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Abstract—Recent developments in live event detection have 

primarily focused on single-modal systems, where most 

applications are based on audio signals. Such methods normally 

rely on classification approaches involving the Mel-spectrogram. 

Single-modal systems, though effective in some applications, suffer 

from severe disadvantages in capturing the complexities of a real-

world event, which thereby reduces their reliability in dynamically 

changing environments. This research study presents a novel 

multi-modal deep learning approach that combines audio and 

visual signals in order to enhance the accuracy and robustness of 

live event detection. The innovation lies in the use of two-stream 

LSTM pipelines, allowing for temporally consistent modeling of 

both input modalities while keeping a real-time processing pace 

through feature-level fusion. Unlike many of the recent 

transformer models, we are utilizing proven techniques (MFCC, 

2D CNN, ResNet and LSTM) in a latency-aware and deployment-

friendly architecture suitable for embedded and edge-level event 

detection. The AVE (Audio Video Events) dataset, consisting of 28 

categories, has been used. For the visual modality, video frames 

undergo feature extraction through a 2D CNN ResNet and 

temporal analysis through an LSTM. Simultaneously, the audio 

modality employs MFCC (Mel Frequency Cepstral Coefficients) 

for feature extraction and LSTM to capture temporal 

dependencies. The features extracted from both audio and video 

modalities are concatenated for fusion. The proposed integration 

leverages the complementary nature of audio and visual inputs to 

create a more comprehensive framework. The outcome yields 

85.19% accuracy in audio and video-based events due to the 

effective fusion of spatial and temporal cues from diverse 

modalities, outperforming single-modal baselines (audio-only or 

video-only models). 

Keywords—Multi-modality; feature fusion; early fusion; 

concatenation audio-video signals; convolutional neural network 

(CNN); Long Short-Term Memory (LSTM); Mel Frequency 

Cepstral Coefficients (MFCC); ResNet (Residual Network) 

I. INTRODUCTION 

Event detection has become a pervasive application of 
artificial intelligence, found in applications as diverse as video 

surveillance, sports analysis, public security systems, and even 
entertainment. The identification and classification of 
significant events in time based on the analysis of multimedia 
data—mainly audio and video. However, traditional unimodal 
approaches based solely on audio or video often fail to record 
very well the complex interaction often occurring between 
vision and hearing in ordinary situations. Most events in real-
world scenarios do not occur in isolation. These events are often 
characterized by noise, temporal overlap, and a complex 
interplay of audio and visual stimuli. A barking dog following a 
car, a crowd cheering a goal, or shattered glass during the act of 
burglary—all are clearer when we can hear and see them at the 
same time. This is why modern event detection systems need 
multi-modal solutions that can effectively fuse both audio and 
visual data and make better, more knowledgeable decisions. 
Researchers have made encouraging strides in this direction. For 
instance, Convolutional Neural Networks (CNNs) have done 
well in extracting meaningful patterns from audio waveforms, 
while 3D CNNs are able to handle spatiotemporal data from 
video streams. Yet, with all their promise, these methods hit 
some tough bottlenecks: synchronizing asynchronous data 
streams, reducing computational overhead, and building fusion 
mechanisms through which audio and video can actually 
complement each other, rather than merely coexist. To address 
these challenges, recent studies such as [1] and [2] have also 
explored the appropriateness of multi-modal deep learning 
architectures. 

These studies experiment with new architectures such as 
light vision transformers and advanced fusion techniques in the 
hope of improving both the accuracy and versatility of event 
detection models in the wild [3]. The fusion process of deciding 
how and when to merge features between modalities has turned 
into a very critical aspect that can significantly impact the 
performance of the model. This is where AVFusion comes in—
our proposed multi-modal architecture designed specifically for 
live event recognition. It was experimented with over the well-
liked Audio-Visual Event (AVE) benchmark dataset, including 
4143 annotated videos across 28 real-world categories of events. 
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AVFusion leverages principles from works such as [4], with the 
feature-level fusion approach being targeted towards learning 
information about how an audio and video stream correlate from 
one time period to another. 

In the AVFusion framework, we extract audio features as 
Mel Frequency Cepstral Coefficients (MFCCs), which is a 
representation that mimics the human ear's perception. 

These features are then passed through Long Short-Term 
Memory (LSTM) networks to capture the temporal development 
of the sounds. Visually, the video frames are processed through 
ResNet to extract spatial features, again followed by LSTMs to 
capture motion and continuity over time. By fusing the encoded 
information of both modalities rather than at decision time, we 
have a richer, more integrated representation of the event. This 
combined audio-visual processing, while enhancing 
classification performance, remains computationally efficient 
and enables the system to operate in near real-time without 
heavy hardware. Our approach draws inspiration from recent 
developments like [5] and [6], highlighting the importance of 
intelligent fusion in multi-modal tasks.  

The rest of the study is organized as follows: Section II: 
Literature Survey gives a concise review of the shift from 
unimodal solutions towards advanced multi-modal systems with 
accomplishments and ongoing difficulties. Section III: 
AVFusion Framework explains the structure in terms of 
preprocessing tasks, audio and video feature extraction, fusion 
pipeline, and training techniques like early stopping to prevent 
overfitting. Section IV: Experimental Setup. Section V: Results 
and Discussion reports empirical results on the AVE dataset, 
such as performance measures, visual plots, and comparative 
analysis to show the robustness of AVFusion. Finally, Section 
VI concludes the study. 

While each of the elements used in AVFusion - MFCCs, 2D 
CNNs, ResNet, LSTMs, and concatenation at feature-level - is 
very well established, it is this focus on integration that makes 
this work novel. Most of the state-of-the-art models emphasized 
architectural complexity at the cost of runtime efficiency, while 
AVFusion was built for real-time event detection in a complex, 
very real-world setting. This framework not only focused on 
accuracy, but our aim was to find a balance among latency, 
accuracy, and modularity for implementation into surveillance, 
fault detection and embedded systems. This perspective 
challenges the idea that only architectural innovation leads to 
novelty, but also affirms how smart design for systems can 
produce feasible, scalable solutions to complex deep multi-
modal challenges. 

II. LITERATURE SURVEY 

Over the past decade, event detection has undergone a 
significant transformation. It began with simple unimodal 
approaches and evolved into complex multi-modal frameworks 
integrating auditory, visual, and contextual cues. This historical 
progression highlights how foundational research laid the 
groundwork for more integrated and adaptive systems. Each 
stage rounds a rather particular response to emerging real-world 
events that become progressively more complex. 

In the onset research, most methods for event detection focus 
specifically on audio or visual sources, rarely both. Audio-only 

systems were among the first to make breakthroughs. One 
example is a 2018 study that used some spectrogram-based 
recognition of speech commands in conjunction with its own 
dataset and achieved an impressive 95% score on it [2]. The 
effectiveness was impressive during specific time periods, but it 
had no modeling of time-it could not know how the sounds 
evolve in time, leaving it deaf to dynamic auditory contexts. 

Advancements soon followed. A 2023 study applied 
Electrodermal Activity (EDA) features in CNNs and LSTMs, 
achieving 96.6% accuracy on a Kaggle dataset. Though 
promising for real-time applications, it remained restricted to 
audio input without visual data. This model could not 
distinguish between acoustically similar but visually distinct 
events or understand spatial dynamics, a critical shortcoming in 
nuanced scenarios. 

The field of video-based event detection has developed 
significantly over time. In 2017, researchers developed a method 
for detecting visual events (fights, crashes, and falls) using 
CNNs and LSTMs via spatiotemporal analysis [9]. The method 
was successful in recognizing visual events temporally, but did 
not include the auditory modality, and was relatively slow and 
computationally heavy, especially when it came to utilizing its 
predictive capabilities for real-time video-based decision 
making. By 2024, researchers began applying transformers in 
video classification pipelines [3], but effectiveness in modeling 
spatial and temporal dependencies was uneven at best. Despite 
advances made over the years, most video-based approaches still 
do not capture the auditory modality when optimizing for video 
classification tasks, and there are not typically any major 
increases in classifier accuracy for these tasks. 

Having been trained and tested in narrow or conformed 
settings, those single-modal pipelines had difficulty capturing 
the complex and multi-sensory aspects of the scenarios outside 
the laboratory walls. Further studies led the research to develop 
modalities whereby multiple sensory streams are integrated to 
create a more complete representation of the world. 
The early attempts in this domain were made during the early 
2010s. A concerted effort was made by one team to bring audio 
and video into a single platform using CNNs in the year 2014 
[6]. Although pioneering, the model lacked mechanisms for 
encoding temporal relationships. The same year, the concept of 
grouplets was introduced to temporally align audio and video 
characteristics [7]. It was found to have an extension to 
innovations, but noise sensitivity and lack of a quantitative basis 
hold it back severely. At the same time, photofusion for visuals 
through CNNs and RNNs would prove to be a more organized 
exercise in temporal modeling by 2015. Once again, however, 
audio remained unincorporated in many early visual models [8]. 

In 2020, the state-of-the-art complete survey on feature 
fusion techniques was published. It enumerated and classified 
strategies as early, late, and hybrid fusion and created a 
conceptual map for future research [4]. The resulting taxonomy 
was to bring unity to the field and inspire a diversely 
methodological and application-specific solution scheme. 

This momentum has accelerated rapidly. In 2019, a 
milestone was defined in the detection of audio-visual inputs 
along contextual metadata by the combination of deep learning 
model to recognize aggressive behavior on trains. Although 
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specific accuracy metrics were not reported, it was among the 
pioneering efforts to integrate real-world context into multi-
modal models. A dynamic fusion model implemented in 2023 
for micro-video recommendations introduced visual, auditory, 
and textual cues into fusion via meta-learning; so far, it achieves 
an accuracy of 87.9% on the UCF51 dataset. This opened 
significant new opportunities, showing that flexible fusion 
models may be better than static, single-modal systems [24]. 

By 2023, the most sophisticated multi-modal models were 
audio-visual speech recognition systems. Although high in 
computational cost, a model that used 3D CNNs together with 
BiLSTMs reached a phenomenal score of 98.56% on the LRW 
dataset [11]. Nevertheless, such accuracy boils down to a very 
high computational cost. However, it once reflected the power 
of multi-modal integration when resources permitted. 

These advances were supported by the development of 
relevant datasets. The AVE data set, established in 2018, was an 
example. It collated 4,143 real-world recorded samples 
concerning 28 categories, such as from musical performances to 
machinery failures [23]. Today, it remains a significant 
benchmark for testing audio-visual fusion models. Other 
datasets like UCF51 and Kinetics-Sounds caught importance in 
2024, scaling up generalizability to broad action recognition 
tasks and helping models achieve more robust results, such as 
87.9% accuracy [22]. 

New research is steadily pushing the boundaries. The 2020 
study utilized CNNs and LSTMs for visual temporal modeling 
[12]. Though excluding audio inputs, it nevertheless advanced 
some techniques for fusion. A parallel development in 2021 saw 
multi-modal analysis move into environmental monitoring, 
equipping sensor data and deep learning for urban water quality 
predictions-a powerful demonstration of multi-modalism 
beyond the traditional event detection pathway [13][10]. 

The fusion strategies have reached maturity. The early fusion 
integrates features before the learning process begins, as 
observed in a 2015 video event classification study [14]. Late 
fusion is applied in cases such as newborn pain detection in 
2021; it combines outputs after separate models work on each 
modality, allowing modularity and interpretability [15]. Hybrid 
fusion is a sophisticated technique: it went to work in a 2023 
medical imaging study where CNNs and transformers were 
integrated in the middle of the stream to preserve a variety of 
feature representations while enhancing model simplicity [16]. 

Attention mechanisms are receiving extended focus lately. 
The visual relationship model in the year 2022 used attention 
layers to isolate certain key interaction scenes, such as people 
making physical contact [17]. On the other hand, the affect 
detection system in 2024 was trained on long video-audio 
sequences using stacked transformers for picking up subtle 
emotional cues over time [18]. 

However, challenges still remain. In the survey on anomaly 
detection in 2019, it was highlighted that datasets presently 
available do not capture the messiness of the real world-the 
presence of interference, occlusion, and noise is rarely 
represented [19]. This notion was echoed in a healthcare review 
of 2023, which was calling for more "imperfect" multi-modal 
datasets that increasingly reflect lived environments [20]. 
Nevertheless, while transformers have greatly transformed 
fusion, a 2024 survey pointed out their failure due to sizable 
computations, restricting their applications in real-time or edge 
settings [21]. 

Text-based modalities also acted as a complement. A 2014 
study on social event detection applied NLP techniques, such as 
TF-IDF, without any audio or video [5]. While such work 
appeared simplistic according to today’s standards, it paved the 
way for the convergence of language, vision, and sound. 

All influences dovetail them into AVFusion: our multi-
modality framework, which integrates lessons from the previous 
decade into a tangential practice: with MFCCs and LSTMs to 
extract temporal patterns from audio, ResNet, and LSTMs to 
model spatial and sequential video dynamics, followed by 
feature-level concatenation of these streams into a unified 
representation space. Although not the most computationally 
intensive solution, it strikes a good balance between reliability 
and efficiency. Achieves 85.19% accuracy on AVE. It shows 
that good fusion could be as competitive as more heavyweight 
fusion setups. It does not require the most advanced state-of-the-
art systems like 2023 precision health fusion model [20] or 2024 
AVE specific architectures [22], AVFusion proves intelligent 
design, not plain raw complexities, could realize a world impact. 

Our multi-modal framework, the modification from the last 
decade into an operational, streamlined system: MFCCs and 
LSTMs tap temporal patterns from audio, while ResNet and 
LSTMs model spatial and sequential dynamics of video. 
Feature-level concatenation binds these streams into a united 
representation space. Although it might not be the most 
computationally intensive solution, AVFusion achieves a 
balance between reliability and efficiency. It achieved an 
accuracy of 85.19% on the AVE dataset, showing that 
thoughtful fusion can vie with the more complicated setups. Not 
even calling for the state-of-the-art systems such as the 2023 
precision health fusion model [20] or 2024 AVE specifications 
architectures [22], AVFusion proves that effective system 
design and practical impact are not solely a function of model 
complexity. 

III. AVFUSION FRAMEWORK 

The AVFusion method offers a high probability of detecting 
live events by merging audio and video in an intelligent way. In 
a four-fold setting: audio preprocessing, video preprocessing, 
fusion, and classification, it could generally be viewed as a 
pipeline shown in Fig. 1. 
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(a) Multi-modal feature extraction during a Musical event 

 

(b)                                                                           (c)                                                                                                     (d) 
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(e) Multi-modal feature extraction for an event of horse-riding. 

 
(f) Multi-modal feature extraction for a cooking-related audio-visual. 

Fig. 1. (a-f): Three AVE events with raw frames, audio features, and processed outputs [25]. 
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A. Audio Preprocessing 

In this context, audio refers to the temporal signal 
representation of sound events, such as the sharp twang of a 
banjo or the continuous sizzle of a frying pan. It is the process 
of converting an audio stream into Mel-Frequency Cepstral 
Coefficients (MFCCs)-a signal representation that resembles 
human hearing. It starts with a filtering step known as a pre-
emphasis, which shifts the overall gain towards the high 
frequencies. 

𝑦(𝑡)  =  𝑥(𝑡)  −  0.97 𝑥(𝑡 − 1)              (1) 

Here, x(t) represents a raw audio signal, whereas y(t) stands 
for its filtered version. Afterwards, an audio signal must be 
segmented into short frames, and a Fast Fourier Transform 
(FFT) is computed to extract the power spectrum: 

𝑃(𝑘) = ∑ 𝑥(𝑛)𝑒−𝑗
2𝜋

𝑁
𝑘𝑛𝑁−1

𝑛=0                        (2) 

where, P(k) is a complex-valued frequency component, x[n] 
is the time-domain signal at sample n, N is frame size, k is 

frequency bin index, 𝑒−𝑗
2𝜋

𝑁
𝑘𝑛 

 is the complex exponential kernel. 
Next, a Mel-scale filter bank is used to filter the signal to match 
human audition: 

𝑚(𝑓) = 2595𝑙𝑜𝑔10(1 +
𝑓

700
)                       (3) 

where, f represents frequency in Hertz (Hz). We then take 
the spectrum's log to match loudness perception, apply a 
Discrete Cosine Transform (DCT), and achieve MFCCs: 

𝐶𝑘 = ∑ 𝑙𝑜𝑔(S𝑚)𝑐𝑜𝑠(
𝜋𝑘

𝑀
(2𝑚 − 0.5))𝑀

𝑚=1      (4) 

where, 𝐶𝑘 are the k-th MFCC coefficients, Sm energy of the 
m-th Mel filter bank, and M is the number of Mel filter banks. 
This DCT decorrelates the log-Mel energies and compacts the 
signal’s most important spectral information into a small 
number of coefficients. Fig. 2 shows this whole audio 
preprocessing flow, from raw signal to MFCCs. You can see the 
MFCCs and spectral contrast in action for three AVE events—
Banjo, Horse Riding, and Frying—in Fig. 1(a), Fig. 1(e), and 
Fig. 1(f). 

Those figures show the raw video frame on top, with the 
audio features (MFCCs and spectral contrast) below, capturing 
the sound patterns over time—like the twang of a banjo or the 
sizzle of frying. After getting those features, they are fed into an 
LSTM to track how the audio evolves, which is crucial for 
events that unfold over a few seconds. 

 

Fig. 2. Audio preprocessing flowchart. 

B. Video Preprocessing 

Video is about rapidly transforming shapes; for example, a 
horse in a gallop or the shape of a frying pan. We sample visual 
frames at 4 f/s, resize the frames to square 224×224 pixels, and 
normalize them using mean subtraction. A 2D-CNN on ResNet-
50 extracts spatial features: 

𝑦(𝑖, 𝑗) = ∑𝑚=1
𝑀−1∑𝑛=0

𝑁−1 𝑥(𝑖 + 𝑚, 𝑗 + 𝑛) ⋅ 𝑊(𝑚, 𝑛) + 𝑏         (5) 

Here, x is the input image, W is the convolutional filter, b is 
the bias, and y (i, j) represents the activation at position (i, j) in 
the output feature map. This convolution captures spatial 
features such as edges, textures, and object contours in the input 
frame. 

Temporal Modelling: The features are passed through an 
LSTM network that encodes the temporal evolution of video 
events. This LSTM allows the model to see how visual patterns 
evolve in time and is a requirement to identify the occurrence of 
events that last over a sequence of frames, for example, a fight 
or a car crash. An LSTM comes next to catch how those features 
change over time: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝐹𝑡)                                   (6) 

 ℎ𝑡 is the hidden state at time step t, 

 ℎ𝑡−1is the hidden state at the previous time step. 

 

Fig. 3. Video preprocessing flowchart. 

Fig. 3 maps out this video preprocessing flow, from frames 
to LSTM output. For a real look at it, check out Fig. 1. Fig. 1(b), 
(c), and (d) show the raw frames for Banjo, Horse Riding, and 
Frying—those are the starting points. Then, Fig. 1(a), (e), and 
(f) show the edge features after the CNN processes them, 
highlighting key shapes like the banjo’s strings, the horse’s legs, 
or the pan’s edges. Those processed outputs help the model zero 
in on what makes each event tick. 

C. Model Architecture 

The architecture of AVFusion is a parallel architecture that 
consists of both an audio part and a video part, which are 
ultimately fused for joint event prediction. The audio part of the 
AVFusion model consists of a 3-layer LSTM with 128 hidden 
units taking in 40-dimensional MFCC features for each frame to 
extract the temporal dynamics of sound. The video part of the 
model contains spatial feature extraction, using ResNet-50, then 
a 2-layer LSTM with 256 hidden units to learn motion and 
temporal dependencies across video frames. 

Additionally, both pipelines of the AVFusion model are 
trained end-to-end from their associated loss function with a 
shared loss function that allows the model to optimize both 
modalities at once without any spatial or temporal lag. Batch 
normalization is applied to each layer of the AVFusion model to 
stabilize the training of the model. In additional, a dropout rate 
of 0.5 is also used to combat overfitting. The final stage of the 
AVFusion model is to align the outputs of both audio and video 
pipelines over the frame, take the concatenation of the features 
from both modalities, and treat as a single representation with a 
prediction head for classification. 

D. Fusion and Classification 

Bringing both modalities together to bring forth a more 
accurate and holistic event detection model after feature 
generation by both audio and video models separately predicted 
is the last process. The fusion process includes Concatenation: 
Audio features and video features are concatenated into one 
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feature vector. This allows the model to take into account both 
visual as well as audio information of an event at once. The 
concatenated features will pass through fully connected 
networks, which can also be referred to as dense layers so that it 
can learn the relation between audio and video features. The 
combined feature vector is calculated as follows: 

𝑥𝑓𝑢𝑠𝑖𝑜𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑓𝑎𝑢𝑑𝑖𝑜(𝑥𝑎𝑢𝑑𝑖𝑜), 𝑓𝑣𝑖𝑑𝑒𝑜(𝑥𝑣𝑖𝑑𝑒𝑜))   (7) 

 where, 𝑓𝑎𝑢𝑑𝑖𝑜 and 𝑓𝑣𝑖𝑑𝑒𝑜  are temporally aligned feature 
sequences with matching time steps. The fusion is 
performed along the feature dimension after temporal 
alignment, and 𝐶𝑜𝑛𝑐𝑎𝑡 denotes the concatenation of the 
audio and video feature vectors. 𝑥𝑎𝑢𝑑𝑖𝑜  and 𝑥𝑣𝑖𝑑𝑒𝑜  
represent the feature vectors obtained from the audio and 
video models, respectively 

Temporal Alignment: Before combining the audio and video 
features to be fused, the audio and video features need to be 
temporally aligned so that both content modalities (e.g., audio 
and video) are in synch. MFCCs are calculated with a window 
and a hop size so that an MFCC vector is calculated when each 
frame of the video is presented (e.g., one MFCC vector per 
frame). Consequently, 𝑓𝑎𝑢𝑑𝑖𝑜  and 𝑓𝑣𝑖𝑑𝑒𝑜  are in temporal 
alignment at the same time step. This allows for concatenation 
by element (or frame) so that the fused (concatenated) feature 
vector is from the same time or time context from the audio and 
video modality at the same time steps. 

Dropout is applied to prevent overfitting, and the output 
layer uses a sigmoid activation function to perform binary 
classification, determining whether an input belongs to the 
target class or not. The final classification is performed by 
passing the combined feature vector through a fully connected 
layer (dense layer) and a sigmoid activation function: 

𝑦𝑝𝑟𝑒𝑑 = 𝜎(𝑊𝑥𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑏)                        (8) 

 W is the weight matrix, 

 b is the bias term, 

 𝑥𝑓𝑢𝑠𝑖𝑜𝑛 is the concatenated feature vector, 

 σ is the function that outputs a value between 0 and 1, 
representing the sigmoid activation function, the 
probability of event detection. 

AVFusion is shown in Fig. 4, with audio pipeline (3-layer 
LSTM, 128 units, 40 MFCCs) and video pipeline (ResNet-50, 
2-layer LSTM, 256 units) that merge into a single decision. 
Batch Normalization along with dropout (0.5) is applied during 
all training processes to make the training process stable and 
reliable. AVFusion's design paradigms emphasize operational 
efficiency, data synchronization and modular scalability; rather 
than layers of abstraction or multi-layered fusion. Preprocessed 
and temporally synchronized audio and video streams assist the 
model to integrate asynchronous cues, without resorting to 
slower and variable time-frames of attention-based processing. 
Class imbalance is addressed through dynamic loss weighting 
and PCA is used for dimensionality reduction; such that the 
model is able to retain functionality even if hardware constraints 
are imposed. Although AVFusion employs a feature-level 
concatenation approach for fusion, a relatively simple fusion 

approach, this is intentional and allows the model to maintain 
nearly real-time inference speeds (30 FPS) with interpretability 
and generalizability; therefore, AVFusion's original contribution 
as a system is the coordination of many effective approaches into 
a single operationalizable. 

 

Fig. 4. Complete AVFusion architecture. 
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E. Evaluation 

We examined the robustness and real-world applicability of 
AVFusion beyond training and validation, evaluating a new and 
unseen test split of the AVE dataset. This step was necessary to 
evaluate how well the model generalizes to different audio-
visual scenarios previously unknown to it. 

A key part of the training scheme that became a problem was 
the inherent class imbalance in the AR-Videos dataset. While 
the dataset contained common events (for example, general 
background noise or silent scenes), it also contained events that 
are extremely rare events (for example, frying or blowing out 
candles). If we are to ignore this imbalance, it is likely that the 
model would bias its predictions towards the majority classes - 
this results in inflated overall accuracy at the expense of poorly 
represented categories. As a technique to improve the model’s 
performance overall, we introduced class weighting to the 
training scheme so that the underrepresented events in the 
dataset were weighted more heavily in the loss function for the 
training model. As a result, the underrepresented events in the 
model were encouraged to be formally attended to, therefore 
uncovering more subtle patterns, which leads to better 
generalizabililty and less likelihood of certain high-frequency 
classes. 

To reduce the class imbalance that exists in the AVE dataset, 
we used class weights that were determined based on the inverse 
of the class frequencies. For every class c of the form c (wc), 

will be equal to =
1

𝑓𝑐,
 , is the relative frequency of class c in the 

training data. These class weights were applied to the loss 
function in the training process, which ensured that rare events 
were contributing relatively more to the optimization than the 
frequent events. 

The second measure we took was early stopping and 
ReduceLROnPlateau to avoid overfitting, which is crucial in the 
presence of fewer high-signal events. These methods also 
monitored validation loss in real time, stopping training once the 
improvements plateaued, while also dynamically reducing the 
learning rate to refine optimization in the last few epochs. 

While speed is a crucial variable in detection, other methods 
may be just as worthy. In live deployment scenarios such as 
surveillance or smart monitoring, the model's inference time on 
the test videos was observed. The AVFusion model stood up to 
the demands of a balanced approach to speed and accuracy; 
therefore, the model’s performance supports its potential for 
real-time application. 

The confusion matrix shown in Fig. 5 gives a detailed 
account of AVFusion's performance on 28 AVE classes. Good 
performance is noted for instances with obvious audio-visual 

signatures (like "instrument playing"), while slips are also noted 
for events with overlapping cues or which occur in complex 
environments. This frank profiling not only maps out the 
successes but also gives pointers toward future refinements. 

The thorough benchmarking against single-modal baselines 
set forth in Section V, leveraging AVFusion to excel above 
audio-only or video-only methodologies, makes a statement in 
itself. It is thus established that the system is integrated: the 
whole is greater than its parts. 

F. Integration with External Systems 

It was created as more than just a proof-of-concept or 
academic experiment; it was made for actual deployment. One 
interesting application concerns the potential incorporation of 
this Tech-Scopes Data Connectivity’s Connector system 
integrates AVFusion with power monitoring units (PMUs) to 
detect faults using embedded device data. 

Tech-Scopes collects information regarding faults from 
embedded devices placed in critical infrastructures. These data 
are then collected into a centralized point of data collection, 
which can be identified as a nerve center in that ecosystem of 
monitoring. That point comprises a network of servers 
consolidated with display monitors and external hardware 
interfaces, and then a cluster of 14 PMUs, with each assigned to 
monitor voltage, current, and frequency across the grid. 

AVFusion would sit in this very framework with audiovisual 
contextualization along those existing electrical information 
streams. With the connection of cameras and microphones 
placed close to monitored equipment, that is, transformers, 
switches, and circuit breakers, it will be capable of streaming 
environmental data in real-time, thus increasing the possibility 
of fault detection using multi-sensory analysis. 

Consider the following: a power transformer starts to give 
off a sizzle-like sound, and as the flash hits a fuse, brief sparks 
are visible to the camera. By themselves, given the context 
mentioned, these signs would hardly excite suspicion within the 
walls of any classical PMU, heavily relying on electrical 
parameters as first indicators. However, an AVFusion trained to 
detect such Arabic patterns could have quickly associated these 
events and promptly generated an alert in context that hints at a 
potential equipment failure or safety hazard before it even goes 
down. 

This real-time, sensory-rich detection embodies a paradigm 
shift in how we view power grid safety. Instead of being based 
on numerical anomalies in electrical signals, AVFusion now 
introduces the capability of visual and auditory intelligence into 
the mix, greatly enhancing its ability to recognize early-stage 
faults or irregularities proceeding serious failures. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

235 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 5. Confusion matix. 

Still conceptual at this stage, the collaboration has a strong 
foundation upon which next-generation predictive maintenance 
tools capable of multi-modal fault detection would truly become 
a reality by integrating AVFusion and PMU-based systems like 
those from Tech-Scopes. This is pivotal towards resilient and 
intelligent energy infrastructure. 

G. Optimizations 

But large deep-learning models are associated with great 
computation requirements, something that makes them 
completely unfit for scenarios which cannot compromise on 
quickness and responsiveness. In such situations, AVFusion has 
been designed, and many deliberate optimizations have been 
employed to ensure that AVFusion runs optimally, without 
sacrificing results. 

In practical applications, it starts with the dimensionality 
reduction. Indeed, MFCCs are good for the audio features; 
however, in their raw form, they tend to be computationally 
heavy. Therefore, take 20 dimensions of the dimensionality of 
the MFCC features using Principal Component Analysis (PCA); 
this cuts down majorly on the memory requirement while 
speeding up the processing, as it still retains most of the key 
informative characteristics of the audio signal. 

Batch processing then comes. The batch size of 32 counts 
will give a good trade-off between memory consumption and 
computational throughput, hence allowing the model to process 
data efficiently in parallel using the breadth of GPU processing 
capabilities. 

The other major pipeline involves a convolutional neural 
network (CNN) that has been tuned for stability and 
performance. The most wondrous thing about it was gradient 
clipping, in which case the gradients do not explode during back 
propagation. The gradients have been clipped on a threshold, 
thereby ensuring convergence of the algorithm and definitely 
stable training. 

Though the model AVFusion emulates ResNet-50 with 
LSTM layers, it will be even more practical in the future as there 
are optimizations to support the model as a PCA dimensionality 
reduction step, batching the output from openVINO, and the 
limited NLP dimension with features fusion. The "lightweight" 
has to do with the model's ability in real-time inferring with 
commercially available GPUs (RTX 3090) without the addition 
of multiple large transformer stacks or excessive amount of 
multi-head attention. There will need to be some reduction in 
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model size in the future by pruning or through the use of 
backbones such as MobileNet or EfficientNet-lite. 

Although the model is not light in the absolute sense, it is 
relatively computationally efficient in comparison to 
transformer-based architectures or other hybrid architectures 
that leverage cross-modal attention. Furthermore, AVFusion has 
modular design considerations that are easy to implement and 
deploy, as well as make it responsive to real-time applications 
such as embedded fault detection and surveillance. Next steps 
include investigating backbone replacement (e.g. MobileNetV3, 
EfficientNet-lite) or exploring lightweight attention-based 
hybrid fusion modules. 

AVFusion executes at about 30 frames per second (FPS) on 
a single NVIDIA RTX 3090 GPU with an average response time 
of ~ 32 ms per video segment (10-seconds long with matched 
audio). The total parameters in the model are about 38.5M, and 
the model processes at under 7.5 GFLOPs per inference time, 
which makes AVFusion fit for real-time applications in 
surveillance and monitoring systems. 

AVFusion is capable of running video data through any 
pipeline at 30 frames per second, which is ideal for real-time 
requirements. This makes the system not only able to detect 
events accurately but also quick enough to be applied as a 
practical system for situations like surveillance, fault detection, 
or emergency response. 

IV.  EXPERIMENTAL SETUP 

The two widely practiced interventions were incorporated in 
that regard to train stability and generalization. First came early 
stopping with a patience threshold set at 10 epochs, which means 
once the validation performance of the model did not improve 
for 10 consecutive epochs, training would cease so as not to 
overfit. The second one we had included was 
ReduceLROnPlateau, variable learning rate scheduling, 
monitoring validation loss; if any improvements would stagnate, 
it would reduce the learning rate by half, making the model 
adjust weights finely toward the end of epochs and perfecting its 
learning without much retraining. 

All training and evaluations were performed using PyTorch 
on an NVIDIA RTX 3090 GPU, capable of the throughput 
required to process high-resolution video streams and dense 
audio spectrograms simultaneously. Since real-time event 
detection was among the core requirements for deploying 
AVFusion, we made processing speed a priority during the 
study. The system operated at an impressive rate of 30 frames 
per second (FPS) throughout, thus meeting the demands of 
online video analysis and real-time applications. 

In our evaluation of AVFusion, we benchmarked it against 
single-modal baselines (i.e., those trained on audio or video 
inputs only) and the best competing multi-modal systems 
available in the literature. These comparisons explicitly showed 
the strength of AVFusion's feature extraction capacity. 

V. RESULTS AND DISCUSSION 

This section dives into how AVFusion performs on audio-
visual event detection, using the AVE dataset. It’s built on a mix 
of 2D-CNNs and LSTMs for both audio and video streams, tied 

together with a fusion mechanism. This section presents the 
model's performance, explains the fusion process, 
and outlines the most important metrics used to evaluate it. 

A. Model Performance 

The AVFusion has thus exhibited tremendous results by 
attaining an accuracy of 85.19% on the AVE test set, which 
strongly corroborates the model architecture and the fusion 
strategy. The accuracy level speaks to the successful integration 
of audio and visual features, and the accuracy reflects successful 
integration and strong generalization across event types, to see 
how well the system generalizes to varying event types. 

In dealing with sound, AVFusion takes advantage of Mel-
Frequency Cepstral Coefficients (MFCCs) to characterize the 
rich texture and pattern of sounds. These features are then fed 
into Long Short-Term Memory (LSTM) layers, highly 
competent for modeling temporal dependencies-very critical for 
identifying time-varying sound events, such as the gradual 
twang of a strummed banjo string or the faint shifting of pitch 
during frying. Such sounds would almost be inaudible for static 
audio encoders, which is why the LSTMs represent a critical part 
of the audio pipeline in AVFusion. 

As for the visual stream, it employs the 2D Convolutional 
Neural Network (CNN) to extract rich spatial features-the 
silhouette of a person brushing his or her teeth or a flame coming 
out of a gas stove-and LSTMs for sequencing in time, helping 
the model learn the pattern of occurrence, such as a horse 
moving or someone playing a drum. The video modality helps 
disambiguate sounds with their visual counterpart, thus 
increasing reliability and context-awareness in event detection. 

Fusing both modalities is a key design element in itself: 
fusion by feature level, which brings together the temporal 
intelligence of audio and the spatial-temporal richness of video. 
Merging both perspectives allows AVFusion to perform just 
about two orders of magnitude better than a unimodal baselines, 
which typically miss classifying or entirely loses an event that is 
subtle. 

Fig. 6 shows the accuracy-and-loss epochs training 
dynamics: This x-axis holds the epochs of training (50, in total), 
and the y-axis shows the performance metrics. With training, 
accuracy keeps climbing until it reaches a sprawl above 85.19%, 
while loss keeps on decreasing because there is effective 
learning without overfit. This convergence is smooth, indicating 
that the architecture and training strategy, including the fusion 
mechanics and optimizer settings and regularization techniques, 
were all well aligned. 

From here, we see that such a potent training curve, 
combined with such high final performance, demonstrates the 
robustness and adaptability of AVFusion, setting a solid 
foundation for future real-time real-world audio-visual event 
detection systems. Fusion of Audio and Video Modalities. 
AVFusion’s fusion is a two-step process: It handle audio and 
video features separately, then merge them for the final 
prediction. For video, it use a 2D-CNN to pull spatial features— 
like the outline of a frying pan—then a Time Distributed 
wrapper and LSTM layers to track how those frames change 
over time. For audio, it extracts spatial features with MFCCs and 
use LSTMs to follow the sound’s temporal flow—like a frying 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

237 | P a g e  

www.ijacsa.thesai.org 

sizzle coming and going. The fusion takes place at the decision 
level. It combines the audio and video features into a single 
vector and passes it through a fully connected layer with a 
sigmoid activation. Doing so allows the model to make a better-
informed decision by reconciling the spatial information of the 
video with the time patterns of the audio. 

B. Evaluation Metrics 

AVFusion's mechanism of fusion is deliberately and 
carefully conceived in two stages, whereby audio and video 
features are first processed separately and merged later for a 
joint final prediction. This separation allows each modality to 
exploit its capability before passing on both members' insights 
for a complementary fusion. 

From the video perspective, the model begins with a 2D 
template CNN to extract useful spatial representations from 
individual frames - recognize a frying pan shape or the flickering 
of a flame or perhaps the motion of an instrument. In order to 
maintain the temporal order of visual cues, these spatial features 
are wrapped into a TimeDistributed layer, which simply treats 
each frame as a time step. The entire sequence is then dumped 
into an LSTM layer so that the model can witness how these 
spatial features evolve over time and thus learn motion 
dynamics, such as the forward-and-back swing of a golf club or 
the slow tilt of a falling object. 

The same care was taken with input audio. Starting with 
audio signal processing, audio signals are converted first to 
MFCCs, considerably compact spatial representations of sound 
textures. These MFCCs that encode variations of pitch, tonality, 
and energy are then input to the LSTM layers, which forge the 
capability of tracking sound patterns as they change in time; 
essentially the gradual building, culminating, and fading-out of 
audio events like frying sizzle, the strum of a banjo, or rhythmic 
pounding of machines. 

Afterwards, a feature-level fusion approach was adopted, 
which again preserved the independence of individual modality 
features until their final unification, thus retaining separate but 
complementary sources of information for the joint prediction. 
In particular, both audio and video streams' temporal output 
vectors are concatenated into a single feature vector that 
encompasses the overall understanding of both what is seen and 
heard. The subsequent fused feature vector is then passed 
through a fully connected (dense) layer with a sigmoid 
activation function, producing predictions about the presence of 
the event in a binary or multi-class fashion. 

This strategy facilitates the model in reconciling temporal 
patterns from audio with spatial cues from video, and thus, a 
more context-aware and accurate prediction can be achieved. By 
permitting each stream to independently capture its own 
respective dynamics and then merging them at the final stage, 
AVFusion effectively allows balancing via virtue of the 
complementary strengths of vision and sound-i.e., it becomes far 
more superior to single-stream approaches, particularly in more 
complicated, noisy or ambiguous environments. 

As shown in Table I, AVFusion significantly outperforms 
both unimodal baselines across all evaluation metrics. In 

particular, its F1-score of 83.1% and AUC of 0.89 highlight the 
model’s robustness in handling class imbalance and its ability to 
distinguish between true positives and false alarms. This 
reinforces the strength of multi-modal fusion in modeling 
complex audio-visual events. 

TABLE I.  PERFORMANCE METRICS 

Model Accuracy Precision Recall 

 

F1-

Score 

AUC 

Audio-only 72.3% 70.1% 68.9% 69.5% 
 

0.74 
 

Video-only 78.5% 
 

76.4% 
 

 

74.2% 
 

 

75.5% 
  0.81 

AVFusion 85.19% 83.7% 82.5% 
 

83.1% 

 

0.89 
 

 

Fig. 6. Accuracy and loss curves over training, with x-axis labeled "Epochs" 

(e.g., 0 to 50) and y-axis labeled "Performance (Accuracy/Loss)" (e.g., 0 to 1). 

Two curves: one for accuracy (rising to 85.19%) and one for loss (dropping 

over time). 

C. Comparison with Baselines 

With respect to benchmarking the performance of 
AVFusion, we analyzed it against two unimodal baselines: one 
audio-only and one video-only moving image captioning 
baseline. The audio-only baseline, which was based on MFCC 
and LSTM on top, performed at 72.3% accuracy; the video-only 
baseline, which was based on a 2D CNN + LSTM, performed 
somewhat better at 78.5% accuracy. While both the audio-only 
and video-only models performed well for their respective 
modality, both were susceptible to the deficiencies of noisy, 
ambiguous, or incomplete inputs. 

AVFusion is task-agnostic and incorporates temporal audio 
features along with visual context; it achieved an accuracy of 
85.19% - exceeding both unimodal models. Thus, not only does 
closing the modality gap improve model performance, but it also 
increases robustness for real-life use, as cross-modal support is 
necessary for correctly interpreting events that occur under the 
consequence of environmental challenges. 

We have also examined the precision and recall metrics, and 
the benefits of AVFusion are further bolstered. The audio-only 
baseline model exhibited precision of 70.1% and a recall of 
68.9% while the video-only model exhibited precision of 76.4% 
and recall of 74.2%. AVFusion performed best with precision of 
83.7%, and recall of 75.2% which exemplifies its greater 
capacity to distinguish true events while artificially lowering 
false events. The high F1-score and area under the curve (AUC), 
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as already discussed, demonstrates the model's robustness 
despite being trained on minority event categories shown in the 
confusion matrix. 

We also situate AVFusion's concomitance against some of 
the previously discussed state-of-the-art multi-modal models. 
Gupta et al. [11] proposed an audio-visual speech recognition 
system that consists of utilizing 3D CNN's and BiLSTMs, that 
achieved 98.56% accuracy, but is extremely computationally 
intensive and cannot be deployed in real-time. Singh et al. [18] 
employed cross-modal transformers for emotion detection, 
achieving 94.4% accuracy with intensive operational costs and 
latency. Chen et al. [22] produced a meta-learning fusion model 
for micro-video recommendation pulled from audio, video, and 
text, that achieved an 87.9% accuracy. 

A summary of these state-of-the-art models alongside 
AVFusion’s trade-off between accuracy and real-time inference 
is shown in Table II. 

TABLE II.  MULTI-MODAL SOTA COMPARISON WITH LATENCY 

Model Architecture 
Accuracy 

(%) 

Real-

time 

Latency 

(ms) 

Gupta et 
al. [11] 

3D CNN + BiLSTM 98.56 No  >300 

Singh et 

al. [18] 

Cross-modal 

Transformers 
 94.4  No ~500 

Chen et al. 

[22] 

Meta-learning + AV 

+ Text Fusion 
87.9 Partial  ~200 

AVFusion 
(Ours) 

2D CNN + LSTM + 

Feature 

Concatenation 

85.19 Yes   32 

AVFusion, in contrast, provides an 85.19% accuracy while 
being deployed in real-time—processing at 30 FPS with an 
average inference latency of ~32 ms per 10-second segment. 
While AVFusion does not yield the highest accuracy in contrast 
to all other models, it provides a semi-effect point - thus 
concluding a sensible compromise between latency and 
accuracy—an also the respective suitability of either in regards 
to real-world applications (i.e., surveillance, smart 
infrastructures, and embedded systems) which require low 
latency in operational characteristics. 

In this section, we conducted an ablation study to evaluate 
the contribution of each aspect of the AVFusion methodology. 
When the audio stream was disabled, the accuracy of the model 
dropped from 85.19% to 78.5%. Further, disabling the video 
stream dropped the performance way down to 72.3%. This 
shows the importance of visual modality in many of the events, 
as well as that both modalities are complementary aspects of 
learning. We also tested the fusion strategy. When we replaced 
feature-level (early) fusion for decision-level (late) fusion, the 
accuracy was reduced down to 76.7%. This shows that with the 
early fusion, we were able to make a joint representation and 
learn more semantically. 

Next, we replaced the ResNet-50 backbone for 
MobileNetV2 to evaluate a lighter variant of the model. The 
accuracy was slightly lower at 81.2%, but had significantly 
lower inference time and model size. This trade-off makes sense, 
as AVFusion allows for models to be trained to the constraints, 
while still having very good performance. 

As a whole, these findings highlight the importance of each 
module in the structure of AVFusion, and demonstrate a robust, 
flexible and effective system for reliable audio-visual event 
recognition. 

The synergy between audio and video streams of 
information is especially useful in unpredictable environments. 
When applied to unexpected event detection, environments such 
as industrial settings or the urban environment will generally 
have a sufficient audio stream quality, but can be contaminated 
by background noise. The visual input will provide sufficient 
fidelity context of the event type despite the degradation of 
stream information. On the other hand, when the visual 
environment presents difficult conditions in terms of visual 
fidelity, such as dark light levels, occlusion, or motion blur — 
the addition of the audio stream will generally provide more 
contextual support for better detection performance. Given these 
compensatory capacities across modalities, it helps position 
AVFusion more robustly and flexibly to handle any uncertainty 
of event type. 

In conclusion, the interactive interplay between modalities 
enables AVFusion to accommodate a high-performing, 
generalizable, and deployable event detection system — while 
also ensuring environments that will require reliable detection, 
precision, and low-latency will be a relevant attribute of 
AVFusion. Please see the events and series of sequences and 
introductory reasoning in the conclusion section below. 

D. Error Analysis 

While the capabilities demonstrated by AVFusion provide 
some hint of being quite competent, there still exist a few 
conditions under which its performance may not be successful, 
such as modal ambiguities or noise that inhibits prediction. In 
the confusion matrix (Fig. 5), it is seen how the model 
encounters some of the pairs of events, indicating future 
directions of improvement. 

Some events, for example, "frying" and "boiling", were most 
misclassified. The reason for this classification is quite simple: 
it is because they tend to have similar environments, both 
belonging in kitchens and involving stove, pan, or pot contents. 
Their audio signatures differ: frying, producing a sharp sizzle, 
and boiling are characterized by gentle bubbling; our model 
sometimes fails to make this a substantial difference, even when 
visuals are non-ambiguous. 

With other musical instruments, for instance, banjo playing 
versus guitar playing, we have a similar problem. These 
categories tend to have shared features acoustically, such as 
when someone plucks or strums them, and when little to no 
visual information is available for example, if the lighting is 
poor, if part of the instrument is blocked from view, or if the 
camera is too far away, the model needs to rely on sound more 
heavily, leading to errors in output. 

Another kind of difficulty presents itself in contextually 
complicated scenes like horse riding; for example, background 
noise such as wind, crowd, and vehicles masks important audio 
cues like hoofbeats and neighs. Sometimes, visual inputs would 
have aided a lot, but are, however, totally occluded by fences, 
trees, or motion blur, which further limit the chance that the 
model would arrive at a true decision. 
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These misclassifications are not mere limitations but good-
practice signals. They point towards focused improvements. 
Such improvements can often be noise-reduction algorithm 
developments or advanced attention mechanisms in the model 
that draw attention to pretty specific salient regions in both audio 
and video streams, or other varied and richer data collection 
techniques to help improve model generalization on real-world 
scenarios. 

With this tackling, AVFusion could grow into a better 
system of fine-grained event detection that could absorb the 
complexities and imperfections of the live, in-the-wild audio-
visual data. 

VI. CONCLUSION 

Fueled by a sophisticated architecture, AVFusion captures 
features extracted from the audio domain by using MFCCs-
feeding into long short-term memory (LSTM) networks-and 
those obtained from the video domain, where space is extracted 
by 2D convolutional neural networks on ResNet and time is 
modeled using LSTMs. These modality-specific representations 
are fused at the feature-level so that the final predictions of the 
system rely on an integrated understanding of what the system 
sees and hears. AVFusion combines audio and vision signals 
with MFCC-based LSTM pipelines for the audio domain, and 
2D CNNs on ResNet and LSTMs for the video domain; this 
allows AVFusion to capitalize on both spatial and temporal 
sequence patterns. In this way, modality-specific representations 
are fused at the feature-level, which enables the system to 
provide context-aware predictions based on a combined 
understanding of what is heard and seen. 

The AVFusion demonstrated a remarkable accuracy of 
85.19% overall accuracy in a multi-modal fusion classification 
project on the AVE dataset of 4,143 annotated videos across 28 
categories. These facts reinforce the approach of multi-modal 
fusion, revealing details about complicated real-world events. 
Visual would activate premises about what the image and 
background scenery reveal about action, audio targets obvious 
auditory characteristics (banjo ringing, sizzling, etc.) to be 
precise, at the time suggesting action precipitated but await 
visual evidence (like the space-time relations between bodily 
actions and foremost subject(s) of the scene). 

Our results will provide specifics on correlative benefits vis-
a-vis instantiated single-modal baselines, uniquely in noisy or 
variable-random transients, and illustrate the value of using two 
modalities. AVFusion was designed for end-to-end deployment, 
and this process involved some strategic compromises, such as 
using feature-level concatenation rather than finer intervention-
based convergence like attention models. 

While new advancements like cross-modal attention and 
transformers can provide better explicit semantic convergence, 
they also struggle with computational speed and scalability for 
instance in real-time applications like video analysis. Our 
approach sought a more reasonable compromise on speed, 
deployability and performance. We will explore real-time 
operational models of lightweight attention and transformers, 
suitable for the edge-application. 

Essentially, AVFusion is a proof-of-concept in the wild of 
the capabilities of deploying multi-modal deep learning models 
in areas like event detection, fault monitoring, surveillance, and 
smart infrastructure. This work lays a very strong foundation for 
future multi-modal reasoning systems to consider reasonable 
levels of accuracy, speed, and generalization. 

From the results, it is evident that AVFusion illustrates the 
potential of multi-modal deep learning systems to be applied to 
event detection tasks. Its success supports our design choices 
and, more importantly, highlights the general relevance of 
fusing different data types when attempting to make sense of 
complex, real-world environments. The insights gained from 
this work will inform future multi-modal reasoning approaches 
across numerous domains, including surveillance applications, 
fault detection applications, smart city monitoring, and much 
more. 
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