
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

177 | P a g e

www.ijacsa.thesai.org

A Steel Surface Defect Detection Method Based on

Lightweight Convolution Optimization

Cong Chen1, Ming Chen2, Hoileong Lee3, Yan Li4, and Jiyang YU5*

School of Marine Information Engineering, Hainan Tropical Ocean University, Sanya 572022, China1

School of Information and Intelligent Engineering, University of Sanya, Sanya 572022, China2

Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia3

Thalesgroup, Ottawa, ON, K1K 4Z9, Canada4

Graduate School of Management of Technology, Pukyong National University, Busan 48547, Korea5

Abstract—Surface defect detection of steel, especially the

recognition of multi-scale defects, has always been a major

challenge in industrial manufacturing. Steel surfaces not only have

defects of various sizes and shapes, which limit the accuracy of

traditional image processing and detection methods in complex

environments. However, traditional defect detection methods face

issues of insufficient accuracy and high miss-detection rates when

dealing with small target defects. To address this issue, this study

proposes a detection framework based on deep learning,

specifically YOLOv9s, combined with the C3Ghost module,

SCConv module, and CARAFE upsampling operator, to improve

detection accuracy and model performance. First, the SCConv

module is used to reduce feature redundancy and optimize feature

representation by reconstructing the spatial and channel

dimensions. Second, the C3Ghost module is introduced to enhance

the model’s feature extraction ability by reducing redundant

computations and parameter volume, thereby improving model

efficiency. Finally, the CARAFE upsampling operator, which can

more finely reorganize feature maps in a content-aware manner,

optimizes the upsampling process and ensures detailed restoration

of high-resolution defect regions. Experimental results

demonstrate that the proposed model achieves higher accuracy

and robustness in steel surface defect detection tasks compared to

other methods, effectively addressing defect detection problems.

Keywords—YOLOv9s; steel surface defect detection; C3Ghost

module; SCConv module; CARAFE upsampling operator

I. INTRODUCTION

The surface quality of steel is one of the key indicators for
measuring its performance and reliability, and it is widely
applied in high-precision fields such as aerospace, automotive
manufacturing, and building structures. Surface defects not only
compromise the aesthetic quality of steel but also jeopardize its
structural integrity, potentially causing safety hazards.
Therefore, steel surface defect detection has become an
important task in modern manufacturing. Traditional defect
detection methods, such as manual visual inspection, ultrasonic
testing, and optical scanning, although still of certain value in
specific situations, face issues such as low efficiency, poor
accuracy, and difficulty in identifying complex defects due to
their reliance on manual operation or being limited to specific
detection conditions [1]. In particular, in large-scale production
environments, manual inspection cannot meet the requirements
for high speed, high precision, and high reliability [2].

In recent years, with the rapid development of deep learning
technology, particularly breakthroughs in the field of computer
vision, automated defect detection technology has seen
significant improvements. Deep learning algorithms, especially
Convolutional Neural Networks (CNNs), have demonstrated
powerful capabilities in image recognition, enabling efficient
and accurate identification and classification of various defects
on steel surfaces. Compared to traditional methods, deep
learning-based detection methods not only improve detection
efficiency but also overcome the limitations of manual
inspection, adapting to the complex and variable production
environment. In particular, the YOLO (You Only Look Once)
[3-6] object detection algorithm, due to its efficient real-time
performance and accuracy, has been widely adopted for steel
defect detection.

Many researchers have made significant contributions to the
field of defect detection. For instance, Gao et al. [7] integrated
the attention mechanism and weighted bi-directional feature
pyramid network (BiFPN) into the YOLOv5 architecture,
achieving good results. However, there are still certain
shortcomings when handling small-sized defects. Yu et al. [8]
proposed the introduction of structural reparameterization,
context transformation modules, and simplified generalized
feature pyramid networks to improve the model's accuracy.
Although they performed excellently in terms of mAP, complex
background noise affected defect detection performance,
indicating that there is still room for improvement in the model’s
robustness to interference. Yang et al. [9] proposed a detection
method combined with a supervised spatial attention module
(SSAM) to improve the detection accuracy of defects such as
surface cracks and rolled-in scale on steel. However, this method
increases the computational complexity of the model and raises
hardware requirements. Subburaj et al. [10] proposed the
DBCW-YOLO model, which integrates attention mechanisms
and enhanced feature extraction techniques to improve defect
detection accuracy. However, integrating multiple advanced
technologies increases the model’s complexity, affecting real-
time performance. Wu et al. [11] proposed the Hyper-YOLO
model, which improves detection performance by replacing the
CSP module in YOLOv5 with the Ghost module, the PAFPN
module with the Hyper FPN module, and introducing α-CIoU
and α-DIoU loss functions. However, these improvements
increase the model’s computational cost. Xu et al. [12] improved
the YOLOv5 algorithm by introducing a coordinate attention

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

178 | P a g e

www.ijacsa.thesai.org

mechanism and multi-scale feature fusion, significantly
improving the model’s detection accuracy. However, these
improvements increase the model's complexity, leading to
longer training and inference times. Kong et al. [13] proposed
an improved steel surface defect detection algorithm based on
YOLOv8, enhancing small-target detection accuracy by
introducing a non-attention mechanism and improving the SPPF
module. However, the algorithm requires substantial
computational resources, limiting its deployment in resource-
constrained environments. Mi et al. [14] proposed a surface
defect detection method for hot-rolled steel strips based on
multi-scale feature perception and adaptive feature fusion,
effectively improving the model’s detection performance.
However, it performs poorly when handling highly complex or
noisy images and requires longer training times.

In summary, although significant progress has been made in
existing steel surface defect detection algorithms, there are still
numerous challenges and areas for optimization, especially
regarding the detection accuracy of small-sized defects. To
address this, this paper proposes a steel surface defect detection
method based on deep learning with YOLOv9s, aiming to solve
the problems encountered by current methods when handling
small-sized defects through a series of optimization designs,
thereby improving detection accuracy and efficiency. The core
contributions of this study are mainly reflected in the following
key aspects:

1) The SCConv module is adopted, and through the

aforementioned reconstruction of spatial and channel

dimensions, the model can reduce redundant information

without losing important features, making the network more

efficient and improving feature representation accuracy.

2) The C3Ghost module is introduced, which helps the

model focus on the most distinguishable defect features by

reducing redundant feature channels, while significantly

decreasing the computational and memory load.

3) The CARAFE (Content-Aware Re-Assembly of Feature

Maps) upsampling operator is incorporated, which, through

content-based feature reorganization, dynamically adjusts the

resolution of the feature map, thereby better preserving the

spatial information of the image during the upsampling process.

II. RELATED WORK

A. Depthwise Separable Convolution

Depthwise separable convolution [15] is an efficient
convolutional operation that significantly reduces
computational cost and parameter count by decomposing the
traditional convolution operation into two simpler operations.
This approach enhances the efficiency of neural networks. The
process consists of the following steps: In a standard
convolution, the input feature map has a size of H W M , the

convolution kernel has a size of K K M , and the number of
convolution kernels is N , resulting in an output feature map of

size H W N . Consequently, the parameter count of standard

convolution is
1P K K M N , and the computational cost is

1C H W K K M N .

Depthwise separable convolution decomposes the standard
convolution kernel into two parts: depthwise convolution and
pointwise convolution. Depthwise convolution applies

1K K convolution kernels to each input channel
independently, with a total of M such kernels. Pointwise
convolution then uses 1 1 M convolution kernels to combine

all input channels, ultimately generating N output channels.

This approach significantly reduces computational cost and
parameter count, enhancing network efficiency. Consequently,
the total parameter count of depthwise separable convolution is

2P K K M M N , with a computational cost of

2C K K M H W M N H W . Specifically, the

parameter count for depthwise convolution is K K M , and
for pointwise convolution, it is M N . The computational cost

for depthwise convolution is K K M H W , while for

pointwise convolution, it is M N H W .

From the perspective of parameter count and computational
cost, depthwise separable convolution significantly reduces both
by decomposing the operations of standard convolution. The
ratios of the parameter count and computational cost between
depthwise separable convolution and standard convolution are

2

2

1

1 1P K K M M N

P K K M N N K

and,

2

2

1

1 1C K K M H W M N H W

C H W K K M N N K

, respectively. It can

be observed that depthwise separable convolution effectively
lowers computational overhead, especially when processing
high-dimensional inputs. Therefore, compared to standard
convolution, depthwise separable convolution offers higher
computational efficiency.

B. YOLOv9 Algorithm

The YOLOv9 model features a unique design in its three key
components: the backbone network, the neck network, and the
head network. The backbone network adopts the General
Efficient Layer Aggregation Network (GELAN), which
ingeniously integrates CSPNet and ELAN. This fusion increases
the network's width, facilitating smoother gradient flow
throughout the network and enhancing its feature extraction
capability. The neck network, serving as a crucial bridge
between the backbone and head, employs the PGI-based multi-
level auxiliary information module. This design enables each
level of the feature pyramid to receive information on all object
sizes, integrating gradient information from different prediction
branches to facilitate parameter updates. As a result, it
effectively achieves multi-scale feature fusion while
incorporating both deep and shallow feature information without
significantly increasing computational cost. The head network
adopts a decoupled head design, which consists of two branches:
a classification branch and a bounding box (box) branch.
Additionally, it divides detection boxes into three scales—large,
medium, and small—targeting objects of different sizes. The
classification branch is responsible for predicting the object's
category, while the bounding box branch focuses on determining
the object's location. Each scale of detection boxes plays a
distinct role in improving detection accuracy across different
object sizes.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

179 | P a g e

www.ijacsa.thesai.org

III. METHOD DESIGN

This study improves YOLOv9s [16], as shown in Fig. 1, by
incorporating the SCConv module. The SCConv module
dynamically adjusts the weights of different channels to more
effectively capture important spatial information while
suppressing irrelevant or redundant features. The C3Ghost

module is introduced, and through an optimized design, it
maintains a low computational cost, allowing the model to
sustain fast inference speed even when handling complex tasks.
Additionally, the CARAFE upsampling operator is used to
reorganize the feature map in a content-aware manner,
enhancing the fine-grained reconstruction of steel surface defect
regions, making defect boundaries clearer.

C3Ghost

SCConv

SCConv

ELAN1

AConv

C3Ghost

AConv

RepNCSPELAN4

AConv

SPPELAN

CARAFE

Concat

CARAFE

Concat

RepNCSPELAN4

RepNCSPELAN4

AConv

Concat

RepNCSPELAN4

AConv

Concat

RepNCSPELAN4

Upsample

Upsample

Concat

Concat

SPPELAN

RepNCSPELAN4

RepNCSPELAN4

Detect

Detect

Detect

Detect

Detect

Detect

P3

P4

P5

P3

P4

P5

Backbone

Neck

Detect

Fig. 1. Improved YOLOv9s network architecture diagram.

A. SCConv Module

YOLOv9s, as an efficient object detection model,
demonstrates outstanding performance in various complex
scenarios. However, its convolutional layers still exhibit
redundancy in both spatial and channel dimensions during
feature extraction, which not only increases the computational
burden but also limits the efficiency of feature representation to
some extent. To address this issue, we introduce the SCConv [17]
(Spatial and Channel Reconstruction Convolution) module,
which optimizes the features through the Spatial Reconstruction
Unit (SRU) and Channel Reconstruction Unit (CRU), thereby
reducing redundant computations and enhancing feature
representation capability.

As shown in Fig. 2, to further elaborate on the principles and
process of the SRU structure, we can delve deeper into the

details of the separation and reconstruction operations. The core
objective of the separation operation is to distinguish between
feature maps with rich information and those with less
information. In this way, the SRU can extract useful information
while reducing reliance on irrelevant data.

First, the input feature map ()X R N C H W is processed

through normalization. This is done using the Group
Normalization (GN) layer. This normalization operation helps
to eliminate biases between different batches of data in
convolutional neural networks, making the model training more
stable. The normalization formula is [Formula (1)]:

2

()
()out

X
X GN X

 (1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

180 | P a g e

www.ijacsa.thesai.org

GN N X S T

X

X

+

C

+

1x1

Conv

1x1

Conv

GWC

PWC

PWC

+

C

+

X

X

Input feature X

c

1

2
...

1w

2w
...

cw

1W

2W

1

WX

11

WX

12

WX

1WX

2WX
2

WX

21

WX

22

WX WX

Spatial reconstruction

feature

Spatial reconstruction unit

SRU CRU

Channel reconfiguration unit
Channel reconstruction

feature Y

Spatial reconstruction

feature WX
C

 1 C

upX

lowX

1Y

2Y

Pooling

Pooling

Softmax

1

2

Channel reconstruction

feature Y

Split Transform Fuse

GN N S

T X + C

Group normalization
0

i
i

j

j

w

Sigmoid activation function

Threshold value Dot product addition Concat

Input feature X

Fig. 2. SCConv module.

Here, and are the mean and standard deviation of the

input feature map X along a specific dimension (usually the
channel dimension). and are the trainable affine

transformation parameters, and is a small constant used to

prevent division by zero when the standard deviation is zero.

Next, we calculate the weight W
based on each channel

feature, which aims to measure the importance of each channel

in the overall feature map. The calculation of weight W
is as

follows [see Formula (2)]:

1

{ } , , 1,2, ,i
i C

j
j

W w i j C

 (2)

Here,
i represents the affine transformation parameters of

each channel in group normalization. The normalization of the
weights is performed by dividing each channel's

i by the sum

of the affine parameters of all channels, ensuring that the weight
values remain within a reasonable range.

Next, the normalized weight W
is gated through the

Sigmoid activation function, yielding a value within the range
(0, 1), which represents the "importance" of each channel
feature. Specifically as in Formula (3):

 Gate(((())))W W GN X (3)

Here, σ (⋅) is the Sigmoid activation function, which restricts
the output to the range (0, 1). Then, a threshold is set (usually
0.5), and the weights greater than this threshold are set to 1 to

obtain information-rich weights 1w ; weights smaller than the

threshold are set to 0 to obtain information-poor weights 2w .

Subsequently, the input feature X is mapped through two

different weight matrices
1w and

2w , resulting in information-

rich feature
1

wX and information-poor feature
2

wX . Then, these

two types of features are fused through a cross-addition method
to further enhance the expressive power of feature information
and reduce spatial redundancy. Finally, the fused features 1wX

and 2wX are concatenated together to obtain the final spatially

reconstructed feature map wX , which is represented by the

following Formula (4):

1

2

1

11 22

2

2

1

2

1 2

2

1

1

,

.

,

,

,

W

W

w w w

w w w

w w w

X W X

X W X

X X X

X X X

X X X

 (4)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

181 | P a g e

www.ijacsa.thesai.org

In the formula, represents element-wise multiplication,

 represents element-wise addition, and represents the

Concat module.

As shown in Fig. 2, the CRU (Channel Reduction Unit)
structure is discussed in terms of how it optimizes feature maps
through a series of operations to reduce redundancy and improve
computational efficiency. The three main stages of CRU include
Split, Transform, and Fuse.

In the Split stage, the feature map wX is divided along the

channel dimension into two parts: the upper part contains C
channels, and the lower part contains (1)C channels, where

 is a tunable parameter, typically set to 0.5, indicating that the

feature map is split into two equal parts. The purpose of this step
is to reduce the number of channels in each part, thereby
reducing the computational burden. Next, a 1x1 convolution
operation is applied to compress the number of channels in the
feature map. The 1x1 convolution has the ability to reduce the
number of channels while also serving as a tool for feature
transformation. The compression ratio r controls the number of
channels in the output feature map, balancing the trade-off
between computational cost and performance. The compressed

feature map is then divided into the upper part
upX and the lower

part
lowX , preparing for the next stage of operations.

The Transform stage is the core part of the CRU, primarily
aimed at extracting features and enhancing computational
efficiency through two operations: In the upper transformation

stage, the input is the upper part of the feature map
upX obtained

from the split. Groupwise Convolution (GWC) and Pointwise
Convolution (PWC) are used for feature extraction. Groupwise
Convolution divides the input channels into several small groups
for convolution operations, thereby reducing computational
complexity. Pointwise Convolution performs a 1×1 convolution
at each pixel location to further extract features. The formula for
the upper transformation is [Formula (5)]:

 1

1 up upY X X
PGM M (5)

Here, GM and 1PM are the learnable weights of GWC and

PWC, respectively, and
1Y is the output feature map of the

upper transformation stage.

In the lower transformation stage, the input is the lower part
of the split feature map

lowX . PWC is used to extract features,

and the result is concatenated with the original
lowX feature map.

The concatenation operation is denoted by the symbol . The

formula for the lower transformation is [Formula (6)]:

 2

2 low lowY X X
P

M (6)

Here, 2PM is the learnable weight of PWC, and
2Y is the

output of the lower transformation stage.

In the Fusion stage, the simplified SKNet method is used to

merge the output features
1Y and

2Y from the upper and lower

transformation stages. Global spatial information is obtained
through global average pooling. The formula for the global
channel descriptor

mS is as follows [Formula (7)]:

1 1

1
(,), 1,2

H W

m c
i j

S Y i j m
H W

 (7)

Subsequently, the two global channel descriptors
1S and

2S are

stacked together.

Channel attention operations are used to generate

importance weights
1 and

2 , which represent the importance

of the corresponding channels. The calculation formula is as
follows [Formula (8)]:

1 2

1 2 1 2
1 2,

s s

s s s s

e e

e e e e

 (8)

Finally, the reconstructed feature
1 1 2 2+Y Y is obtained

through the weighted calculation.

B. C3Ghost Module

In the YOLOv9s model, the main goal of replacing the
RepNCSPELAN4 module with the C3Ghost [15,18] module is
to enhance the model's computational efficiency and detection
performance. The core idea behind the design of the C3Ghost
module is to optimize the network structure, reduce
computational load and the number of parameters, while not
sacrificing the model's detection accuracy, thereby achieving
efficient object detection. Compared to traditional convolutional
modules, the C3Ghost module uses the GhostConv operation,
which can extract more effective features at a lower
computational cost. Therefore, we introduced the C3Ghost
module to significantly improve computational efficiency while
maintaining detection accuracy.

As shown in Fig. 3, the workflow of the C3Ghost module is
as follows: First, the input feature map X is processed through a
convolution layer (Conv) for preliminary processing. Then, it
passes through multiple GhostConvBottleneck modules, which
improve efficiency by reducing computational load and the
number of parameters, while enhancing feature extraction
capabilities. After that, a Concat operation is performed,
followed by a Conv operation from another path. Finally, the
concatenated feature map undergoes a convolution layer (Conv)
to generate the final output X.

C. CARAFE Upsampling Operator

The CARAFE [19] upsampling operator is introduced in the
YOLOv9s model to replace traditional upsampling methods,
primarily due to its unique advantages. CARAFE is a content-
aware upsampling mechanism that dynamically adjusts the
upsampling process based on the input features, generating
higher-quality feature maps, especially excelling in small object
detection. Therefore, using the CARAFE upsampling operator
can improve the model's detection accuracy for small objects
and overall performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

182 | P a g e

www.ijacsa.thesai.org

C3Ghost Conv GhostConvBottleneck

Concat

GhostConv

Conv

Conv

GhostConvBottleneck GhostConv Concat

=

Output=X

=

Input=X

Output=XInput=X

n

GhostConvBottleneck
...

{

Fig. 3. C3Ghost module.

As shown in Fig. 4, in the upsampling kernel prediction
section, first, the channel compression part compresses the input
feature map X using a weight matrix W , reducing the number

of channels from C to
mC , resulting in a compressed feature

representation. Next, the feature map undergoes content
encoding, converting the input feature map into a more
processable form. Then, a spatial dimension expansion
operation is performed to obtain an upsampling kernel of the
form 2

up
H W k , where the upsampling factor is set.

Finally, a kernel normalization operation is applied to ensure

that the sum of the kernel weights equals 1, resulting in the
output feature map O.

In the feature reorganization section, the feature map
undergoes spatial dimension expansion, converting into feature

blocks of
up up

K K . These feature blocks will prepare for the

final upsampling operation. Finally, a pointwise operation is
performed, where the expanded feature blocks are corresponded
with the points in the original feature map, generating the final

upsampled feature map X .

Channel

Compressor

Content

Encoder

Spatial dimension

expansion

Kemel

Normalizer

Kemel Prediction

Module

Content-aware

Reassembly Moudle

=

H

W

2 2

upK
H

W

2

upK

upK

upK

lW

H

up(,)lN X K

H

W Cm

H

W

C

Spatial dimension

expansion

W

X

O

O

X

C

X

Fig. 4. CARAFE Upsampling operator.

IV. EXPERIMENTAL SETUP

A. Dataset

The steel surface defect dataset used in this study, provided
by Northeastern University, contains six typical defect
categories: a) Crazing, b) Inclusion, c) Patches, d) Pitted Surface,
e) Rolled-in Scale, and f) Scratches. The dataset consists of
1,800 images, with 300 samples for each category, ensuring a
balanced distribution that comprehensively covers common

defect types and features found on steel surfaces. These images
were captured using industrial equipment and authentically
reproduce the visual characteristics and complexity of surface
defects in real-world production processes. Each image is
annotated with bounding boxes, a common format used in object
detection tasks, which include the defect location and
corresponding category information. To reasonably allocate the
dataset for training and testing purposes, it is divided into
training, validation, and test sets in a 7:1:2 ratio, containing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

183 | P a g e

www.ijacsa.thesai.org

1,260, 180, and 360 images, respectively. This division ensures
that the training phase has sufficient data to effectively learn the
features of each defect category, while the validation and test

sets provide a scientific evaluation of the model's performance.
The six types of steel surface defect images are shown in Fig. 5.

(a) (b) (c) (d) (e) (f)

Fig. 5. Six types of steel surface defects.

B. Experimental Platform

The experiments in this study were conducted on a high-
performance computing platform with comprehensive software
and hardware configurations, which fully meet the
computational resource requirements of deep learning tasks. The
software environment uses the Ubuntu 20.04 operating system,
with model development and training based on Python 3.8 and
PyTorch 1.11.0, and it supports CUDA 11.3 acceleration,
significantly improving the efficiency of large-scale data
processing during training. The hardware environment includes
an NVIDIA RTX 4090 GPU (24GB memory), providing
powerful support for deep learning computations; a 22-core
AMD EPYC 7T83 64-Core Processor (vCPU), suitable for data
preprocessing and training task scheduling; 90GB of RAM,
ensuring stable loading of high-resolution images and large-
scale model training; as well as a 30GB system disk and a 50GB
data disk, used for operating system operation and experimental
data storage, respectively. This platform adopts GPU and CPU
parallel acceleration to fully utilize computational resources,
improving experimental efficiency and task processing
capabilities. Additionally, its software and hardware
combination offer high stability and scalability, supporting the
optimization and expansion needs of future experiments.

C. Hyperparameter Settings

This study made reasonable settings for the training
parameters to maximize model performance while ensuring
efficient training. During the training process, the pre-trained
model "yolov9-s.pt" was loaded, and the image resolution was
set to 640×640. The batch size was set to 8 to adapt to hardware
resources and ensure the stability of gradient updates. The
number of epochs was set to 300 to ensure that the model fully
learns the feature patterns in the data. The number of workers
was set to 4 to parallelize the data loading process, thereby
improving training efficiency. In terms of optimizer parameters,
the learning rate was set to 0.01, which provides a good balance
between model convergence speed and training stability. The
momentum parameter was set to 0.937 to reduce gradient
oscillation and accelerate the convergence process. The weight
decay coefficient was set to 0.0005 to limit the model's
complexity and prevent overfitting. With these fine-tuned
parameter settings, this study ensured both the efficiency of the
training process and the stability of model performance.

D. Evaluation Metrics

The experiments in this study use F1 score, Precision (P),
Recall (R), Average Precision (AP), and mean Average
Precision (mAP) as evaluation metrics [20], and also consider
the number of parameters (Parameters). The calculation
formulas for these metrics are as follows [Formula (9) to (13)]:

 p

p p

Precision
T

T F

 (9)

 p

p N

Recall
T

T F

 (10)

1

0
AP ()dP R R (11)

i 0

1
mAP ()

n

AP i
n

 (12)

 2 Precision Recall
F1

Precision Recall

 (13)

Here, pT represents the number of correctly detected defect

targets;
pF represents the number of incorrectly detected defect

targets;
NF represents the number of missed defect targets; n

represents the number of defect categories; and ()AP i represents

the average precision for the i-th target class.

V. EXPERIMENTAL ANALYSIS

A. Algorithm Comparison Experiment

To validate the proposed performance improvements, we
compared the improved YOLOv9s model (Ours) to RT-DETR-
18, Faster RCNN, SSD, and seven other mainstream YOLO
target detection models, all tested on the same data set and
training rounds. The results are shown in Table I. The
comparison metrics include Precision, Recall, mean Average
Precision (mAP@0.5), Frames Per Second (FPS),
computational complexity (GFLOPS), and model parameter
count (Params). These metrics enable us to evaluate the
performance of each algorithm and its efficiency under different
computational resources. Among all the algorithms, the
proposed improved model demonstrates a superior balance
between precision and recall, while also achieving significant
improvements in mAP and inference speed.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

184 | P a g e

www.ijacsa.thesai.org

TABLE I. EXPERIMENTAL COMPARISON RESULTS OF DIFFERENT ALGORITHMS

Algorithm Precision/% Recall/% mAP@0.5/% FPS (f/s) GFLOPS Params (M)

Faster R-CNN[21] 79.9 77.5

SSD[22] 70.2 68.6

YOLOv5s[23] 71.7 71.2 75.2 208.3 15.8 7.02

YOLOv7[24] 63.3 74.8 71.7 109.8 103.2 36.50

YOLOv8s[25] 75.7 67.1 71.7 312.5 28.4 11.12

YOLOv9s 70.7 77.3 78.1 94.3 38.7 9.60

YOLOv10s[26] 77.5 67.4 74.4 125.0 24.5 8.03

YOLOv11s[27] 74.1 74.7 78.4 86.2 21.3 9.41

RT-DETR-18[28] 79.3 67.4 73.4 68.0 57.0 19.87

Ours 77.0 72.4 79.6 109.9 36.9 9.07

Table I presents the comparison experiment results of
various object detection algorithms, including Precision, Recall,
mean Average Precision (mAP@0.5), Frames Per Second
(FPS), computational complexity (GFLOPS), and model
parameter count (Params). Among these algorithms, The
Precision of Faster R-CNN reached 79.9%, and the mAP@0.5
achieved 77.5%. The Precision of SSD reached 70.2%, and the
mAP@0.5 achieved 68.6%. YOLOv5s has a high inference
speed (208.3 FPS) and low computational complexity (15.8
GFLOPS), but its Precision (71.7%) and Recall (71.2%) are
relatively moderate. YOLOv7 performs well in Recall (74.8%),
but its Precision is lower (63.3%) and computational complexity
is higher. YOLOv8s achieves a high Precision (75.7%) but has

a lower Recall (67.1%) and an extremely fast inference speed
(312.5 FPS). YOLOv9s performs well in Recall and mAP
(78.1%), but its inference speed is slower (94.3 FPS).
YOLOv10s has high Precision (77.5%) with moderate inference
speed (125.0 FPS). YOLOv11s shows a high Recall (74.7%) but
slower inference speed (86.2 FPS). RT-DETR-18, although
having high Precision (79.3%), has slower inference speed and
lower mAP (73.4%). Our model achieves a good balance in both
Precision (77.0%) and Recall (72.4%), with an mAP of 79.6%,
inference speed of 109.9 FPS, moderate computational
complexity (36.9 GFLOPS), and a model parameter count of
9.07 M. It demonstrates high overall performance, making it an
efficient and balanced choice.

TABLE II. COMPARISON OF VARIOUS ALGORITHMS IN TERMS OF AVERAGE PRECISION (AP%)

 Algorithm

Category
Inclusion Scratches Crazing Patches Rolled-in_Scale Pitted_Surface

YOLOv5s 78.6 91.1 41.3 89.1 70.9 80.3

YOLOv7 75.6 80.5 38.9 89.9 66.6 78.9

YOLOv8s 70.2 89.0 32.8 86.4 66.1 85.7

YOLOv9s 81.2 94.3 48.0 89.1 70.8 85.5

YOLOv10s 75.8 90.5 43.8 81.7 74.0 80.7

YOLOv11s 82.1 92.3 49.0 89.9 69.5 87.8

RT-DETR-18 78.6 93.1 48.9 88.0 52.5 79.5

Ours 84.1 92.5 52.0 88.8 75.0 85.1

Based on the Average Precision (AP) comparison results in
Table Ⅱ, the "Ours" model performs the best across multiple
defect categories, particularly excelling in the inclusion and
crazing categories, with precision rates of 84.1% and 52.0%,
respectively, significantly higher than all other algorithms.
YOLOv9s and YOLOv11s also perform well in most categories,
especially in scratches, where they achieve precision rates of
94.3% and 92.3%, respectively, although they are slightly
lacking in the Rolled-in_scale category. YOLOv5s, YOLOv7,
and YOLOv10s perform well in the scratches and patches
categories, but their precision in crazing and Rolled-in_scale is
lower. YOLOv8s shows strong performance in scratches and
Pitted_surface, but lags significantly in crazing. RT-DETR-18
also demonstrates good performance in scratches and crazing. In
summary, the "Ours" model outperforms other algorithms

across multiple defect categories, showing significant
performance improvements.

B. Result Visualization

To evaluate the effectiveness of the improved algorithm, it
needs to be compared with the original algorithm. YOLOv9s, as
a classic object detection algorithm, is widely used in various
tasks. With continuous optimization of the algorithm, the
improved YOLOv9s has shown better performance in both
precision and recall. The F1 score, which considers both
precision and recall, provides an effective way to assess the
algorithm's performance in detection tasks. By comparing the F1
scores of YOLOv9s and the improved YOLOv9s, we can
visually understand the improvements in the balance between
precision and recall, thereby evaluating the performance
optimization effect of the improved algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

185 | P a g e

www.ijacsa.thesai.org

 (a) (b)

Fig. 6. F1-Confidence Curve: (a) YOLOv9s Algorithm; (b) Improved YOLOv9s Algorithm.

Fig. 6 displays the F1-Confidence curves for both YOLOv9s
and the improved YOLOv9s. The blue curve represents the F1
score for all categories. From the comparison, it is evident that
the improved YOLOv9s shows a significant enhancement in F1
scores across categories, particularly in the higher confidence
regions, indicating a clear optimization in precision. Specifically,
in the left-side YOLOv9s plot, the blue curve reaches an F1

score of 0.73 at a confidence of 0.220, while in the right-side
improved YOLOv9s plot, the blue curve reaches an F1 score of
0.74 at a confidence of 0.314. This demonstrates that the
improved YOLOv9s has an overall increase in F1 score across
all categories, with better performance at higher confidence
levels.

 (a) (b)

Fig. 7. Precision-Recall Curve: (a) YOLOv9s Algorithm; (b) Improved YOLOv9s Algorithm.

Fig. 7 shows the Precision-Recall (PR) curves for

YOLOv9s and the improved YOLOv9s across different

categories. In the left-side YOLOv9s plot, the blue curve

represents the Precision-Recall curve for all categories, with

an mAP value of 0.781. In the right-side plot of the improved

YOLOv9s, the blue curve has an mAP value of 0.796, which

shows an improvement over YOLOv9s, indicating that the

improved algorithm performs better in balancing precision

and recall. Overall, the improved YOLOv9s shows enhanced

precision across multiple categories, particularly in the

"inclusion" and "crazing" categories, where the improved

algorithm demonstrates superior performance.

Fig. 8 shows the Precision-Confidence curves for YOLOv9s
and the improved YOLOv9s across different categories. In the
left-side YOLOv9s plot, the blue curve represents the Precision-
Confidence curve for all categories, with a precision of 1.00 at a
confidence of 0.901. In the right-side plot of the improved
YOLOv9s, the blue curve also reaches a precision of 1.00, but
at a confidence of 0.921. A comparison reveals that the
improved YOLOv9s shows an overall increase in precision at
higher confidence levels and outperforms YOLOv9s in multiple
categories, especially demonstrating more stable precision at
lower confidence levels.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

186 | P a g e

www.ijacsa.thesai.org

 (a) (b)

Fig. 8. Precision-Confidence Curve: (a) YOLOv9s Algorithm; (b) Improved YOLOv9s Algorithm.

(a)

(b)

Fig. 9. Change Curves of Various Loss Functions and Evaluation Metrics During Training and Validation: (a) YOLOv9s Algorithm; (b) Improved YOLOv9s

Algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

187 | P a g e

www.ijacsa.thesai.org

Fig. 9 shows the change curves of various loss functions and
evaluation metrics during the training and validation process for
YOLOv9s and the improved YOLOv9s. These include box loss,
classification loss, depth regression loss, precision, recall, and
mean average precision (mAP). It can be observed that as
training progresses, the losses for both the training and
validation sets gradually decrease, indicating continuous
improvement in the model's performance in box prediction,
classification, and depth regression. Meanwhile, the precision,
recall, and mAP metrics also increase, showing a significant
improvement in the detection capabilities of the improved
YOLOv9s. Overall, the improved YOLOv9s outperforms
YOLOv9s across all metrics, demonstrating effective
optimization and stronger detection performance during training.

As shown in Fig. 10 below, we compare the detection results
of various algorithms on the steel surface defect dataset,
including a) Faster R-CNN, b) SSD, c) YOLOv5s, d) YOLOv7,
e) YOLOv8s, f) YOLOv9s, g) YOLOv10s, h) YOLOv11s, i)
RT-DETR-18, and j) Ours. Through intuitive visualization, we
can clearly observe the recognition performance of each
algorithm on different targets, including localization accuracy
and classification confidence. The improved algorithm (Ours)
demonstrates higher localization accuracy across multiple defect
categories, showing a distinct advantage over the other
algorithms. These comparisons allow us to more
comprehensively assess the performance improvements of the
improved algorithm in practical applications.

(a)

(b)

(c)

(d)

(e)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

188 | P a g e

www.ijacsa.thesai.org

(f)

(g)

(h)

(i)

(j)

Fig. 10. Detection Results on the Steel Surface Defect Dataset: (a) Faster RCNN; (b) SSD; (c) YOLOv5s; (d) YOLOv7; (e) YOLOv8s; (f) YOLOv9s; (g)

YOLOv10s; (h) YOLOv11s; (i) RT-DETR-18; (j) Ours.

Based on the visualization results of steel surface defect
detection shown in Fig. 10, different models exhibit varying
advantages and disadvantages when detecting defects such as
crazing, inclusion, patches, pitted surface, rolled-in scale, and
scratches. Overall, traditional object detection methods like
Faster R-CNN and SSD have certain limitations. Although
Faster R-CNN produces more detection boxes, it suffers from
severe target overlapping, making small targets prone to being
missed. SSD performs well in detecting large targets but has
weaker recognition capabilities for small targets, resulting in a
relatively low overall recall rate. In comparison, YOLOv5s
demonstrates a noticeable improvement in both recall rate and
precision over SSD, although some instances of missed
detection still occur. YOLOv7 performs slightly worse than

YOLOv5s, with a higher false detection rate and an
unremarkable recall rate. YOLOv8s performs well in detecting
large and medium-sized targets but still struggles with certain
small targets. YOLOv9s and YOLOv10s further enhance
detection confidence and recall rates, showing improved
detection performance for rolled-in scale and scratches while
reducing false detections. YOLOv11s achieves the best overall
performance among all categories, offering higher recall rates
and confidence scores, more precise detection boxes, and the
lowest false detection rate. Additionally, RT-DETR-18 achieves
a well-balanced trade-off between precision and recall.
Compared to the YOLO series, it provides higher detection
confidence and a lower false detection rate, particularly
demonstrating stable performance in detecting pitted surfaces

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

189 | P a g e

www.ijacsa.thesai.org

and patches. However, there is still room for improvement in
detecting certain small targets, such as scratches. Ultimately, the
proposed model (Ours) outperforms all other detection models,
delivering the most precise detection boxes, the highest recall
rate, the most stable confidence scores, and the lowest false
detection rate. Compared with other models, it accurately
identifies all defect categories, effectively avoiding common
issues of missed and false detections. Notably, it shows
significant advantages in detecting small targets such as
scratches and inclusions, highlighting its high applicability and
reliability in steel surface defect detection tasks. Future
optimizations could focus on enhancing detection capabilities
for extremely small targets (e.g., fine scratches) to improve

detection sensitivity, making it even more efficient and precise
for industrial inspection applications.

C. Ablation Study

To further validate the impact of different modules on model
performance, we conducted ablation experiments. The ablation
study compares the performance of different model
combinations across multiple performance metrics, including
Precision, Recall, mean Average Precision (mAP), Frames Per
Second (FPS), GFLOPS, and parameter count (Params). These
experiments aim to assess the contribution of each module to the
model's performance, helping us understand which
optimizations effectively improve the detection results.

TABLE III. ABLATION STUDY RESULTS

Number Experiment Precision/% Recall/% mAP@0.5/% FPS (f/s) GFLOPS Params (M)

1 YOLOv9s 70.7 77.3 78.1 94.3 38.7 9.60

2 YOLOv9s+CARAFE 76.4 71.3 78.3 82.6 39.0 9.74

3 YOLOv9s+C3Ghost 78.4 70.3 79.5 131.5 34.5 8.91

4 YOLOv9s+SCConv 73.9 75.5 79.1 75.7 40.8 9.62

5 YOLOv9s+CARAFE+C3Ghost+SCConv 77.0 72.4 79.6 109.9 36.9 9.07

According to the ablation experiment results in Table Ⅲ,
each model shows different performance across various metrics
such as precision, recall, mAP, FPS, GFLOPS, and parameter
count. Experiment 1 uses YOLOv9s as the baseline model, with
a precision of 70.7%, recall of 77.3%, mAP of 78.1%, and FPS
of 94.3, demonstrating good performance. Experiment 2
introduces the CARAFE module based on Experiment 1,
increasing precision to 76.4%, but recall drops to 71.3%, and
FPS significantly decreases to 82.6. Experiment 3 adds the
C3Ghost module to Experiment 1, resulting in a further
improvement in precision to 78.4% and a slight decrease in
recall to 70.3%. Additionally, the FPS notably increases to 131.5,
reflecting significant speed optimization. Experiment 4
introduces the SCConv module based on Experiment 1,
improving both precision and recall, but FPS drops to 75.7.
Finally, Experiment 5 combines the CARAFE, C3Ghost, and
SCConv modules, showing improvements in precision, recall,
and mAP, with precision at 77.0%, recall at 72.4%, mAP at
79.6%, and FPS rising to 109.9, despite a slight increase in
parameter count. Overall, Experiment 5 (YOLOv9s + CARAFE
+ C3Ghost + SCConv) achieves a better balance between
precision and speed, showing significant improvements over the
baseline model.

VI. DISCUSSION

Although the improved YOLOv9s model achieves
significant enhancements in defect detection performance,
several limitations were observed during experimental testing.
First, the model's detection accuracy slightly declines when
dealing with extremely small-sized defects, such as fine
scratches or micro-inclusions, particularly under conditions of
strong illumination interference or highly complex surface
textures. Second, while the introduction of the SCConv,
C3Ghost, and CARAFE modules enhances feature
representation and reconstruction capabilities, the complexity of
the combined modules leads to a marginal increase in inference
latency compared to the original YOLOv9s. Although the

overall computational overhead remains acceptable, this factor
could pose potential challenges for deployment in ultra-real-
time industrial detection systems where strict latency
requirements exist. In future work, optimizing the lightweight
structure of the improved model to further reduce inference time
without compromising detection accuracy will be explored.
Additionally, strategies such as multi-scale feature enhancement,
adaptive noise suppression, and transfer learning under domain
adaptation settings will be investigated to improve the model's
performance in detecting extremely small defects and
generalizing across varied production environments.

VII. CONCLUSION

This study aims to improve the YOLOv9s model to enhance
its performance in steel surface defect detection tasks. To
address the shortcomings of the existing YOLOv9s model in
detecting small-sized defects on complex steel surface scenes,
this study proposes a deep learning-based YOLOv9s method for
steel surface defect detection by introducing the SCConv
module for optimization, the design optimization of the C3Ghost
module, and the CARAFE upsampling operator. Detailed
experimental validation of the proposed method is provided. The
main conclusions of this study are as follows: First, the adoption
of the SCConv module significantly improved the feature
extraction efficiency and automatically suppressed redundant
and unimportant features. The introduction of the C3Ghost
module, by streamlining the computation process and reducing
redundant convolution calculations, effectively reduced the
model's computational complexity while maintaining a high
feature representation capability. To address the issues of small
defects and blurred boundaries in steel surface defect images,
the CARAFE (Content-Aware Receptive Field) upsampling
operator was incorporated. CARAFE finely reconstructs feature
maps in a content-aware manner, improving the detail
reconstruction accuracy of defect regions, and showing
significant advantages in the clarity of defect boundaries and the
localization accuracy of small defects. Experimental results

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

190 | P a g e

www.ijacsa.thesai.org

show that the improved model achieved mean average precision
(mAP) of 79.6% and precision of 77.0%, which represent
improvements of 1.5% and 6.3%, respectively, compared to the
baseline model. The findings of this study are of significant
practical value for improving the quality and production
efficiency of industrial products.

REFERENCES

[1] Wang, Sen, et al. "Lightweight tomato ripeness detection algorithm based
on the improved RT-DETR." Frontiers in Plant Science 15 (2024):
1415297.

[2] Ma, Yuxin, et al. "Surface defect inspection of industrial products with
object detection deep networks: a systematic review." Artificial
Intelligence Review 57.12 (2024): 1-48.

[3] Redmon J. You only look once: Unified, real-time object
detection[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

[4] Redmon J, Farhadi A. YOLO9000: better, faster,
stronger[C]//Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017: 7263-7271.

[5] Farhadi A, Redmon J. Yolov3: An incremental
improvement[C]//Computer vision and pattern recognition.
Berlin/Heidelberg, Germany: Springer, 2018, 1804: 1-6.

[6] Bochkovskiy, Alexey, Chien-Yao Wang, and Hong-Yuan Mark Liao.
"Yolov4: Optimal speed and accuracy of object detection." arXiv preprint
arXiv:2004.10934 (2020).

[7] Gao, Yang, et al. "Research on steel surface defect classification method
based on deep learning." Scientific Reports 14.1 (2024): 8254.

[8] Yu, Tao, et al. "CRGF-YOLO: An Optimized Multi-Scale Feature Fusion
Model Based on YOLOv5 for Detection of Steel Surface Defects."
International Journal of Computational Intelligence Systems 17.1 (2024):
154.

[9] Yang, Tianle, and Jinghui Li. "Steel Surface Defect Detection Based on
SSAM-YOLO." International Journal of Information Technologies and
Systems Approach (IJITSA) 16.3 (2023): 1-13.

[10] Subburaj, Kannan, et al. "DBCW-YOLO: an advanced yolov5 framework
for precision detection of surface defects in steel." Matéria (Rio de
Janeiro) 29.4 (2024): e20240549.

[11] Wu, Guinan, and Qinghong Wu. "Enhancing Steel Surface Defect
Detection: A Hyper-YOLO Approach with Ghost Modules and Hyper
FPN." IAENG International Journal of Computer Science 9 (2024).

[12] Xu, Yiming, et al. "The steel surface multiple defect detection and size
measurement system based on improved yolov5." Journal of Electrical
and Computer Engineering 2023.1 (2023): 5399616.

[13] Kong, Haozheng, and Congzhe You. "Improved steel surface defect
detection algorithm based on YOLOv8." IEEE Access (2024).

[14] Mi, Zengzhen, et al. "Steel strip surface defect detection based on
multiscale feature sensing and adaptive feature fusion." AIP Advances
14.4 (2024).

[15] Kou, Renke, et al. "LW-IRSTNet: Lightweight infrared small target
segmentation network and application deployment." IEEE Transactions
on Geoscience and Remote Sensing (2023).

[16] Xu, Keyu, et al. "RMT-YOLOv9s: An Infrared Small Target Detection
Method Based on UAV Remote Sensing Images." IEEE Geoscience and
Remote Sensing Letters (2024).

[17] Li, Jiafeng, Ying Wen, and Lianghua He. "Scconv: Spatial and channel
reconstruction convolution for feature redundancy." Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2023.

[18] Sonawane, Sandip, and Nitin N. Patil. "Performance Evaluation of
Modified YOLOv5 Object Detectors for Crop-Weed Classification and
Detection in Agriculture Images." SN Computer Science 6.2 (2025): 1-
12.

[19] Meng, Bo, and Weida Shi. "Small traffic sign recognition method based
on improved YOLOv7." Scientific Reports 15.1 (2025): 5482.

[20] Kou R, Wang C, Peng Z, et al. Infrared small target segmentation
networks: A survey[J]. Pattern Recognition, 2023, 143: 109788.

[21] Girshick, Ross. "Fast r-cnn." Proceedings of the IEEE international
conference on computer vision. 2015.

[22] Liu, Wei, et al. "Ssd: Single shot multibox detector." Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11–14, 2016, Proceedings, Part I 14. Springer International
Publishing, 2016.

[23] Chen, Chen, et al. "Improved YOLOv5s model for key components
detection of power transmission lines." arxiv preprint arxiv:2502.06127
(2025).

[24] Liu, Le, et al. "Improved YOLOv7 Based on Reparameterization and
Attention Mechanism for Continuous Casting Slab Detection." IEEE
Transactions on Instrumentation and Measurement (2025).

[25] Zhong, Jiaqi, et al. "Improved real-time object detection method based on
YOLOv8: a refined approach." Journal of Real-Time Image Processing
22.1 (2025): 1-13.

[26] Meng, Zhichao, et al. "YOLOv10-pose and YOLOv9-pose: Real-time
strawberry stalk pose detection models." Computers in Industry 165
(2025): 104231.

[27] Alkhammash, Eman H. "Multi-Classification Using YOLOv11 and
Hybrid YOLO11n-MobileNet Models: A Fire Classes Case Study." Fire
8.1 (2025): 17.

[28] Zhou, Chuncheng, et al. "MSRT-DETR: A novel RT-DETR model with
multi-scale feature sequence for cell detection." Biomedical Signal
Processing and Control 103 (2025): 107378.

