograms, Constant Q Transform (CQT), and Gammatone 
spectrograms—and combined them into a three-dimensional 
representation, referred to as "Complete", which was then be 
used as input to the model. 

VI. DEEP LEARNING NETWORK ARCHITECTURE 

The accuracy of UATR tasks is heavily influenced by the 
choice and design of the model architecture. With 
advancements in computing power, UATR technology has 
made significant progress. Conventional methods that relied on 
manual feature extraction and classifier design have been 
largely improved by deep learning approaches capable of 
automatic feature extraction and classification, resulting in 
substantial improvements in identification accuracy [56]. To 
clearly illustrate the development of these techniques, this 
study categorizes model architectures into two main groups: 
conventional machine learning-based methods and deep 
learning-based methods, depending on whether they employ an 
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end-to-end recognition process. A detailed discussion of these 
techniques follows below. 

A. Conventional Machine Learning-Based Methods 

UATR based on conventional machine learning methods 
refers to the process of classifying and identifying various 
underwater acoustic targets by extracting, analyzing, and 
evaluating the target information embedded in underwater 
acoustic signals using conventional machine learning theories 
and algorithms. Conventional machine learning methods rely 
on manually crafting features, which are then input into 
regression or classification models. Common approaches 
include multilayer perceptron (MLP), logistic regression, naive 
Bayes, support vector machines (SVM), and random forest 
classifiers [57], [58]. 

Honghui et al. [59] proposed the Multi-Attribute 
Correlation Perception (MCP) model, achieving 82.1% 
accuracy in ship detection tests by integrating the MCP module 
with a time-frequency feature extraction module for UATR. To 
enhance feature selection during classification, Fernandes et al. 
[60] applied neighborhood component analysis (NCA) for 
dimensionality reduction, combined with genetic algorithms 
and the K-nearest neighbor (KNN) method for object 
classification. Yu et al. [61] achieved an underwater target 
identification accuracy of 93.84% by employing the Gradient 
Boosting Decision Tree (GBDT) model in combination with 
two hydrophones and the VLA feature extraction approach. 
These approaches share a common characteristic: they all 
employ distinct feature extraction strategies prior to inputting 
features into the classification model to complete the 
classification task. However, separating feature extraction and 
classification introduces human variables due to the relative 
decoupling of these processes, potentially leading to a decline 
in recognition accuracy [18]. 

Sun et al. [19] achieved a recognition accuracy of 96.1% by 
using a support vector machine (SVM) classifier to process the 
retrieved features. Wang et al. [24] employed Gaussian 
Mixture Models (GMMs) to modify the topology of deep 
neural networks (DNNs), proposing the MFF-MDNN 
approach, which achieved an average recognition accuracy of 
94.3%. While these methods reduce spurious variables to some 
extent and enhance recognition accuracy, the limited number of 
classifier layers in such models may constrain their ability to 
generalize effectively. Yang et al. [62] highlighted that the 
poor generalization ability of traditional recognition systems 
stems largely from the use of shallow classifiers, such as SVMs 
and shallow neural networks. Moreover, conventional methods, 
which predominantly rely on line and spectrum properties, 
often exhibit lower identification rates. Fortunately, deep 
learning-based approaches provide a more holistic framework 
for UATR, effectively addressing the limitations of traditional 
machine learning techniques and opening up promising 
directions for future research. 

B. Deep Learning-Based Methods 

Deep learning-based UATR technology is an advanced 
approach that automatically extracts, analyses, and recognizes 
target information within underwater acoustic signals by 
leveraging the powerful feature learning and pattern 
recognition capabilities of deep learning algorithms. The main 

process of this technology is illustrated in Fig. 7. The primary 
advantage of employing deep learning networks in UATR lies 
in their ability to bypass the complex feature engineering 
required by conventional machine learning approaches. 
Furthermore, they can partially address the problem of feature 
information loss associated with manual feature extraction 
[63]. The following will be discussed in detail. 

 
Fig. 7. General process of UATR based on deep learning methods. 

1) CNN-based methods. The Convolutional Neural 

Network (CNN)-based UATR system leverages the powerful 

feature extraction and pattern recognition capabilities of 

convolutional neural networks to accurately identify targets in 

underwater acoustic data. CNNs are primarily used in tasks 

related to computer vision and speech recognition. Their 

architecture involves multiple processes that enable 

hierarchical feature learning and the use of automatically 

generated features for prediction [64]. Over time, CNNs have 

become a research hotspot in underwater target detection, 

driven by their remarkable performance advancements from 

AlexNet to GoogLeNet [39],[65]. 

ResNet is one of the most widely studied and popular deep 
learning models. Xu et al. [31] built their model on ResNet-18, 
incorporating a multi-head attention mechanism. The model 
was trained using two techniques: smooth induced 
regularization and the local masking and replication (LMR) 
approach. Its identification accuracy was evaluated using 
various input attributes, although several factors could 
potentially influence its performance. Xie et al. [34] adopted a 
dual-encoder framework with residual structured convolutional 
neural networks (ResNet) as the backbone to capture diverse 
acoustic features, specifically Mel spectra and continuous Q-
transform spectra. By treating these networks as multi-view 
learners, they were able to extract more comprehensive 
features. Additionally, ResNet-based methods for developing 
and enhancing UATR have demonstrated promising results 
[54],[66],[67]. 

Significant advancements have been made in UATR 
techniques based on convolutional neural networks (CNNs) in 
recent years. Yang et al. [48] introduced a deep convolutional 
neural network (ADCNN) inspired by auditory perception, 
achieving an accuracy of 81.96%. Similarly, Hu et al. [44] 
proposed the auditory temporal convolutional neural network 
(ATCNN) model, which attained recognition accuracies of 
95.9% on training data and 90.9% on test data. Meanwhile, 
more advanced CNN-based architectures, such as depth-wise 
separable convolutional neural networks, have also shown 
promising results. However, despite CNN's excellent feature 
extraction capabilities, the unique and complex nature of 
underwater acoustic signals poses several challenges. 
Specifically, CNN's convolutional kernels, limited by their 
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localized receptive fields, struggle to capture long-range 
correlations and global information inherent in underwater 
sound waves. Fortunately, techniques utilizing residual 
attention convolutional neural networks (RACNN) and deep 
residual attention convolutional neural networks (DRACNN) 
have opened new avenues for research. These methods have 
achieved impressive identification accuracies, addressing some 
of CNN's limitations in UATR [47], [68]. 

2) Attention-based methods. Attention-based UATR 

enhances the model's ability to extract and interpret critical 

information from underwater signals by incorporating 

attention mechanisms. These mechanisms efficiently capture 

the global characteristics of underwater acoustic signals by 

dynamically assigning attention weights based on signal 

features. They allocate different weights to various aspects of 

underwater acoustic signals across time, frequency, or spatial 

locations. The propagation of underwater acoustic signals is 

influenced by factors such as water temperature, salinity, and 

pressure. These factors can lead to attenuation, scattering, and 

refraction, impacting both the propagation distance and the 

quality of the signal. Consequently, the propagation of 

underwater acoustic signals is globally correlated, meaning 

that the signal's characteristics are shaped by the entire aquatic 

environment [69]. 

In UATR, the attention mechanism has gained significant 
traction for its ability to extract global features. Xiao et al. [70] 
introduced an attention-based neural network (ABN) model 
that integrated an attention module with a traditional deep 
neural network (DNN) composed of fully connected layers. By 
embedding the attention module within the DNN architecture, 
they developed a novel network designed to tackle UATR 
tasks. This model achieved an accuracy of 74.3% in multi-
target resolution tasks, marking a 16.0% improvement over 
traditional DNNs. In contrast, Xie et al. [71] proposed the 
UART (Underwater Acoustic Recognition based on 
Templates) framework, which diverges from ABN by not 
depending on innovations in neural network design. Instead, 
this framework consists of an audio encoder, a spectrogram 
encoder, and a text encoder, offering an alternative approach to 
underwater object recognition. 

The Transformer, a widely used attention mechanism, has 
been extensively applied in UATR using sound waves. Tang et 
al. [33] studied the Swin Transformer Biformer, a 
Transformer-based model. Similar to the four-layer pyramid 
structure of CNNs, the architecture of the Swin Transformer 
features a progressive reduction in the feature map's size as the 
feature layers deepen. The Swin Biformer enhances feature 
representation by combining the Swin Transformer with the 
Biformer, dynamically adjusting the partition window to refine 
regional feature extraction. Pu et al. [72] introduced the 
Attention Layer Supplementary Integration (ALSI) framework 
for UATR. This model demonstrated outstanding performance, 
effectively detecting underwater objects such as ship-radiated 
noise and achieving an identification accuracy of 96.39% on 
the ShipsEar dataset. Additionally, several other attention-

based enhancement techniques have also yielded promising 
results [73], [74]. 

3) Other-based methods. The Restricted Boltzmann 

Machine (RBM), a fundamental component of deep learning, 

consists of visible and hidden layers of neurons. RBMs are 

widely used as energy-based models for tasks such as feature 

learning, dimensionality reduction, and model development 

[75]. In the field of UATR, RBM-based deep learning 

techniques have been effectively applied. 

For instance, Luo and Feng [25], applied RBM and BP 
neural network techniques, achieving an accuracy of 93.17% 
on the ShipsEar dataset. Similarly, Luo et al. [18] developed a 
UATR system that demonstrated the effectiveness of BP neural 
networks and RBM autoencoders. However, despite RBM's 
advantages in feature learning, dimensionality reduction, and 
data generation, its shallow structure makes it difficult to 
model complex data distributions or high-dimensional features. 
To address these challenges, Yang et al. [35] proposed the 
GRU-CAE collaborative deep learning network. Their GRU-
CAE-TM (Gated Recurrent Unit with Template Matching and 
Convolutional Autoencoder Collaborative Deep Learning 
Network) approach achieved an open-set recognition accuracy 
of 82.21%. While GRU effectively captures short-term time 
series dependencies, it faces limitations in processing 
underwater acoustic target signals with long-term 
dependencies. Moreover, deep learning techniques, including 
LSTM gradient-boosting decision trees, have been widely used 
to tackle issues related to few-shot learning in UATR 
[29],[61],[76]. 

VII. MODEL OUTPUTS 

The output of a deep learning model is typically defined by 
the result of forward propagation, depending on the task type 
and objective. Some common types of tasks include 
classification, regression, generation, segmentation, embedding 
or feature representation, and multitask output [77], [78],[79]. 
This section provides detailed explanations of UATR based on 
classification tasks and other related activities. 

A. Classification-Based Methods 

Classification-based methods for UATR typically involve 
steps such as data preprocessing, feature extraction and 
selection, and the application of classification algorithms to 
differentiate various underwater acoustic targets (e.g., 
submarines, fish schools, marine organisms) using sonar data. 
To provide a comprehensive overview of previous research, the 
following section will delve into various methods applied to 
different datasets. 

1) ShipsEar-based dataset. The primary purpose of the 

ShipsEar dataset is to facilitate the development and testing of 

UATR algorithms and models [80]. By providing a substantial 

amount of underwater acoustic data, the ShipsEar dataset 

enables researchers to analyze and classify noise generated by 

various vessels, thereby enhancing environmental monitoring 

and maritime surveillance. The accuracy of the results varies 

depending on the model design, as illustrated in Table II. 
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TABLE II.  ACCURACY OF UATR METHOD BASED ON SHIPSEAR 

DATASET 

Author (s) Methods Accuracy 

Fahad et al., (2024) CNN + DenseNet 99.50% 

Liu et al., (2024) 
Residual Attention Convolutional 

Neural Network (RACNN) 
99.45% 

Yang et al., (2024) 1D CTN 96.84% 

Pu et al., (2024) 
Attention Layer Supplement 
Integration (ALSI) 

96.37% 

Luo et al., (2021) 

Conditional Deep Convolutional 

Generative Adversarial Network 
(cDCGAN) Model 

96.32% 

Chen et al., (2023) 
ARCSB modules (Rescat, 

SE,Maxpool, ASPP, MLP) 
95.80% 

Li et al., (2022) VGGish 95.30% 

Hong et al., (2021, 

May) 
ResNet18 94.30% 

Tang & Hu (2024) DSCANet 93.00% 

Ke et al., (2018) 
1D convolution Autoencoder -

Decoder model 
93.28% 

Luo et al., (2021) RBM+BP neural network 92.60% 

Du et al., (2024) TF - DD - CNN 92.23% 

Fernandes 

&Apolinário (2020) 
KNN 71.10% 

Chen et al., (2023) 
ARCSB modules (Rescat, 
SE,Maxpool, ASPP, MLP) 

95.80% 

ShipsEar dataset consists of five categories: four ship types 
and one background noise category. The model's output can 
include accuracy or probability as performance metrics 
[60],[81]. For example, using the ShipsEar dataset, Pu et al. 
[72] reported a 96.39% identification accuracy for their model. 
This output format offers the advantage of being easily and 
directly comparable to the results of other studies. Moreover, 
Müller et al. [82] examined the strengths and weaknesses of 

each approach and proposed a method for integrating the 
ShipsEar and DeepShip datasets. 

One critical factor that can influence object identification 
accuracy is how the dataset is divided into training and testing 
sets. Fahad et al. [83] pre-processed each signal into 1,000 
observation frames, each containing 4,096 amplitude samples, 
and then randomly split the dataset, allocating 70% for training 
and 30% for testing. While this approach is effective, an 80/20 
split between training and testing sets is more commonly used 
in similar studies [17], [76],[84]. 

In machine learning and pattern recognition, accuracy is a 
commonly used performance metric that measures the 
consistency between model predictions and actual outcomes. 
However, a model's accuracy is influenced by several factors, 
such as the criteria for splitting training and testing sets, the 
volume of training data, and the model's inherent performance. 
These factors collectively impact the overall accuracy to 
varying degrees. Moreover, accuracy on labeled datasets 
during training and validation does not reflect the model's 
ability to generalize data from unknown categories. Therefore, 
relying solely on accuracy to evaluate a model's performance is 
not an ideal approach. Instead, explaining the model's 
behavior—through mechanisms such as process visualization 
and interpretability—is increasingly recognized as an effective 
way to assess model performance comprehensively. 

2) DeepShip-based dataset. Many UATR studies rely on 

private datasets, but the lack of public access to these datasets 

hampers the continuous improvement of UATR tasks [85]. 

The DeepShip underwater acoustic dataset, developed by Irfan 

et al. [86], was made publicly available to advance research in 

the field. Fig. 8 presents the recognition accuracy of various 

methods evaluated using the DeepShip dataset. 

 
Fig. 8. Accuracy of UATR method based on DeepShip dataset. 
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Yao et al. [32] utilized acoustic data from three ships, 
extracting 1,487,488 samples for each ship type to analyze 
acoustic characteristics from the DeepShip database. To 
prevent information leakage, Xie et al. [21] divided each signal 
recording into 30-second segments with a 15-second overlap 
between adjacent segments, ensuring that data from the same 
track was not included in both the training and testing sets. 
Similarly, Chen et al. [53] pre-processed two datasets by 
standardizing all WAV-format audio files to a sampling rate of 
22,050 Hz. They segmented the underwater acoustic data into 
5-second intervals, resulting in over 30,000 sound samples, 
which were then categorized into training, validation, and 
testing sets. 

3) Other underwater acoustic-based datasets. Both 

private and publicly accessible observation datasets have been 

utilized in the UATR mission. Examples include the Seabed-

Objects dataset, PondEx09/PondEx10 dataset, Ocean 

Networks Canada data (https://oceannetworks.ca), and various 

private datasets [68],[87],[88]. Table III presents the 

recognition accuracy of several techniques evaluated using 

these private datasets. 

TABLE III.  ACCURACY OF UATR METHOD BASED ON PRIVATE DATASET 

Author (s) Methods Accuracy 

Xue et al., (2022) 
CamResNet (ResNet with Channel 

Attention Mechanism) 
98.20% 

Jin & Zeng, (2023) CTA - RDNet 97.69% 

Christensen et al., 

(2024) 
Sparse MvDA + SVM 97.30% 

Sun et al., (2024) SVM + MFCC, FMSE, GFCC 96.10% 

Wang et al., (2019) MFF - MDNN 94.30% 

Yu et al., (2024) 
Gradient Boosting Decision Tree 

(GBDT) 
93.84% 

Hu et al., (2018) CNN + ELM 93.04% 

Hu et al., (2020) ATCNN 90.90% 

Li & Yang, (2024) ASTEM - DCNN 
90.79% (SNR- 

6dB) 

Cao et al., (2019) 
Stacked Sparse Autoencoder 
(SSAE) 

89.68% 

Tian et al., (2021) 
MSRDN （ Multiscale Residual 

Deep Neural Network) 
83.15% 

Yang et al., (2022) GRU - CAE - TM 82.21% 

Honghui et al., 
(2022) 

MCPM2 82.10% 

Yang et al., (2019) ADCNN 81.96% 

Xiao et al., (2021) 
ABNN (In multi target resolution 

task) 
74.30% 

Domingos et al. [55] developed a dataset using the Ocean 
Network Canadian data by randomly selecting audio samples 
from each category. To ensure all records were distinct, they 
continued the selection process until the required total duration 
was achieved. Each item in the original dataset was divided 
into 1-second segments, with any segment shorter than 1 
second padded with zeros. The dataset was then split into 
training, validation, and testing sets in proportions of 85%, 

10%, and 5%, respectively. Algorithms based on this dataset 
have demonstrated strong recognition results [48], [49],[56]. 
Additionally, Hu et al. [42] utilized a private dataset for UATR 
tasks that included underwater noise data from ferries, large 
boats, and small boats, collected at an anchorage with a 
sampling frequency of 48,000 Hz. In their experiment, 80% of 
the samples from each category were allocated to the training 
set, while the remaining 20% were used for testing. Each 
record was derived from a WAV audio file divided into 10-
second segments, with a sampling period of 45 milliseconds 
and a sampling interval of 12.5 milliseconds for both training 
and testing samples. Several UATR studies have shown strong 
recognition performance using such private datasets. At the 
same time, some studies have achieved impressive recognition 
accuracy [89], [90]. 

B. Other Tasks-Based Methods 

UATR based on regression tasks typically achieves target 
tracking and recognition by predicting continuous target 
properties such as location, velocity, and depth. These 
methods, which excel in localization, tracking, and dynamic 
detection of underwater acoustic targets, primarily rely on 
regression models, machine learning algorithms, and data from 
underwater sensors. 

Zhu et al. [76] proposed a feature selection (FS) technique 
for underwater sound source localization based on principal 
component regression. This approach employs a convolutional 
autoencoder to extract latent features and a multi-layer 
perceptron for source localization. The framework 
demonstrates high accuracy and robustness to unseen data 
while achieving a 95% reduction in training time after FS. To 
address the limitations of existing methods in accounting for 
multi-attribute correlations, Honghui et al. [59] developed a 
deep learning-based multi-attribute correlation perception 
(MCP) technique for UATR. 

Generative task-based approaches provide significant 
advantages for UATR, especially in noisy or data-scarce 
environments. Luo et al. [67] trained a DCGAN model using 
the original sample set to develop an appropriate generator. 
This generator can increase the number of examples for each 
category in the dataset by generating samples across various 
categories based on input labels. In addition, multi-task output-
based methods for UATR have gained significant attention in 
recent years. These methods are capable of simultaneously 
addressing multiple related tasks, effectively leveraging the 
relationships between multimodal features, and thereby 
enhancing both the accuracy and robustness of recognition. 

VIII. CHALLENGES AND FUTURE PROSPECTS 

The methodology, techniques, and current research on 
UATR indicate that factors such as training methods, model 
architecture, and underwater acoustic data significantly impact 
model performance. Additionally, the model's ability to address 
real-time challenges in practical applications plays a crucial 
role. The following sections will explore these aspects from 
three perspectives: challenges in underwater acoustic data, 
enhancing UATR model evaluation and performance, 
interpreting deep learning in UATR. 
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A. Challenges in Underwater Acoustic Data 

Gathering underwater acoustic data presents significant 
challenges due to high costs and substantial resource demands. 
Most UATR studies depend on a limited number of publicly 
accessible datasets or data collected from relatively simple 
maritime environments. This reliance restricts the variety and 
richness of the data, making it difficult to generalize findings 
across diverse underwater scenarios. As a result, acquiring 
high-quality underwater acoustic data has become a critical 
issue, with insufficient sample sizes exacerbating the problem. 
The lack of diverse datasets not only hinders model training 
and validation but also limits advancements in research and 
practical applications in more complex and variable underwater 
environments. Addressing these challenges is essential for 
enhancing the reliability and effectiveness of UATR systems. 

B. Enhancing UATR Model Evaluation and Performance 

Deep learning models utilized for UATR often exhibit high 
complexity, which can lead to significant challenges in training 
effectiveness. When the complexity of a model exceeds the 
available quantity and quality of training data, achieving 
desired outcomes becomes increasingly difficult. While 
improving model accuracy is a primary objective, relying 
solely on accuracy as the sole metric for evaluating model 
performance is insufficient. 

To enhance model evaluation, it is crucial to incorporate 
process visualization and develop a deeper understanding of 
the model's mechanisms. This approach not only aids in 
identifying the strengths and weaknesses of the model but also 
fosters greater transparency. By integrating physical variables 
from the input data—such as temperature, salinity, depth, and 
geographic location—into the evaluation process, researchers 
can create more robust models that better reflect real-world 
conditions. This integration facilitates a more holistic 
assessment of model performance, ultimately leading to 
improved adaptability and reliability in practical applications. 
Moreover, such comprehensive evaluations can guide future 
research directions, informing the development of models that 
are not only accurate but also interpretable and adaptable to 
varying underwater environments. 

C. Interpreting Deep Learning in UATR 

Despite their significant potential, deep learning models 
based on neural networks encounter notable limitations in real-
world applications primarily due to their "black-box" nature. 
This opacity makes it challenging to interpret or modify these 
models in real time, which is crucial for practical deployment. 
One of the key factors contributing to this limitation is the 
insufficient incorporation of physical variables into the model's 
outputs and the underlying mechanisms governing those 
outputs. To overcome these challenges, it is essential to fully 
integrate physical variables into the modelling process. This 
integration would not only enhance the interpretability of the 
models but also enable real-time adaptations based on 
changing environmental conditions, ultimately improving their 
efficacy in practical applications. By bridging the gap between 
complex neural computations and tangible physical realities, it 
is possible to unlock the full potential of deep learning in 
dynamic real-world scenarios. 

In summary, addressing the challenges associated with data 
collection, balancing model complexity with the availability of 
training data, and ensuring the interpretability and adaptability 
of models are essential for advancing the field of underwater 
target recognition. These steps are crucial because effective 
data collection is foundational for training robust models; 
without diverse and high-quality datasets, models may fail to 
generalize across various underwater environments. Balancing 
model complexity with training data is equally important; 
overly complex models can lead to overfitting, particularly 
when trained on limited data. Thus, achieving the right balance 
allows for improved performance while maintaining 
generalizability. 

Moreover, enhancing model interpretability is vital for 
fostering trust and facilitating real-time adjustments in dynamic 
underwater scenarios. By ensuring that models can adapt based 
on physical variables—such as temperature, salinity, and 
depth—researchers can create systems that not only perform 
accurately but are also responsive to changing conditions. 
Collectively, these advancements will pave the way for more 
effective and reliable UATR systems, ultimately enhancing 
their practical applications in marine research, naval 
operations, and environmental monitoring. 

IX. CONCLUSION 

This study systematically elaborates on the background and 
inherent challenges of Underwater Acoustic Target 
Recognition (UATR). A comprehensive overview is presented 
of the key factors influencing UATR performance, including 
class imbalance, environmental fluctuations, and data noise. 
Through the analysis of existing literature and the examination 
of the unique characteristics of various methodologies, recent 
advancements in UATR are classified according to their 
applied techniques and underlying properties. The role of deep 
learning technologies—such as transfer learning, deep 
convolutional networks, and temporal modelling—is explored 
in enhancing the accuracy and robustness of UATR systems. 
Particular attention is given to the challenges of model training, 
notably the substantial demand for annotated data, highlighting 
the urgent need for methods that reduce dependence on large-
scale labeled datasets. Additionally, the potential of 
multimodal data fusion is also emphasized, as the integration 
of multiple data sources—such as underwater acoustic signals 
and optical imagery—can significantly improve recognition 
accuracy. Furthermore, ensemble learning approaches and 
attention-based mechanisms are examined as promising 
strategies for advancing performance in the field. Despite 
recent progress, current research indicates a continuing need to 
improve model interpretability and to better understand the 
mechanisms contributing to high recognition accuracy. The 
interpretation and visualization of these models remain largely 
unexplored, pointing to crucial directions for future research. 
Overall, the advancement of technologies like unsupervised 
learning and multimodal data fusion is likely to enhance UATR 
performance in increasingly complex and demanding 
application scenarios. 
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