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Abstract—The early diagnosis of Alzheimer’s disease remains 

a major challenge due to the complexity of magnetic resonance 

image interpretation and the limitations of existing diagnostic 

models. The slow memory loss associated with the gradual loss of 

thinking abilities, known as Alzheimer's disease, is the most 

common element of the illness. Effective early diagnosis is 

therefore essential to treatment; unfortunately, the traditional 

diagnostic procedure, which involves analyzing magnetic 

resonance images, is a complex process and prone to mistakes. 

This study aims to successfully merge these cognitive models with 

advanced deep learning techniques to enhance the diagnostic 

capabilities of Alzheimer’s disease using a fusion model with 3-

dimensional convolutional neural networks and long short-term 

memory networks. The proposed approach uses three-

dimensional convolutional neural networks to extract intricate 

features from volumetric magnetic resonance images, while long 

short-term memory networks analyze sequential data to identify 

key temporal patterns that indicate the progression of 

Alzheimer's disease. The dataset used in this study is the 

Alzheimer's Disease Neuroimaging Initiative dataset, which 

contains magnetic resonance images labeled into four categories: 

Non-Demented, Very Mild Demented, Mild Demented, and 

Moderate Demented. The dataset consists of 6,400 magnetic 

resonance images in total, split into training (70%), validation 

(15%), and testing (15%) sets. These outcomes demonstrate that 

the hybrid model improves predictive accuracy significantly over 

current benchmarks on this topic. This study highlights the 

importance of introducing deep learning models into clinical 

practice, thereby providing an efficient tool for early-stage 

Alzheimer’s disease diagnosis, ultimately improving patient 

outcomes through early and accurate intervention. 
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I. INTRODUCTION 

One well-known neurological disorder that affects memory 
and cognitive function is Alzheimer's disease (AD). The 
disease is named after Dr. Alois Alzheimer, a well-known 
German expert who initially discovered the basic 
pathophysiology of the underlying pathology in 1906 [1]. 

The prevalence of Alzheimer’s disease increases 
significantly with age, altogether influencing the elderly. The 
trademark of this condition is the amassing of anomalous 
protein totals inside the brain, which continuously disables 

cognitive work and creates genuine challenges with day-by-day 
tasks [2]. 

Our understanding of AD has advanced impressively over 
the past century, especially with respect to the part that the 
amyloid-beta protein plays within the early stages of the 
infection. However, there are critical concerns related to the 
worldwide rise in AD predominance. In recent years, machine 
learning has opened up unused roads for the early discovery 
and administration of AD. By leveraging cutting-edge 
algorithms and large-scale medical imaging datasets, AI 
techniques have significantly enhanced diagnostic workflows 
and accuracy [28]. Machine-learning models can distinguish 
subtle patterns in neuroimaging, genetic data, and cognitive 
assessments that may indicate early signs of this insidious 
disease [3]. 

The novelty of this study lies in the integration of two-
dimensional convolutional neural networks (2D-CNNs) and 
long short-term memory (LSTM) networks to enhance both 
spatial feature extraction and temporal pattern recognition. This 
combined approach provides significant improvement over 
prior research that typically employs CNNs or LSTMs 
separately, leading to more robust Alzheimer’s disease 
classification. Additionally, we introduce a comprehensive 
dataset preprocessing pipeline and apply SMOTE to handle 
class imbalance, an aspect not fully explored in existing 
literature. This model integrates 2D-CNN for efficient feature 
selection from MRI scans and LSTM networks for the 
temporal analysis of sequential MRI data. A thorough 
performance evaluation is conducted using metrics such as 
accuracy, recall, and F1-score, demonstrating the superiority of 
our method over conventional techniques. Through the 
application of these cutting-edge strategies, our objective is to 
supply healthcare experts with a robust diagnostic tool that not 
only improves the accuracy of Alzheimer’s disease detection 
but also enhances the understanding of disease progression. 
Additionally, the physicians will be motivated to take good 
decisions about care, ultimately leading to improved patient 
outcomes. 

While several studies have applied CNNs or RNNs 
individually for medical image classification, their 
effectiveness in capturing both spatial and temporal 
dependencies remains limited. This study addresses this gap by 
combining 2D-CNN with LSTM to leverage both spatial 
features and sequential context from MRI slices. 
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The structure of this study is as follows: Section II presents 
a comprehensive review of related work on deep learning 
models used for Alzheimer’s disease diagnosis. Section III 
outlines the proposed methodology, including model 
architecture, dataset details, and preprocessing steps. Section 
IV provides the experimental results, and Section V discusses 
the model's performance using standard evaluation metrics. 
Finally, Section VI concludes the study and highlights potential 
directions for future work. 

II. LITERATURE REVIEW 

This section discusses more complicated deep learning 
techniques, specifically Convolutional Neural Networks 
(CNNs) and LSTM networks, for the early diagnosis and 
detection of AD using neuroimaging data. The literature review 
section explores various studies that have integrated CNNs, 
LSTMs, and Transformers for AD diagnosis. However, most 
prior works have either focused on CNNs for spatial feature 
extraction or LSTMs for temporal sequence analysis, but have 
not effectively combined them. 

Recently, many studies highlighted the important role of 
merging CNNs and LSTMs when analyzing MRI scans for AD 
diagnosis. A multimodal fusion model was created that 
combined a CNN for spatial feature extraction and an LSTM 
for temporal sequence analysis, achieving an accuracy of 
92.3% using the Alzheimer’s Disease Neuroimaging Initiative 
dataset [4]. 

Similarly, the research done by Hu et al. [8] introduced a 
Transformer-based model, VGG-TSwinformer, for predicting 
the progression from Mild Cognitive Impairment (MCI) to 
Alzheimer’s Disease. Although, retrieving a lower accuracy of 
77.2%, this model was the first to merge CNNs with 
Transformer models, showing how important it is to control the 
temporal aspects of longitudinal medical data. Despite its 
drawbacks, this innovative approach indicates a promising 
avenue for further research in AD diagnosis. Additionally, 
recent AI-driven methodologies have shown substantial 
promise in predicting Alzheimer’s progression using advanced 
deep learning frameworks [14]. 

In recent research, explainability in AI models has become 
increasingly important. The XGBoost model was combined 
with the SHAP (SHapley Additive exPlanations) method in the 
study by Bogdanovic et al. [6] to create clear conclusions about 
the model's predictions. This approach not only achieved a 
high F1-score of 0.84, but it also increased the clarity of the 
diagnostic process, making it more dependable and accessible 
for clinical application. In a recent study, an explainable AI-
based model for Alzheimer’s disease prediction was developed 
using a multimodal dataset [7]. 

This outcome shows the efficiency of combining clinical, 
neuroimaging, and psychological data in AD prediction. Using 

a different data modality and focusing on explainability shows 
how the complexity and accuracy of the current AD diagnostic 
techniques have enhanced [7]. Another contribution has been 
made by Qiu et al. [8] who developed a significant multimodal 
deep learning framework that combined MRI data with clinical 
features using CNN and CatBoost models. This study shows 
the importance of merging various data sources to enable an 
extensive diagnosis of AD. Additionally, Ngnamsie 
Njimbouom et al. [9] has created a multi-modal model by using 
artificial neural networks (ANN) and CNN to predict dental 
caries. 

Although they mainly focused on dentistry applications, 
their methodology is applied to AD research as it shows the 
value of multi-modality in improving prediction accuracy [9]. 

Hoang et al. [10] applied Vision Transformer models to 
predict the transition from mild cognitive impairment to 
Alzheimer’s disease. Their findings revealed an accuracy of 
83.27% and provided visual representations of key brain 
regions associated with the progression of AD, consequently 
improving the interpretability of these predictive models [10]. 
Pang et al. [11] have provided a detailed analysis of deep 
learning-based medical imaging report production, which 
included AD diagnostic reports. Their research shows two vital 
components in the development of effective tools for AD 
detection: the challenges associated with imbalanced datasets 
and the significance of interdisciplinary collaboration. 

Javeed et al. [12] conducted a systematic evaluation of 
machine learning techniques for dementia prediction, focusing 
on data modalities such as voice, clinical features, and picture 
data. Their results showed the effectiveness of image-based 
machine learning models for dementia prediction, but they also 
identified limitations such as model overfitting and the need for 
larger datasets. 

Finally, Khatri and Kwon [13] used PET scans to predict 
the progression of AD through an explainable Vision 
Transformer model that includes self-supervised learning. 
Their approach achieved a significant accuracy of 92.31%. It 
highlights the value of integrating robust predictive capabilities 
with interpretability in clinical environments. 

The deep learning techniques indicate their importance in 
all this research, especially the integration of CNNs, LSTMs, 
and Transformers, which have improved the ability to diagnose 
AD with greater accuracy and transparency. Future 
advancements in the early detection and management of AD 
are well-founded in this field of study by handling the 
challenges of data diversity and model explainability. 

Table I lists the main techniques and associated accuracy of 
many studies related to the early detection and classification of 
AD using several deep learning models. 

TABLE I.  RELATED WORKS WITH METHODOLOGIES AND CLASSES 

Study Methodology No. of Class Accuracy 

Haq et al., 2024 [5] CNN-LSTM (Multimodal Fusion) Three Class (AD, MCI, NC) 92.30% 

Hu et al., 2023 [8] VGG-TSwinformer (Transformer + CNN) Binary Class (MCI vs pMCI) 77.20% 

Bogdanovic et al., 2022 [6] XGBoost + SHAP (Explainable ML) Multi-Class (AD, MCI, NC, etc.) 84.00% 
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Jahan et al., 2023) [3] Random Forest (Multimodal, Explainable AI) Four Class (AD, MCI, NC, LMCI) 98.81% 

(Atito et al., 2021) [22] Vision Transformer with Self-Supervised Learning Binary Class (MCI vs AD) 92.31% 

Qiu et al., 2022) [8] Multimodal Deep Learning Framework (CNN + CatBoost) Four Class (NC, MCI, AD, nADD) AUC 0.971 

(Ngnamsie Njimbouom et al., 

2022 [9] 
Multi-Modal Dental Caries Prediction (CNN + ANN) Binary Class (Caries vs No Caries) High Accuracy 

Hoang et al., 2023 [10] Vision Transformers (ViT) Binary Class (MCI vs AD) 83.27% 

Pang et al., 2023 [7] Deep Learning-based Report Generation Multi-Class (Various) Survey 

Javeed et al., 2023 [6] Explainable Vision Transformer (Self-Supervised) Binary Class (MCI vs AD) Systematic Review 

Khatri & Kwon, 2023) [13] Systematic Review of ML for Dementia Prediction Various (AD, MCI, NC, Voice Data) 92.31% 
 

III. METHODOLOGY 

To improve clarity, a flowchart illustrating the workflow of 
the proposed model is shown in Fig. 1. Additionally, 
Algorithm 1 provides a structured representation of the key 
steps in the model's training and classification process. 

 
Fig. 1. Workflow of the hybrid 2D-CNN + LSTM model for AD 

classification. 

Algorithm 1: Hybrid 2D-CNN + LSTM Model for AD 
Classification 

1. Data Preprocessing: 

  - Load MRI images from the ADNI dataset. 

  - Resize images to 176x176 pixels. 

  - Normalize pixel values to [0,1]. 

2. Model Training: 

  - Pass images through 2D-CNN layers for feature extraction. 

  - Flatten extracted features and feed them into an LSTM layer. 

3. Evaluation: 

  -Compute accuracy, precision, recall, F1-score. Evaluate the 
model using standard classification metrics: accuracy, precision, 
recall, and F1-score. 

        -Generate confusion matrix and Receiver Operating 
Characteristic (ROC) curve. 

The following workflow diagram illustrates the steps 
involved in the Hybrid two-dimensional convolutional neural 
network (2D-CNN) + long short-term memory (LSTM) model 
for AD classification. It details the data preprocessing, model 
training, and evaluation phases. 

A. Adopted Base Model Architecture 

2D-CNN or Conv2D: A 2D Convolutional Neural Network 
is a type of deep learning model specifically designed for 
processing two-dimensional data, such as medical imaging 
scans. In a 2D-CNN, the convolutional layer applies an 
arrangement of channels (or filters) over the input information 
to capture spatial chains of command and patterns, such as 
edges, surfaces, and more complex highlights, by sliding the 
channels over the width and height measurements of the input. 
This makes a difference in identifying critical highlights inside 
the information while protecting spatial connections, making 
2D-CNNs especially successful for assignments like image 
recognition [15]. 

 
Fig. 2. 2D-CNN architecture. 

Fig. 2 illustrates the architecture of a 2D-CNN used for 
image classification. The process begins with an input image, 
which undergoes multiple convolutional layers to extract 
features, followed by max-pooling layers that reduce spatial 
dimensions while preserving key information. The extracted 
features are then flattened into a 1D vector and passed through 
a fully connected (dense) layer for classification. The final 
output layer produces the classification results, making the 
architecture suitable for tasks such as object detection and 
image recognition. 

LSTM Architecture design: LSTM is built with a feedback 
mechanism that allows it to preserve information for long 
durations. LSTM essentially forms the current input by 
considering the past yield, hence putting away the future yield 
in its short-term memory. The cell state is essential to the 
functioning of LSTM, as it dictates the data that must be 
preserved or eliminated [16]. 
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The LSTM network functions using three main gates and 
two essential mechanisms. The Forget Gate decides which 
information to keep or eliminate from long-term memory. The 
Input Gate gathers new data and evaluates its relevance relative 
to existing stored information. Lastly, the Output Gate 
produces the final output based on the decisions of the other 
two gates. These gates function using the sigmoid and 
hyperbolic tangent (tanh) activation functions. A schematic 
representation of the LSTM architecture is illustrated in Fig. 3. 

 
Fig. 3. LSTM architecture. 

B. Proposed Hybrid Model 

In this study, CNNs and LSTM networks were combined, 
creating a hybrid deep learning model that enhances image 
classification as shown in Fig. 4. The first three convolutional 
blocks each consisted of a convolutional layer followed by a 
max-pooling layer. 

 
Fig. 4. Proposed hybrid model for Alzheimer’s detection. 

ReLU activation and 32, 64, and 128 filters with a 3x3 
kernel size are used in the convolutional layers. These layers 
are crucial for the extraction of low-level to high-level features 
from the input images, such as edges, textures, and complex 
patterns. Each convolutional layer is followed by a max-
pooling operation that uses a 2x2 pooling window with 'same' 
padding is applied to efficiently reduce the spatial dimensions 
of the feature maps and reduce the possibility of overfitting. 

To further mitigate overfitting, a dropout layer with a rate 
of 0.3 is applied after the convolutional and pooling layers. To 
prevent the model from becoming overly dependent on a single 
feature, this regularization method randomly disables a 
segment of the input units during the training phase. After the 
convolutional layers, the model's output is converted into a 
one-dimensional vector, which is subsequently reshaped to 
enable sequential processing by the LSTM layer. 

The 128-unit LSTM layer is important for identifying 
temporal patterns and dependencies in the sequential data 
extracted from MRI images. By enabling the model to 
understand the relationships and feature development 

throughout the input data, this layer improves the model's 
ability to provide accurate predictions. The flattened and 
reshaped feature vectors are processed by the LSTM layer, 
which efficiently preserves and makes use of this temporal 
information for additional analysis. 

Finally, the model divides into multiple dense layers, 
starting with a fully linked layer with 1024 units that uses the 
ReLU activation function. This layer uses the features retrieved 
from the previous convolutional and LSTM layers to perform 
high-level reasoning. 

An additional dropout layer is applied to maintain model 
flexibility. The architecture has been completed with a four 
units output layer that represents the number of classes in the 
classification operation. The model's final predictions are 
generated by this layer using the softmax activation function, 
producing a probability distribution over the classes. 

C. Dataset 

This study organized the dataset into two main directories, 
training and testing, each containing subfolders corresponding 
to numerous stages of AD. The total number of MRI images 
were divided across the four classes as follows: 

 Mild Demented: 717 train + 179 test 

 Moderate Demented: 52 train + 12 test 

 Non-Demented: 2,560 train + 640 test 

 Very Mild Demented: 1,792 train + 448 test 

This structure supports effective model training and 
evaluation, ensuring that it can accurately classify images 
corresponding to various stages of AD. 

D. Data Preprocessing and Parameters 

To enhance model generalization and prevent overfitting, 
data augmentation techniques were applied, including rotation, 
flipping, brightness adjustment, and contrast normalization. 
These transformations ensured that the model learns robust 
features independent of variations in MRI images. 
Additionally, The Synthetic Minority Over-sampling 
Technique (SMOTE) was applied to generate synthetic 
samples for underrepresented classes, mitigating class 
imbalance and improving classification performance. In this 
study, the hybrid 2D-CNN + LSTM architecture was selected 
to leverage the strengths of both models. CNNs excel at 
extracting spatial features from medical images, while LSTMs 
are effective in capturing temporal dependencies. Given that 
Alzheimer's disease progresses over time, integrating LSTM 
with CNN allows for improved detection of subtle changes in 
MRI images that might indicate early stages of the disease. 
Unlike traditional CNNs that process static images, the LSTM 
component enabled our model to analyze sequential MRI 
scans, capturing temporal variations that are crucial for 
accurate diagnosis. Furthermore, this hybrid approach 
outperforms standalone CNN and RNN models, as 
demonstrated in our experimental results. 

Several preprocessing steps were required before using the 
dataset into the machine learning model. First, all images were 
resized to a consistent 176x176 resolution to maintain 
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consistency across the dataset. In order to improve the model’s 
performance during training, normalization is applied by 
rescaling pixel values from the range [0, 255] to [0, 1]. 

 
Fig. 5. The number of samples for each class before addressing the 

imbalance. 

 
Fig. 6. The number of samples for each class after addressing the imbalance. 

The distribution of samples across the four classes before 
applying SMOTE is shown in Fig. 5. The Synthetic Minority 
Over-Sampling Technique (SMOTE) has addressed the 
dataset's inherent class imbalance. By generating synthetic 
examples for underrepresented classes, SMOTE balances the 
dataset and enhances the model's ability to generalize across all 
categories. The class distribution after applying SMOTE is 
shown in Fig. 6. According to Joloudari et al., an effective 
class imbalance learning method based on SMOTE and CNNs 
was developed [17]. 

70% of the dataset was used for training, with the 
remaining 30% evenly divided between validation and testing. 
This balanced split ensured that the model can be thoroughly 
evaluated and validated during training. The model took input 
in the form of 176x176 pixel images with three color channels 
corresponding to the RGB color space. Training was performed 
with a batch size of 32 over 50 epochs, with a learning rate of 
0.001. The loss function employed was categorical cross-
entropy, while the Adam optimizer was used to efficiently 
handle sparse gradients. 

These preprocessing steps, combined with the balanced 
dataset, provide a strong foundation for training a deep learning 
model capable of accurately classifying the different stages of 
AD. 

IV. RESULTS 

A. Environmental Setup 

The TensorFlow Keras package is used for classification, 
with the model executed on an AMD Ryzen 7 and 32 GB 
RAM. All computations are performed in Python. The 
proposed technique is evaluated using accuracy, precision, 
recall, F1-score, specificity, and confusion matrix. 

The data visualization of classification results is shown in 
Fig. 7, illustrating the distribution of predictions across 
categories. 

 
Fig. 7. Data show. 

True Negatives (TN), True Positives (TP), False Negatives 
(FN), and False Positives (FP) indicate the model's 
performance as measured by the confusion matrix. The 
performance metrics utilized in this study are listed below: 

Accuracy: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (1) 

Precision: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (2) 

Sensitivity: 

Recall = T P F N + T P            (3) 

Specificity: 

Recall = T N T N + F P           (4) 
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F1 measure: 

F1 = 2 × Precision × Recall Precision + Recall       (5) 

Precision measures the accuracy of positive identifications, 
while accuracy indicates how well the classifier predicts all 
categories correctly. Specificity evaluates how accurately the 
model predicts negative instances, and sensitivity assesses its 
ability to detect positives. The F1-score, which factors in both 
false negatives and positives, is the harmonic mean of 
precision and sensitivity. 

B. Result Analysis 

The main contribution of this study is the development of a 
hybrid 2D-CNN and LSTM model for efficient Alzheimer’s 
disease classification. 

The training and validation loss curve is presented in Fig. 8, 
while the training and validation accuracy curve is shown in 
Fig. 9. 

 
Fig. 8. Training and validation loss curve. 

 
Fig. 9. Training and validation accuracy curve. 

 
Fig. 10. Confusion matrix. 

Fig. 10 presents the confusion matrix of the hybrid model, 
where rows represent the actual classes and columns represent 
the predicted classes. The number of cases assigned to each 
category is shown in the matrix cells. All Mild Demented 
instances were correctly classified with 100% accuracy, and 
similarly, all Moderate Demented cases were perfectly 
classified. For Non-Demented individuals, 96.67% were 
correctly identified, with only 3.33% misclassified as Very 
Mild Demented. Finally, 98.33% of Very Mild Demented 
cases were accurately classified, with 1.46% misclassified as 
Non-Demented and 0.21% as Mild Demented. 

 
Fig. 11. ROC-AUC curve. 

Fig. 11 shows the ROC curve, highlighting the model's 
performance by plotting the true positive rate against the false 
positive rate at different decision thresholds. The ROC curve 
illustrates the model's reliability, with all classes—Mild 
Demented, Moderate Demented, Non-Demented, and Very 
Mild Demented—achieving an Area Under the Curve (AUC) 
score of 1.00. The perfect AUC scores for all classes 
emphasize the model's accuracy in distinguishing between 
categories. 
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The performance of our hybrid model achieves an accuracy 
of 99%, with sensitivity at 100%, a precision rate of 98% and 
up to 100%, a specificity of 76%, and an F1-score ranging 
from 98% to 100%. 

The final output of the proposed model's classification is 
presented in Fig. 12, showing the predicted labels for test 
samples. 

The output of the proposed model: 

 

Fig. 12. The output of the proposed model. 

V. DISCUSSION 

The combination of 2D-CNN and LSTM layers was found 
to be effective for the image classification task. Despite 
extensive experimentation with various architectures, including 
ResNet, DenseNet, VGG, and CNN with SVM, the results 
varied significantly. The CNN with LSTM approach, along 
with SMOTE and normalization, achieved the best 
performance among the tested methods. 

Table II summarizes a comparison of different models 
proposed by researchers for classifying Alzheimer’s disease 
using MRI images. Using the ADNI dataset, Samhan et al. [18] 
used the VGG16 model and achieved a 97% accuracy rate, 
while Yang et al. [19] applied the VGG19 model to 3,210 
images across four classes and achieved a 97.8% accuracy rate. 
Using 6,000 images across four classes, Pradhan et al. [26] 
applied VGG16 technique and achieved an accuracy of 94%. 
In contrast, using the Inception V4 model with the OASIS 
dataset, Mohammed et al. [22] achieved an accuracy of 
73.75%. Also, Feng et al. [27] combined 3D-CNN and FSBi-
LSTM models on the ADNI dataset and has achieved an 
impressive accuracy of 94.82%. This study's proposed model, 
integrating 2D-CNN and LSTM, achieved a peak accuracy of 
99% on 6,400 images across four classes. This model exceeds 
the performance of the existing models and highlights its 
significant potential for effective diagnosis of AD on a larger 
dataset. 

TABLE II.  A COMPARISON OF VARIOUS EXISTING MODELS ALONG SIDE 

THE PROPOSED MODEL 

Authors Number of Classes Methodology Accuracy 

L. F. Samhan et 

al. [15] 
ADNI dataset VGG16 97% 

K. Yang et al. 

[16] 

3210 images + 4 

classes 
VGG19 97.8% 

Z. Cui et al. [29] 
2400 images + 2 

classes 
Inception V3 85.7% 

V. Patil et al. [30] 223 images DenseNet 96.4% 

E. A. Mohammed 
et al. [19] 

OASIS dataset Inception V4 73.75% 

J. Venugopalan et 

al. [20] 
503 images CNN 78% 

A. Pradhan et al. 
[21] 

6000 images + 4 
classes 

VGG16 94% 

F. Razavi et al. 

[22] 
51 images 

S Filter + 

Regression 
98.3% 

T. J. Saleem et al. 

[23] 
ADNI dataset DNN 67% 

M. Zaabi et al. 

[24] 

4870 images + 2 

classes 

CNN + Transfer 

Learning 
92.81% 

G. Folego et al. 

[25] 
ADNI dataset LeNet-5 52.3% 

Feng C et al. [31] ADNI dataset 
3D-CNN and 

FSBi-LSTM 
94.82% 

Dua M et al. [32] OASIS dataset 
CNN + RNN + 

LSTM 
92.22% 

Proposed Model 
6400 images + 4 

classes 

2D-CNN + 

LSTM 
99% 

VI. CONCLUSION AND FUTURE WORK 

The experimental evaluation demonstrates the superiority 
of our hybrid 2D-CNN + LSTM model, achieving 99% 
accuracy, 100% sensitivity, and an F1-score of 98%. Compared 
to existing models, our approach offers a significant 
improvement in early-stage AD detection. The use of 
augmentation and class balancing techniques contributed to 
enhancing model robustness. Future work will focus on 
extending the dataset, incorporating additional neuroimaging 
modalities, and exploring transformer-based architectures to 
further enhance diagnostic precision. 

Despite promising results, the study has some limitations. 
First, the dataset used was relatively small, which may impact 
the generalizability of the model. Second, the model does not 
integrate clinical metadata such as age or cognitive scores, 
which could potentially enhance classification accuracy. 
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