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Abstract—Landslide monitoring is a crucial component of 

geological disaster early warning systems. Traditional landslide 

detection methods often suffer from insufficient accuracy or low 

efficiency. To address these issues, this study proposes an 

improved landslide detection algorithm based on YOLOv11n, 

aiming to enhance both detection accuracy and efficiency by 

optimizing the model structure. First, the GhostConv module is 

introduced to reduce redundant computations, thereby 

improving computational efficiency. Additionally, the C3K2-

SCConv optimization module is incorporated, which enhances 

feature extraction capability and improves the recognition of 

landslides at different scales by integrating multi-scale 

information and a weighted convolution strategy. Furthermore, 

the SimAM attention mechanism is implemented to adaptively 

adjust feature map weights, strengthening key features in 

landslide regions and improving detection accuracy. 

Experimental results demonstrate that the improved model 

achieves a mean average precision (mAP@0.5) of 83.3%, a 

precision of 85.5%, and a recall of 78.1%, representing increases 

of 2.0%, 3.2%, and 2.8%, respectively, compared to the baseline 

model. The proposed improvements provide a more accurate and 

efficient landslide detection method, contributing to the precision 

of geological disaster early warnings and enhancing the 

reliability of disaster prevention and mitigation efforts. 
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I. INTRODUCTION 

Landslides, as a common and severe geological disaster, 
typically occur with the sudden collapse or movement of 
mountain masses, directly threatening the safety of local 
residents, infrastructure, and the ecological environment [1]. 
Particularly in mountainous and coastal regions with high 
rainfall, the frequency of landslide occurrences continues to 
rise due to triggering factors such as precipitation, earthquakes, 
and engineering construction. Traditional landslide monitoring 
methods primarily rely on ground surveys and physical 
measurement techniques, such as leveling measurements [2], 
ground-based radar (GB-InSAR) [3], and GPS positioning [4]. 
These methods can provide high-precision monitoring data and 
offer significant advantages, especially in small-scale landslide 
monitoring and early warning applications. However, 
traditional methods often suffer from limitations in data 
acquisition, high labor intensity, and difficulties in real-time 
monitoring. These challenges become particularly prominent in 
large-scale, complex terrains or post-disaster scenarios, where 
timely and accurate monitoring results may not be readily 

available.  In recent years, the integration of deep learning 
technology has introduced a novel solution for landslide 
monitoring. Deep neural networks (DNNs), convolutional 
neural networks (CNNs), and recurrent neural networks 
(RNNs) have made remarkable progress in fields such as image 
processing [5-7], pattern recognition, and big data analysis. 
Specifically, in landslide detection, deep learning models can 
automatically extract features from large-scale remote sensing 
imagery, identify potential landslide-prone areas, and detect 
changes over time. This approach overcomes the reliance of 
traditional methods on expert experience and manual feature 
extraction, offering a more efficient and automated solution. 

Although deep learning technology has made significant 
progress in landslide disaster monitoring, several challenges 
and limitations remain in current research. For example, Han et 
al. [8] proposed a novel neural network model called 
Dynahead-YOLO, which integrates scale-aware, spatial-aware, 
and task-aware attention mechanisms to enhance landslide 
decoding in complex backgrounds. However, small-sample 
landslide detection remains a challenge. Yang et al. [9] 
introduced a lightweight attention-guided YOLO model (LA-
YOLO-LLL), which incorporates MobileNetv3 as the 
backbone network and designs a lightweight pyramid feature 
reuse and fusion attention mechanism while integrating the 
level set layer to generate precise landslide boundaries. 
However, at high resolutions, the model still struggles with 
detecting small-scale landslides. Liu et al. [10] proposed the 
SE-YOLOv7 landslide detection algorithm, which integrates an 
attention mechanism and an improved loss function, 
significantly improving detection accuracy. Nevertheless, the 
algorithm is still prone to false detections in areas with 
complex terrain features. Liu et al. [11] introduced a multi-
scale sample-based complex background enhancement method 
(MSSCBE) to improve sample quality in landslide detection. 
However, the model exhibited poor generalization ability. 
Zhang et al. [12] designed a multi-scale feature extraction 
module that combines efficient channel attention, average 
pooling, and spatially separable convolution. Despite its 
effectiveness, challenges persist in processing small-scale 
landslides in complex backgrounds. Yu et al. [13] proposed an 
automatic loess landslide detection method based on Google 
Earth Engine (GEE) and an improved YOLOX algorithm, 
achieving an average accuracy of 95.43%. However, the 
model's performance still needs improvement in detecting 
small-scale landslides, and it is prone to false detections at the 
edges of remote sensing images. Hou et al. [14] developed a 
landslide detection method based on an improved YOLOX 
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object detection model, achieving promising detection 
performance. However, the accuracy and robustness of the 
model in detecting landslides across multiple categories, 
different terrains, and landscapes remain relatively low. Cheng 
et al. [15] reviewed deep learning technology and its 
fundamental principles, along with the current status of 
landslide remote sensing databases. They introduced classic 
deep learning models for landslide detection and analyzed the 
strengths and limitations of various models. Chandra et al. [16] 
proposed a novel generalized efficient layer aggregation 
network (GELAN) based on an attention mechanism, which 
significantly improved detection performance. However, the 
model's complexity remains a major drawback. 

Based on the existing research, despite the significant 
progress made by deep learning techniques in landslide 
detection tasks, there are still several key challenges that need 
to be addressed. To this end, this study proposes a landslide 
detection algorithm based on the improved YOLOv11, with its 
core contributions mainly reflected in the following aspects: 

1) By introducing the GhostConv module, the model’s 

parameter count and computational complexity are reduced 

while maintaining high performance. 

2) The integration of the C3K2-SCConv module enhances 

the model's ability to recognize multi-scale features, 

improving the detection of landslides and other complex 

features. 

3) The incorporation of the SimAM attention mechanism 

strengthens the representation of key features, further 

improving the overall model performance. 

II. RELATED WORK 

A. Vision Transformer (ViT) 

Vision Transformer (ViT) [17] is a neural network 
architecture designed for image recognition tasks, inspired by 
the Transformer model originally developed for natural 
language processing (NLP). The core idea of ViT is to divide 
an image into fixed-size patches and process them in a manner 
similar to how words are handled in NLP tasks. Specifically, 
an image is first segmented into small patches, each of which is 
flattened and mapped to a high-dimensional space, akin to 
word embeddings in NLP. To help the model understand the 
spatial position of these patches in the original image, 
positional encoding is added. The patch embeddings, combined 
with positional encoding, are then fed into a Transformer 
encoder, which leverages the self-attention mechanism to 
capture relationships between different patches. This allows the 
model to grasp the global context of the image rather than just 
local features. After processing through the encoder, a 
classification token (similar to the [CLS] token in BERT) is 
added to the sequence, and its output is used for image 
classification. Like other deep learning models, ViT is trained 
in an end-to-end manner using labeled datasets. One of the key 
advantages of ViT is its strong performance on large-scale 
datasets, where it often outperforms traditional convolutional 
neural networks (CNNs, especially when the model size is 
large. Additionally, due to the self-attention mechanism, ViT 
can capture the global context of an image, enabling it to 
model long-range dependencies between different image 

patches. However, ViT also has some limitations. First, it 
requires a large amount of training data to achieve optimal 
performance, and on small datasets, it often underperforms 
compared to CNNs. Second, due to the high computational 
complexity of the Transformer architecture, ViT requires 
significant computational resources when processing high-
resolution images. Despite these challenges, ViT represents a 
major breakthrough in computer vision and has inspired 
numerous improved versions, such as DeiT (Data-efficient 
Image Transformer), which is designed to enhance 
performance when training data is limited. 

B. SE Attention Mechanism 

The Squeeze-and-Excitation (SE) attention mechanism 
module [18] is a method to enhance the performance of neural 
networks by adaptively recalibrating the inter-channel feature 
responses. Its core idea is to learn the "importance" of each 
channel, thereby improving the network's feature 
representation capability. The working process of the SE 
module can be divided into three main steps: First, global 
average pooling (GAP) is applied to compress the spatial 
information of the input feature map, resulting in a global 
feature vector of size 1×1×C, where C represents the number of 
channels. Next, the SE module processes these global features 
through an "excitation" process, which consists of a two-layer 
fully connected neural network. The first layer uses the ReLU 
activation function to introduce non-linearity, while the second 
layer applies the Sigmoid activation function to output the 
"weight" or "importance" values for each channel, which lie 
between 0 and 1. These values represent the contribution of 
each channel to the final decision. Finally, the SE module 
performs a "recalibration" by multiplying the obtained channel 
weights with the original feature map on a per-channel basis, 
enhancing the response of important channels while 
suppressing less important ones. The advantages of the SE 
module lie in its strong adaptability, as it automatically learns 
the significance of each channel, and its low computational 
cost, making it an effective method to improve model 
performance in visual tasks. 

C. YOLOv11 Algorithm 

The network architecture of YOLOv11 [19] is primarily 
divided into three parts: the backbone, the neck, and the head. 
In the backbone section, YOLOv11 introduces innovative 
convolution mechanisms such as C3K2, which allow for more 
effective extraction of key features in the shallow layers of the 
network. This creates a more optimized feature extraction 
structure. Compared to traditional convolution structures, it 
enables the network to capture essential feature information 
crucial for object detection with greater precision, especially in 
complex scenarios. This sets a solid foundation for subsequent 
detection tasks and addresses the issue of incomplete or 
inaccurate feature extraction in previous models. In the neck 
section, the C2PSA mechanism is employed, which integrates 
a multi-head attention mechanism within C2. This allows the 
model to better capture spatial context information, improving 
feature fusion and information transmission efficiency. 
Compared to conventional designs, this mechanism makes 
fuller use of contextual information and comprehensively 
integrates features from different layers. It resolves issues such 
as reduced detection accuracy and insufficient feature fusion 
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when dealing with complex spatial relationships in objects, 
which had previously affected model performance. In the head 
section, two depthwise separable convolutions are added, 
reducing computational load and parameter count, significantly 
improving computational efficiency and inference speed. This 
is a strategy that has been less commonly adopted in earlier 
models. 

III. METHOD DESIGN 

This study presents improvements to the YOLOv11n model, 
as shown in Fig. 1. The GhostConv module replaces standard 
convolution to reduce redundancy and computational cost 
during the early stages of feature extraction, providing a 
lightweight yet effective foundation for subsequent processing. 

The C3K2-SCConv module enhances multi-scale feature 
representation by embedding a spatial-channel attention 
mechanism, thereby strengthening the model’s feature 
extraction capability. The SimAM attention mechanism is 
introduced after feature fusion, adaptively adjusting neuron 
response weights based on energy differences. This not only 
suppresses background noise but also enhances focus on 
critical regions. These modules work in a complementary 
manner: GhostConv ensures computational efficiency, C3K2-
SCConv enriches feature expressiveness, and SimAM refines 
attention. Their integration forms a cohesive structure that 
balances speed, accuracy, and robustness, ultimately improving 
the model’s ability to accurately detect landslides. 

GhostConv

GhostConv

C3k2

Conv

C3k2

Conv

C3k2

Conv

C3k2-SCConv

SPPF

C2PSA

Upsample

Concat

Upsample

Concat

C3k2

C3k2

Conv

Concat

C3k2

Conv

Concat

C3k2

detect

detect

detect

Backbone
Neck Head

P3

P4

P5

SimAM

Conv

Split

n

C3k

C3k

...

Concat

Conv

Conv

Split

n

PSABlock

...

Concat

Conv

PSABlock

C3k2 C2PSA

 
Fig. 1. Network structure of the improved YOLOv11n model.  

A. GhostConv Module 

YOLOv11n, as a lightweight object detection model, 
although having a fast inference speed, still faces the issue of 
computational redundancy, particularly during the shallow 
feature extraction phase. Traditional convolution operations 
involve high computational cost and parameter redundancy. To 
address this problem, this study adopts GhostConv to replace 
standard convolutions, thereby reducing the computational load 
and improving computational efficiency. 

GhostConv [20] is a technique designed to enhance the 
efficiency of Convolutional Neural Networks (CNNs) by 
optimizing convolution operations to reduce computational and 
storage costs while maintaining model performance. As shown 
in Fig. 2, the core idea is to reduce the computational load and 
parameter count by using low-complexity convolution 
operations during feature map generation. Traditional 
convolution operations involve sliding a convolution kernel 
over the input feature map and performing weighted 
summation, which is computationally expensive, especially 
when dealing with high-dimensional inputs. In contrast, 
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GhostConv decomposes the input feature map by generating 
high-quality feature maps using standard convolutions, 
followed by simple operations (such as linear transformations) 
to generate low-complexity "Ghost" feature maps. These Ghost 
feature maps, although requiring fewer computations and 

parameters, retain most of the input information and are fused 
with the feature maps generated by the standard convolution. 
This design significantly reduces the model's computational 
and storage requirements, leading to improved computation 
speed. 
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Fig. 2. GhostConv module. 

B. C3k2-SCConv Module 

The replacement of C3k2 with C3k2-SCConv is aimed at 
enhancing feature extraction capabilities and improving object 
detection accuracy while maintaining computational efficiency. 
C3k2-SCConv inherits the multi-branch structure of C3k2 and 
introduces SCConv [21] to strengthen feature representation. 
SCConv potentially enhances the model's focus on key 
information through spatial and channel attention mechanisms, 
leading to better performance in complex backgrounds or small 
object detection tasks. Additionally, SCConv increases the 
local receptive field, enhancing the robustness of feature 
representation, allowing the model to maintain high detection 
capability even in cases of object deformation or occlusion. 
Compared to traditional convolution, C3k2-SCConv reduces 
redundant computation through more efficient feature 
extraction, optimizes cross-layer feature fusion, and reduces 
information loss, thus achieving a better balance between 
accuracy and speed. 

As shown in Fig. 3, the BottleneckSCConv module is an 
optimization of the feature extraction unit based on the classic 

Bottleneck structure, achieved by replacing one of the standard 
convolution layers (Conv) with SCConv, thereby enhancing 
feature representation capabilities. The process begins with 
initial convolution processing, followed by the SCConv 
module, which may incorporate local attention or cross-
channel interaction mechanisms to strengthen key information 
extraction. Subsequently, the features from the SCConv branch 
are fused with the original input through a concatenation 
(Concat) operation, thereby improving the model's feature 
representation ability. Building on this, C3k2-SCConv inherits 
the C3k2 structure and introduces the BottleneckSCConv in its 
Bottleneck structure to further enhance feature extraction. 
C3k2-SCConv constructs deep feature extraction capabilities 
by stacking multiple BottleneckSCConv blocks (n times), and 
combines multi-branch information through feature 
concatenation (Concat) operations. Finally, the features are 
integrated through convolutional layers. This improvement 
enhances the model’s feature extraction ability while 
maintaining its efficiency, making it more suitable for high-
performance detection tasks. 
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Fig. 3. C3k2-SCConv module. 
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C. SimAM Attention Mechanism 

In this study, we optimized the YOLOv11n object detection 
algorithm to enhance feature extraction capabilities and 
detection accuracy while maintaining high computational 
efficiency. We strengthened the model's attention mechanism 
to further optimize the expression of target features and the 
suppression of background information. Specifically, we 
introduced the SimAM (Simple Attention Module) attention 
mechanism after the C2PSA module to increase the model's 
focus on important features, reduce interference from irrelevant 
information, and thereby improve the accuracy of object 
detection. 

As shown in Fig. 4, the core idea of the SimAM [22] 
mechanism is to evaluate the differences between neurons 
through a physical model in order to determine their 

importance. The energy function ( )iE x calculates the 

difference between the target neuron ix  and its neighboring 

neurons { | }jx j N . A lower energy value indicates a greater 

difference between the target neuron and its surrounding 
neurons, implying higher importance. The formula for the 
energy function is: 
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In the formula, 
ix  represents the target neuron, and   is a 

hyperparameter 

SimAM also requires the calculation of the mean and 
variance of the neurons within the neighborhood. This helps to 
more comprehensively assess the relationship between each 
neuron and its surrounding neurons. The formulas for 
calculating the mean and variance are as follows: 
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In the formulas, N  represents the number of neurons 

within the neighborhood, and jx  denotes the value of each 

adjacent neuron. 

Finally, SimAM adjusts the output of each neuron based on 
its weight, enhancing the contribution of important neurons, 
thereby improving the model's performance. The formula for 
the weighted output is as follows: 

𝑋̃ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(
1

𝐸
)⨀𝑋                           (4) 

where, E groups are all ( )iE x across the channel and spatial 

dimensions. “sigmoid” is added to restrict too large value in  

E . It will not influence the relative importance of each neuron 
because a sigmoid is a monofonic function. 
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Fig. 4. SimAM attention mechanism. 

IV. EXPERIMENTAL SETUP 

A. Dataset 

The dataset used in this study consists of two main 
categories: landslides and storms, with all images manually 
annotated to ensure accuracy and consistency. Landslides refer 
to the phenomenon of soil, rocks, and other materials sliding or 
collapsing due to natural factors such as rainfall and 
earthquakes. Storms include severe meteorological events such 
as thunderstorms and hurricanes, typically accompanied by 

strong winds and heavy rainfall. Existing landslide recognition 
datasets primarily rely on high-resolution remote sensing 
images; however, such data fail to accurately reflect the 
complex environments present during landslides, such as dust 
clouds during dry conditions (as shown in Fig. 5). Additionally, 
processing remote sensing images demands significant 
computational resources, limiting the feasibility of real-time 
applications. To address these challenges, this study 
constructed a multi-domain landslide dataset consisting of 
4,735 images, with 77.8% of the data sourced from news and 
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live video frame extraction, and 22.2% from drone remote 
sensing data, aimed at improving the model's recognition 
ability in complex scenarios. To enhance the dynamic features 
of the data, frame extraction was employed. Given the high-
speed motion characteristics of landslides, the video frame 
extraction interval was set to 1, 1.5, or 2 seconds. Since some 
images were obstructed by watermarks, blurred, or blocked by 

buildings, offline data augmentation was applied to part of the 
news and live video data, resulting in 1,125 images, or 24% of 
the total dataset. The data augmentation methods combined the 
few-shot learning strategies proposed by Wang et al. [23], Lu 
et al. [24], and the random erasure and noise addition 
techniques proposed by Zhong et al. [25] and Zhang et al. [26], 
aiming to enhance the system's robustness. 

  
Fig. 5. Comparison of the dust phenomena caused by sandstorms and landslides. 

B. Hyperparameter Settings 

During training, the image resolution was set to 640×640, 
with a batch size of 64 to fully utilize the GPU's computational 
power and accelerate model training. The number of training 
epochs was set to 200, and the initial learning rate was set to 
0.01. To improve data loading efficiency, 4 worker threads 
were used. Additionally, the momentum parameter was set to 
0.937, and the weight decay coefficient was set to 0.0005 to 
optimize the training process and prevent overfitting. 

C. Experimental Platform 

The experiments in this study were conducted on the 
following experimental platform: PyTorch 1.10.0 was used as 
the deep learning framework, with Python version 3.8 running 
on the Ubuntu 20.04 operating system, and CUDA version 
11.3 to leverage GPU acceleration. The experiments were 
performed using a single RTX 4090 (24GB) GPU for training, 
equipped with an AMD EPYC 7T83 64-Core Processor (22 
vCPUs) and 90GB of memory. This platform provided 
powerful computational capabilities for model training, 
effectively accelerating the training process. 

D. Evaluation Metrics 

In this study, the evaluation metrics used include F1 score, 
precision (P), recall (R), average precision (AP), and mean 
average precision (mAP) [27]. Additionally, the number of 
parameters (Parameters) was also considered. The formulas for 
these metrics are as follows: 
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where, pT  represents the number of correctly detected 

targets; pF  represents the number of falsely detected targets; 

NF  represents the number of missed targets; n denotes the 

number of categories; and ( )AP i  is the average precision of 

the i-th target class. 

V. EXPERIMENTAL ANALYSIS 

A. Algorithm Comparison Experiment 

To evaluate the advantages of our improved algorithm, we 
conducted a comparison with other algorithms. In the field of 
object detection, algorithm performance is typically assessed 
using several key metrics, such as precision, recall, mAP@0.5, 
FPS (frames per second), GFLOPS (computational 
complexity), and the number of parameters (Params). Precision 
and recall primarily reflect the model's detection accuracy and 
recall capability, while mAP@0.5 provides a comprehensive 
measure of the model's performance across different detection 
thresholds. FPS and GFLOPS assess the model's real-time 
performance and computational efficiency, respectively, while 
the number of parameters reflects the model's complexity. By 
comparing these metrics, we can gain a deeper understanding 
of the strengths and weaknesses of different algorithms in 
terms of accuracy, real-time performance, and computational 
efficiency. 

From the experimental comparison results in Table I, 
different object detection algorithms exhibit varying 
performances in metrics such as precision, recall, mAP@0.5, 
FPS, GFLOPS, and the number of parameters (Params). The 
Ours algorithm achieved the best results in precision (85.5%), 
recall (78.1%), and mAP (83.3%), while maintaining high real-
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time performance (128.5 FPS), low computational complexity 
(6.3 GFLOPS), and a relatively low number of parameters 
(2.72M), demonstrating the optimal overall performance. 
YOLOv11n excelled in real-time performance (147.0 FPS) and 
computational efficiency (6.3 GFLOPS), but its precision 
(82.3%) and mAP (81.3%) were slightly lower than those of 
Ours. YOLOv5s performed well in real-time performance 
(137.0 FPS), with moderate precision (78.6%) and mAP 
(76.5%), but its computational complexity (15.8 GFLOPS) and 
parameter count (7.01M) were relatively high. YOLOv10n 
showed moderate performance in precision (81.6%), mAP 

(77.5%), and real-time performance (122.6 FPS), with lower 
computational complexity (8.3 GFLOPS) and parameter count 
(2.73M). YOLOv9-gelan-s demonstrated excellent precision 
(85.3%) and mAP (82.4%), but its computational complexity 
(26.2 GFLOPS) and parameter count (7.07M) were higher. In 
comparison, RT-DETR-18 and YOLOv7-tiny performed 
poorly in terms of precision, recall, and mAP, with RT-DETR-
18 having a higher computational complexity (56.9 GFLOPS) 
and parameter count (19.87M). Overall, the Ours algorithm 
generally outperforms traditional algorithms in terms of 
performance. 

TABLE I.  EXPERIMENTAL COMPARISON RESULTS OF DIFFERENT ALGORITHMS

Algorithm Precision/% Recall/% mAP@0.5/% FPS (f/s) GFLOPS Params (M) 

YOLOv5s[28] 78.6 76.5 76.5 137.0 15.8 7.01 

YOLOv7-tiny[29] 76.5 66.8 71.3 120.8 13.0 6.01 

YOLOv8n[30] 83.2 70.7 78.9 106.3 8.1 3.00 

YOLOv9-gelan-s[31] 85.3 74.5 82.4 81.3 26.2 7.07 

YOLOv10n[32] 81.6 72.1 77.5 122.6 8.3 2.73 

RT-DETR-18[33] 76.6 67.4 70.5 68.4 56.9 19.87 

YOLOv11n 82.3 75.3 81.3 147.0 6.3 2.58 

Ours 85.5 78.1 83.3 128.5 6.3 2.72 

TABLE II.  COMPARISON RESULTS OF VARIOUS ALGORITHMS IN AVERAGE PRECISION (AP/%) 

                Algorithms 

Classes 
YOLOv5s YOLOv7-tiny YOLOv8n YOLOv9-gelan-s YOLOv10n RT-DETR-18 YOLOv11n Ours 

landslide 65.8 56.9 66.8 74.3 66.8 62.7 72.0 74.3 

storm 87.1 85.7 90.9 90.5 88.1 78.4 90.6 92.3 
 

From the average precision (AP) comparison results in 
Table Ⅱ, it is evident that different algorithms exhibit 
significant performance differences in the landslide and storm 
tasks. YOLOv9-gelan-s and Ours tied for the best performance 
in the landslide category, both achieving an average precision 
of 74.3%. In the storm category, Ours achieved the best 
performance with an average precision of 92.3%, significantly 
outperforming other algorithms. YOLOv8n and YOLOv11n 
also performed well in both tasks, with YOLOv8n achieving an 
average precision of 90.9% in the storm category. YOLOv10n 
achieved average precisions of 66.8% and 88.1% for the 

landslide and storm categories, respectively, slightly 
outperforming YOLOv5s, which scored 65.8% and 87.1%. 
However, neither of these two algorithms reached the optimal 
performance. In contrast, YOLOv7-tiny and RT-DETR-18 
performed poorly, particularly in the storm category, where 
RT-DETR-18's average precision was only 78.4%, the lowest 
among all algorithms. Overall, the Ours algorithm excelled in 
both tasks, especially in complex scenarios (such as storms), 
where it demonstrated higher detection accuracy, offering the 
best overall performance. YOLOv10n and YOLOv5s showed 
moderate performance, with room for further optimization. 

TABLE III.  COMPARISON RESULTS OF VARIOUS ALGORITHMS IN PRECISION (P/%) 

                Algorithms 

Classes 
YOLOv5s YOLOv7-tiny YOLOv8n YOLOv9-gelan-s YOLOv10n RT-DETR-18 YOLOv11n Ours 

landslide 69.4 66.5 73.9 79.3 73.7 72.8 79.7 77.1 

storm 87.8 86.5 92.6 91.3 89.4 80.4 84.9 93.8 
 

From the data in Table III, it can be observed that different 
algorithms exhibit varying precision in the landslide and storm 
categories. In the landslide category, YOLOv11n performed 
the best with a precision of 79.7%, outperforming YOLOv7-
tiny (66.5%). In the storm category, Ours demonstrated the 
best performance, with a precision of 93.8%, significantly 
surpassing other algorithms, especially RT-DETR-18 (80.4%). 
YOLO series algorithms (such as YOLOv5s, YOLOv8n, etc.) 
also performed well in the storm category, but their precision 

varied greatly in the landslide category. Overall, Ours 
performed best in storm detection, while YOLOv11n and Ours 
were the most outstanding in landslide detection. RT-DETR-18 
performed relatively poorly in both tasks. 

From the recall (R) data in Table IV, Ours demonstrated the 
best performance in both the landslide and storm categories, 
with a landslide recall of 67.2% and a storm recall of 89.0%, 
significantly outperforming other algorithms. YOLOv11n 
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followed closely, performing well in the landslide category 
with a recall of 63.7%, and also showing good performance in 
the storm category. YOLOv5s achieved a recall of 87.7% in 
the storm category, which was quite notable, but in the 
landslide category, its recall was 65.3%, slightly lower than 

that of Ours. In contrast, YOLOv7-tiny and RT-DETR-18 
generally had lower recall rates, with YOLOv7-tiny's recall in 
the landslide category being only 51.4%. Overall, Ours has a 
significant advantage in recall, making it suitable for 
applications that require high sensitivity to missed detections. 

TABLE IV.  COMPARISON RESULTS OF VARIOUS ALGORITHMS IN RECALL (R/%) 

                Algorithms 

Classes 
YOLOv5s YOLOv7-tiny YOLOv8n YOLOv9-gelan-s YOLOv10n RT-DETR-18 YOLOv11n Ours 

landslide 65.3 51.4 56.4 63.0 63.0 63.4 63.7 67.2 

storm 87.7 82.2 84.9 86.1 81.3 71.4 87.0 89.0 

B. Result Visualization 

To comprehensively evaluate the superiority of the Ours 
algorithm in object detection tasks, we conducted a visual 
comparison with several existing detection algorithms. 
Although the existing algorithms, such as YOLOv5s, 
YOLOv7-tiny, YOLOv8n, YOLOv9-gelan-s, YOLOv10n, RT-
DETR-18, and YOLOv11n, exhibit certain detection 
capabilities in different scenarios, they still have limitations in 
terms of detection accuracy, target confidence, and missed 
detection phenomena. Therefore, we visually compared the 
performance of different algorithms in the landslide (landslide) 
and storm (storm) detection tasks. 

Fig. 6 shows the performance comparison of different 
models in landslide and storm detection. YOLOv5s exhibits 
basic detection capabilities, but with lower confidence, 
resulting in some targets being misdetected or missed. 
YOLOv7-tiny has even lower confidence, with some landslide 
areas not detected and a higher number of false detections, 
indicating that it is not robust enough for small targets or 
complex backgrounds. YOLOv8n shows improvements in 
landslide detection, but the confidence in the storm category 
remains relatively low. Overall, it is more stable than 

YOLOv7-tiny, but there are still some missed detections. In 
contrast, YOLOv9-gelan-s, YOLOv10n, RT-DETR-18, and 
YOLOv11n show improvements in detection accuracy, but all 
exhibit overlapping detection boxes, indicating that these 
models may have redundant predictions when processing 
landslide areas, generating multiple detection boxes for the 
same target region, which affects the final detection results. 
Additionally, YOLOv11n also experiences missed detections, 
with some landslide areas not being recognized. Among all 
models, Ours achieves the best detection performance, with the 
highest confidence, the most stable detection boxes, a wider 
detection range for landslide targets, and effectively reduces 
overlapping detection boxes while avoiding missed detections, 
resulting in the best overall performance. 

In object detection tasks, the performance of the model is 
typically evaluated using precision, recall, and F1 score. The 
F1-Confidence curve reflects the variation in the F1 score at 
different confidence thresholds, providing an intuitive 
representation of the model's overall detection capability at 
different decision boundaries. To compare the performance of 
different object detection models, we plotted the F1-
Confidence curve and conducted an analysis. 

 
(a) 

 
(b) 
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Fig. 6. Detection results of different algorithms on the dataset: (a) YOLOv5s; (b) YOLOv7-tiny; (c) YOLOv8n; (d) YOLOv9-gelan-s; (e) YOLOv10n; (f) RT-

DETR-18; (g) YOLOv11n; (h) Ours. 

 
(a)                                                               (b)                                                                (c) 

 
(d)                                                              (e)                                                             (f) 

 
(g)                                                              (h) 

Fig. 7. F1-Confidence Curve: (a) YOLOv5s; (b) YOLOv7-tiny; (c) YOLOv8n; (d) YOLOv9-gelan-s; (e) YOLOv10n; (f) RT-DETR-18; (g) YOLOv11n; (h) 

Ours. 

To comprehensively evaluate the detection capabilities of 
different object detection models at various confidence 
thresholds, we plotted the F1-Confidence curve to visually 
demonstrate the variation in F1 scores across models. Fig. 7(a) 
to Fig. 7(h) correspond to YOLOv5s, YOLOv7-tiny, 

YOLOv8n, YOLOv9-gelan-s, YOLOv10n, RT-DETR-18, 
YOLOv11n, and our model (Ours), used to compare their 
performance at different decision boundaries. The results in Fig. 
7 show that Ours achieves the highest F1 score of 0.81 at a 
confidence threshold of 0.412, outperforming all other models 
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and demonstrating the best performance. YOLOv9-gelan-s, 
RT-DETR-18, and YOLOv11n also performed well, but still 
fell short of Ours. YOLOv5s and YOLOv10n achieved F1 
scores of 0.78 and 0.76, respectively, showing acceptable 
overall performance, better than YOLOv7-tiny (0.70) and 
YOLOv8n (0.76), but still not surpassing Ours. YOLOv7-tiny 
had the lowest F1 score at only 0.70, indicating weaker 
detection capabilities. Overall, Ours maintained a high F1 
score across different confidence ranges, with a low false 
detection rate, indicating stronger object detection capabilities. 

This study improved the YOLOv11n object detection 
algorithm and evaluated its training and validation processes. 
To analyze the model's convergence and detection performance, 
we plotted the loss curve and the trends of key evaluation 
metrics. The loss curve illustrates the optimization of the model 
during the training process, while metrics such as precision, 
recall, and mAP reflect the model's detection capabilities. 
Through these curves, we validated the stability and 
performance improvement of the modified model. 

 
Fig. 8. Loss reduction trends and performance metric variations of the improved YOLOv11n algorithm during training and validation. 

Fig. 8 illustrates the loss reduction trend and changes in key 
evaluation metrics during the training and validation process of 
the improved YOLOv11n algorithm, used to assess the model's 
convergence and detection performance. From the loss curves, 
both training losses (box_loss, cls_loss, dfl_loss) and 
validation losses (val/box_loss, val/cls_loss, val/dfl_loss) show 
a steady downward trend, indicating that the model 
continuously optimizes its object detection capabilities during 
training without significant overfitting or underfitting. In terms 
of model evaluation metrics, precision and recall steadily 
increase and stabilize, suggesting that the improved model 
gradually enhances its target classification and detection 
abilities. The mAP50 is close to 0.833, and the mAP50-95 is 
approximately 0.516, demonstrating the model's good detection 
performance and strong generalization ability at different IoU 
thresholds. Overall, the improved YOLOv11n algorithm 
outperforms the original version, but its small target detection 
capabilities and mAP50-95 metric can still be further improved 
by adjusting the learning rate, optimizing data augmentation 
strategies, or enhancing non-maximum suppression (NMS) 
processing. 

To more clearly evaluate the model's classification ability, 
the confusion matrix is used to visually quantify the model's 

prediction accuracy and misclassification rates for different 
categories. To assess the detection performance of the 
YOLOv11n algorithm and its improved version in the landslide 
and storm categories, we plotted the normalized confusion 
matrix. This allows for a comparative analysis of the 
classification accuracy and misclassification rates of the two 
models, in order to verify the performance improvement of the 
modified model. 

Fig. 9 shows the confusion matrices of the YOLOv11n 
algorithm and the improved YOLOv11n algorithm, used to 
evaluate the model's classification performance on landslide 
and storm targets. From the results, the improved YOLOv11n 
algorithm shows improvements in both landslide and storm 
detection. The accuracy of landslide detection increased from 
0.74 to 0.78, and the accuracy of storm detection increased 
from 0.90 to 0.91, while the false detection rate decreased. In 
particular, the proportion of storms misclassified as 
background reduced from 0.37 to 0.21, indicating that the 
improved model is more stable in storm detection. Additionally, 
the background misclassification rate also decreased, with the 
probability of landslides being misidentified as background 
dropping from 0.25 to 0.21, suggesting that the improved 
algorithm has optimized false detection suppression. 
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(a)                                                                                                     (b) 

Fig. 9. Normalized confusion matrix: (a) YOLOv11n algorithm; (b) Improved YOLOv11n algorithm. 

 
(a)                                                                                                   (b)  

Fig. 10. Precision-confidence curves: (a) YOLOv11n algorithm; (b) Improved YOLOv11n algorithm.

Fig. 10 presents the Precision-Confidence curves for the 
YOLOv11n algorithm [Fig. 10(a)] and the improved 
YOLOv11n algorithm [Fig. 10(b)], used to evaluate the 
variation in precision at different confidence thresholds. The 
left panel [Fig. 10(a)] shows the original YOLOv11n, while the 
right panel [Fig. 10(b)] shows the improved YOLOv11n. The 
curves correspond to landslide, storm, and all classes. Overall, 
as the confidence threshold increases, precision gradually 
improves, indicating a reduction in false positives at higher 
confidence levels and more accurate predictions. Compared to 
the original model, the improved YOLOv11n shows an 
increase in precision across all confidence ranges, with the 
confidence threshold corresponding to the highest precision 
increasing from 0.865 to 0.917. This suggests that the 
improved model maintains a higher level of precision at higher 
confidence thresholds, thereby reducing false positives caused 
by low-confidence predictions. 

Fig. 11 presents the Precision-Recall (P-R) curves for the 
YOLOv11n algorithm [Fig. 11(a)] and the improved 
YOLOv11n algorithm [Fig. 11(b)], used to assess the variation 
in precision at different recall rates. The left panel [Fig. 11(a)] 
shows the original YOLOv11n, while the right panel [Fig. 
11(b)] shows the improved YOLOv11n. The P-R curves for 
landslide, storm, and all classes are plotted, with the 
performance at mAP@0.5 indicated for each class. Overall, the 
mAP@0.5 of the improved model increased from 0.813 to 
0.833 across all classes, with the mAP of the storm class rising 
from 0.906 to 0.923 and the mAP of the landslide class 
increasing from 0.720 to 0.743, indicating an improvement in 
detection performance. The P-R curves show that the storm 
class consistently outperforms the landslide class in detection, 
while the improved YOLOv11n maintains a slower decline in 
precision at higher recall rates, suggesting enhanced detection 
ability at higher recall levels and a reduction in false negatives. 
Overall, the improved model achieves better performance in 
balancing precision and recall. 
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(a)                                                                                                  (b) 

Fig. 11. Precision-recall curves: (a) YOLOv11n algorithm; (b) Improved YOLOv11n algorithm. 

C. Ablation Study 

To evaluate the impact of different modules on the 
YOLOv11n object detection performance, we conducted 
ablation experiments and performed a comparative analysis of 
detection accuracy, recall rate, mAP@0.5, inference speed 
(FPS), computational complexity (GFLOPS), and parameter 
count (Params) for each improvement. By progressively 

introducing modules such as C3k2-SCConv, GhostConv, and 
SimAM, we assess their contributions to model performance 
and whether the improvements can maintain high detection 
accuracy while also considering inference speed and 
computational efficiency. The experimental results, as shown 
in Table V, present the performance of each configuration 
across various metrics. 

TABLE V.  ABLATION STUDY RESULTS 

number Experiment Precision/% Recall/% mAP@0.5/% FPS (f/s) GFLOPS Params (M) 

1 YOLOv11n 82.3 75.3 81.3 147.0 6.3 2.58 

2 YOLOv11n+C3k2-SCConv 85.6 74.6 82.2 102.8 6.4 2.73 

3 YOLOv11n+C3k2-SCConv+GhostConv 85.9 75.3 82.8 130.3 6.3 2.72 

4 YOLOv11n+C3k2-SCConv+GhostConv+SimAM 85.5 78.1 83.3 128.5 6.3 2.72 
 

Table V presents the ablation experiment results for 
YOLOv11n and its various improvements, evaluating the 
impact of each configuration on precision, recall, mAP@0.5, 
frame rate (FPS), computational complexity (GFLOPS), and 
parameter count (Params). The baseline model, YOLOv11n, 
achieves the fastest inference speed with an mAP@0.5 of 81.3% 
and FPS of 147.0 f/s, but there is still room for improvement in 
detection accuracy. After adding C3k2-SCConv, precision 
increases to 85.6%, and mAP@0.5 slightly improves, but recall 
decreases, and FPS drops to 102.8 f/s, indicating that the 
increased computational load impacts inference efficiency. The 
further introduction of GhostConv increases precision to 85.9%, 
recall recovers by 5.3%, and mAP@0.5 rises to 82.8%, while 
FPS reaches 130.3 f/s, suggesting that GhostConv effectively 
reduces computational redundancy and enhances inference 
speed. Finally, with the addition of SimAM, recall further 
improves to 78.1%, and mAP@0.5 increases to 83.3%. Overall, 
the gradual inclusion of C3k2-SCConv, GhostConv, and 
SimAM significantly enhances detection accuracy while 
maintaining high inference speed, with minimal impact on 
computational complexity and parameter count. 

VI. DISCUSSION 

There are several limitations in the current study. First, the 
dataset lacks images captured under extreme weather 
conditions such as heavy rain or snow, which may weaken the 
model’s generalization ability in complex real-world 
environments. Second, the sample distribution of landslide and 
storm categories may be imbalanced, potentially leading to 
suboptimal detection performance for underrepresented classes. 
Moreover, the current research primarily focuses on the 
detection of landslides and storms, while the model’s ability to 
identify other types of geological disasters, such as debris 
flows or earthquakes, has not been sufficiently validated. 
Additionally, the model is relatively complex, which not only 
increases the time cost for training and inference but also poses 
challenges for deployment and maintenance. Future research 
can address these issues in two main directions. One is the 
expansion and augmentation of the dataset, by incorporating a 
larger number of images from various scenarios and weather 
conditions to enhance the model’s robustness and 
generalization. The other is the optimization of the model 
architecture and its real-time performance, by exploring more 
efficient network designs and optimization algorithms to 
reduce computational complexity and parameter size. 
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VII. CONCLUSION 

This study optimizes the YOLOv11n object detection 
algorithm by introducing the GhostConv module to optimize 
the convolutional computations, reducing redundant 
calculations while significantly improving the model's 
operational efficiency without compromising feature extraction 
capability. The introduction of the C3k2-SCConv module 
further optimizes the feature extraction process, effectively 
enhancing the representation of key features in landslide 
images, while maintaining optimal computational performance. 
The incorporation of the SimAM attention mechanism adapts 
the model’s focus on different region features, allowing the 
network to more effectively perceive critical information in 
landslide images, thereby further improving detection accuracy. 
Experimental results show that the improved model 
outperforms other algorithms in terms of mAP@0.5, precision, 
and recall, demonstrating superior detection performance and 
computational efficiency. 
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