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Abstract—The proliferation of algorithms and commercial 

tools for generating synthetic audio has sparked a surge in mis- 

information, especially on social media platforms. Consequently, 

significant attention has been devoted to detect such misleading 

content in recent years. However, effectively addressing this 

challenge remains elusive, given the increasing naturalness of 

fake audio. This study introduces a model designed to distinguish 

between natural and fake audio, employing a two-stage approach: 

an audio preparation phase involving raw audio manipulation, 

followed by modeling using two distinct models. The first model 

employed feature extraction through wavelet transformation, 

followed by classification using a machine learning Artificial 

Neural Network. The second model utilized ResNet50 

architecture, a type of deep learning model, which resulted in 

improved accuracy. These findings underscore the effectiveness 

of deep learning approaches in audio classification tasks. 

Training data for the model is sourced from the DEEP-VOICE 

dataset, which comprises both genuine and synthetic audio 

generated by various deep-fake algorithms. The model’s 

performance is assessed using diverse metrics such as accuracy, 

F1 score, precision and recall. Results indicate successful 

classification of audio in 86% of cases. This research contributes 

to the field of Automatic Speech Recognition (ASR) by 

integrating advanced preprocessing techniques with robust 

model architectures to identify manipulated speech. 
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I. INTRODUCTION 

The increasing utilization of generative Artificial 
Intelligence (AI) in speech-related tasks, such as voice cloning 
and real-time voice conversion, carries profound implications. 
This technological advancement raises significant ethical 
concerns, including threats to privacy and the potential for 
misrepresentation. Consequently, there is a pressing need for 
real-time detection mechanisms to identify AI-generated 
speech, particularly in scenarios involving DeepFake Voice 
Conversion. Misinformation has become an increasingly 
prevalent issue in recent times, extending beyond false news 
articles to encompass the creation of fake audio, images, and 
videos using algorithms and tools. This form of AI-generated 
content, known as deepfake [1], [3], presents significant 
concerns due to its potential impact on various aspects of 
society, including politics, morality [2], and legal proceedings. 
For instance, in politics, deepfakes could influence citizens’ 
decisions during elections [4], [5]. Similarly, they could 
adversely affect individuals’ lives, such as in cases of 
nonconsensual use of famous faces in pornographic materials 
[6]. Furthermore, deepfakes have the potential to generate 

false digital evidence, thereby influencing legal outcomes. 
Deepfakes encompass a set of algorithms crafted to generate 
synthetic media with the intent of substituting one person’s 
likeness with another’s. This synthetic content elicits 
numerous social, ethical, and legal apprehensions regarding 
data credibility, as it can portray individuals seemingly 
uttering or performing actions they never actually did. Notable 
instances of deepfakes often revolve around images, wherein 
one person’s facial features are replaced by another’s, 
engaging in activities the original subject did not partake in. 
Artificial Intelligence achievement, emphasizing how the 
commercialization of human behavior has fueled the quest for 
digital replicas on an industrial scale [7], [8]. 

To address these emerging challenges, this study uses the 
publicly available DEEP-VOICE dataset, which includes both 
real and synthetically generated speech samples, which consist 
of authentic human speech samples from eight prominent 
individuals. The dataset includes instances of their speech 
being converted to mimic that of others using Retrieval-based 
Voice Conversion techniques. In this study, two different 
models for the task at hand will be applied. The first model 
involves feature extraction using wavelet transformation, 
followed by classification using a machine learning Artificial 
Neural Network (ANN). The second model utilizes the 
ResNet50 architecture. The study aims to analyze and 
compare the performance of these models in addressing the 
objectives of this study, particularly in terms of performance 
metrics such as F1 score, precision, recall and accuracy. 

 This study aims to address the following research 
question: Which modeling approach—lightweight, 
interpretable Wavelet-based ANN or complex, data-driven 
ResNet50—offers better performance and practical 
applicability for deepfake speech detection using the DEEP-
VOICE dataset? 

Even though there are an increasing variety of ways for 
detecting synthetic audio, ranging from sophisticated deep 
learning algorithms to conventional signal processing 
techniques, there is still a conspicuous dearth of comparison 
studies that thoroughly assess the advantages and 
disadvantages of each method. There aren't many studies that 
directly contrast more interpretable, lightweight traditional 
machine learning models that rely on handcrafted features, like 
wavelet-domain characteristics, with contemporary deep 
learning architectures like ResNet50, which use hierarchical 
feature learning and transfer learning from massive image 
datasets. For experimental validation, the publicly available 
DEEP-VOICE dataset, which includes both authentic and 
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manipulated speech samples, was employed. 

In fields like forensics or embedded systems, where 
interpretability is crucial or computational resources are 
limited, this disparity is especially pertinent. To give an 
objective comparison between these two paradigms, this study 
will conduct an empirical evaluation utilizing a standardized 
and publicly available dataset (DEEP-VOICE). The emphasis 
is on the feature extraction pipelines, preprocessing overhead, 
and model scalability in addition to the final classification 
performance, which is evaluated by accuracy, precision, recall, 
and F1-score. These factors are all crucial for the practical 
implementation of synthetic speech detection systems. 

 Most of the earlier research focuses on either deep 
learning or traditional machine learning separately, without 
direct comparisons under a standardized framework, even if 
there are several methods for deepfake voice detection. 
Furthermore, there haven't been enough comparisons 2q1of 
the interpretability and computational effectiveness of 
lightweight models like Wavelet-based ANN with more 
sophisticated deep architectures like ResNet50. To close this 
gap, our study uses a single dataset to perform a head-to-head 
comparison. 

The remainder of this study is organized as follows: 
Section II reviews the existing literature and identifies gaps. 
Section III outlines the proposed methodology, including data 
preprocessing and model architecture. Section IV presents the 
experimental set-up and results. Section V discusses the 
findings considering related works, and Section VI concludes 
the study with a summary and suggestions for future work. 

II. LITERATURE REVIEW 

In this section, existing literature and related research to 
understand current methodologies are explored, identifying 
knowledge gaps, and contextualize this research within the 
academic landscape. In the research conducted by Wijetunga 
et al. [9], the focus was on leveraging deep learning 
techniques to detect deepfake audio within group 
conversations. Their approach involved the utilization of the 
UrbanSound8K dataset, which provides labeled sound 
excerpts of urban sounds across various classes, along with a 
conversational dataset sourced from Open subtitles. A series 
of preprocessing steps was undertaken, including sample rate 
conversion, merging of audio channels, and extraction of Mel-
Frequency Cepstral Coefficients (MFCC) on a per-frame 
basis. Following preprocessing, the dataset was partitioned 
into distinct training and testing sets. Multiple neural network 
architectures were employed throughout the study, 
encompassing models such as Multilayer Perceptrons (MLP), 
Convolutional Neural Networks (CNN), and Deep Neural 
Networks (DNN). These models were applied to various tasks 
including speech denoising, speaker diarization incorporating 
Natural Language Processing (NLP), and synthetic speech 
detection. Furthermore, Transfer Learning techniques were 
deployed, utilizing a pre-trained VGG19 model to enhance the 
accuracy of the detection framework. The results obtained 
from the experimentation phase show- cased promising 
outcomes. Notably, the CNN architecture achieved a 
commendable testing accuracy of 89%. However, despite 
these achievements, the research also acknowledged several 

limitations inherent in the current approach. Issues such as the 
necessity for improved signal denoising techniques. 
Furthermore, challenges pertaining to speaker identification 
error rates and the automation of partitioning processes in 
speaker diarization were acknowledged as areas warranting 
further investigation and development. 

In the investigation conducted by Hamza et al. [10], the 
focus was directed towards deepfake audio detection using 
MFCC features in conjunction with machine learning 
methodologies. Central to their investigation was the 
utilization of the Fake-or-Real (FoR) dataset, a comprehensive 
repository comprising over 195,000 speech samples, 
encompassing both authentic human recordings and synthetic 
computer-generated speech. Within this dataset, researchers 
meticulously curated four distinct subsets, each tailored to 
specific experimental needs. These subsets, namely for-
original, for-norm, for-2sec, and for-rerec, underwent 
meticulous preprocessing to standardize sampling rates, 
volumes, and channels, thereby ensuring uniformity across 
gender and class categories. Notably, subsets like for-norm 
underwent additional standardization processes, including the 
elimination of duplicate files to enhance data consistency. 
Their methodology involved data preprocessing, MFCC 
feature extraction, and employing various machine learning 
models like SVM, VGG-16, XGB, RF, KNN, and LSTM. 
Notably, while the SVM model generally performed well, 
VGG-16 stood out with a remarkable 93% accuracy in the for-
original subset. Challenges included the high dimensionality of 
the for-norm dataset, emphasizing the need for dimensionality 
reduction techniques. The study highlighted the importance of 
integrating features from various extraction methods for 
robust deepfake audio detection, suggesting avenues for future 
research refinement. 

Kumar et al. [11] addressed the detection of AI-generated 
speech using a binary classification model trained on the 
“DEEP-VOICE” dataset, comprising real and synthetic voice 
samples. They applied Exploratory Data Analysis (EDA) to 
handle outliers and missing values and extracted features such 
as Chroma-STM and RMS. Preprocessing steps included 
resampling, adjusting sample rates, and normalization. A 
Random Forest Classifier with 5-fold cross-validation 
achieved 98.5% accuracy, demonstrating strong performance 
across multiple evaluation metrics. However, the study 
highlighted limitations in scalability and generalizability, as 
well as a reliance on manually engineered features, which may 
restrict adaptability and efficiency. 

In the research by Khochare et al. [12], a deep learning 
framework tailored for audio deepfake detection is presented, 
utilizing a combination of machine learning and deep learning 
approaches. Central to the investigation is the utilization of the 
Fake or Real (FoR) dataset. In the feature-based paradigm, 
audio files undergo transformation into datasets comprising 
various spectral features, while in the image-based domain, 
melspectrograms are derived from the audio samples using the 
librosa library. The model repertoire encompasses machine 
learning algorithms such as SVM, LGBM, XGBoost, KNN, 
and Random Forest for feature-based classification, alongside 
deep learning techniques like Temporal Convolutional 
Network (TCN) and Spatial Transformer Network (STN) for 
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image-based classification. Results demonstrate varying 
degrees of success across methodologies, with machine 
learning models achieving accuracy within the range of 60% 
to 70%, led by SVM, while TCN emerges as the standout 
performer in image-based classification, boasting a test 
accuracy of 92%, followed by STN at 80%. However, the 
study identifies limitations such as the exclusion of critical 
inputs like Short-Time Fourier Transform (STFT) and Mel-
Frequency Cepstral Coefficients (MFCC) in the image-based 
approach, prompting future research efforts to address these 
constraints and refine classification accuracy. 

III. PROPOSED MODEL 

The proposed model subsections follow a structured 
approach. Initially, the input data from the DEEP-VOICE 
Dataset [13], undergo preprocessing, including wavelet 
denoising for noise reduction, feature extraction through 4- 
level wavelet decomposition, and feature reduction using ICA 
and normalization techniques depicted in Fig. 1. Subsequently, 
two models are applied: the first model utilizes ANN 
classification, while the second model employs deep learning 
techniques with ResNet50. Finally, the performance of these 
models is compared to determining the most effective 
approach. They are crucial in contexts with limitations, such 
embedded systems.  Conversely, ResNet50 was selected due to 

its demonstrated efficacy in identifying high-dimensional 
patterns and its capacity to utilize transfer learning.  While deep 
architecture can be resource-intensive and opaque, traditional 
models frequently rely mostly on manually created features and 
lack generalization across intricate audio datasets.  This study 
assesses the trade-offs between accuracy and interpretability by 
contrasting the two aspects. 

A. Dataset 

The dataset utilized in this study, titled "DEEP-VOICE: 
DeepFake Voice Recognition", was obtained from the Kaggle 
platform, a well-known repository for datasets used in 
machine learning and data science research. This dataset is 
specifically designed for identifying and analyzing deep-fake 
voice recordings. 

It is systematically organized into two primary directories, 
as illustrated in Fig. 2: one containing genuine (real) audio 
samples, and the other comprising synthetically generated 
(fake) audio samples. This clear separation facilitates 
comparative analysis between authentic and manipulated 
audio data. These values are categorized into columns as 
shown in Fig. 3, Fig. 4, and Fig. 5. Each column corresponds 
to a specific audio feature, providing numerical data for 
analysis. 

 

Fig. 1. Proposed model. 
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Fig. 2. Real and fake audio data. 

 

Fig. 3. Audio chromagram. 

 

Fig. 4. Audio spectrogram. 

 

Fig. 5. Audio MFCCs. 

B. Preprocessing 

The upcoming subsections include signal processing steps 
to refine data quality and extract relevant features: Wavelet 
Denoising reduces noise, WT Feature Extraction captures 
essential information, ICA Feature Reduction condenses the 
feature space, and Inverse Wavelet Transform reconstructs the 
signal. Together, these steps form a comprehensive pipeline 
for enhancing data quality and facilitating analysis and 
classification tasks. Daubechies 4 (db4) was used as the 
mother wavelet for the denoising process because of its 
smoothness and compact support, which make it appropriate 
for speech signal processing. To capture the pertinent speech 
characteristics without over-segmenting high-frequency noise, 
a 4-level wavelet decomposition was used. This level provided 
a suitable trade-off between resolution and processing 
efficiency. 

To reduce noise in the detail coefficients without losing 
fine-grained voice characteristics, the universal soft 
thresholding rule was applied. This rule is renowned for 
maintaining the continuity and smoothness of the signal. 

1) Feature source. Rather than using the reconstructed 

signals, the retrieved features were taken straight from the 

wavelet coefficients. More information about frequency 

fluctuations and transient patterns in the voice stream is 

preserved as a result. 

2) ICA versus PCA comparison. The efficiency of 

dimensionality reduction was examined in relation to 

Independent Component Analysis (ICA) and Principal 

Component Analysis (PCA). When examined empirically, 

ICA was able to produce more statistically independent 

components that enhanced classification performance by 

around 4% in F1 score, but PCA kept about 92% of variation 

in the first 10 components. Because ICA can separate mixed 

audio patterns that PCA cannot because of its orthogonality 

requirement, it was chosen. 

3) Normalization strategy. Z-score normalization, which 

centers the data around zero mean and unit variance, was used 

to normalize all feature vectors. To make sure that every 

extracted component contributes equally to the classification 

problem, this step was applied following ICA. To prevent data 

leakage, normalization was conducted independently of the 

training and testing sets using statistics that were taken from 

the training set. 

a) Wavelet denoising: In audio speech recognition, 

Wavelet Denoising serves as a fundamental preprocessing step 

aimed at refining data quality by minimizing noise within 

signals. This technique harnesses wavelet-based 

methodologies to effectively filter out unwanted noise, 

resulting in a clearer and more reliable input for subsequent 

analysis [14]. By employing Wavelet Denoising, researchers 

can mitigate the negative impact of noise on data 

interpretation, thereby improving the accuracy of downstream 

tasks such as feature extraction and classification. 

 

Fig. 6. Wavelet coefficients of real audio and fake audio. 

b) Wavelet transform feature extraction: In feature ex- 

traction, applying the Wavelet Transform (WT) that serves as 

a fundamental tool in frequency domain analysis, particularly 

relevant to the proposed model in the context of audio speech 

recognition. The 4-level wavelet decomposition refers to a 

specific application or implementation of the Wavelet Trans- 

form. In this case, the signal is decomposed into four levels of 

detail, each capturing different frequency bands or resolutions 

as shown in Fig. 6. It efficiently condenses complex audio 

signals, which exhibit temporal variations and contain diverse 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025  

320 | P a g e  

www.ijacsa.thesai.org 

data points, into a concise set of parameters that characterize 

these signals [15]. Given the dynamic nature of audio signals, 

the frequency domain approach, often involving WT, is 

commonly employed to determine the most suitable feature 

extraction method [16]. 

4) ICA feature reduction. To isolate distinct feature vec 

tors from speech signals, employing the Independent 

Component Analysis (ICA) algorithm on various segments of 

human speech is made. ICA is a computational method that 

splits a complex signal into separate parts that are independent 

from each other [17]. It is used to find the different sources or 

causes behind observed signals, assuming these sources don’t 

affect each other statistically. In speech processing, ICA can 

help separate different voices in a recording where multiple 

people are speaking at once. By analyzing statistical properties 

like non-Gaussianity and independence, ICA untangles the 

voices from each other. It’s a useful tool in various areas like 

signal processing, machine learning, and neuroscience, where 

understanding the individual components of a signal is 

important. 

a) Inverse wavelet transform: Utilizing the inverse 

wavelet transform as a pivotal element of the speech 

recognition framework. Following the application of wavelet 

analysis to break down the speech signal into its individual 

frequency components, the inverse wavelet transform to 

reconstruct the original signal from these components was 

employed [18]. This reconstruction procedure facilitated the 

retrieval of the initial speech signal while preserving crucial 

details regarding its frequency characteristics. Through the 

integration of the inverse wavelet transform into the proposed 

system, it successfully analyzed and processed speech signals 

for recognition purposes, resulting in precise and dependable 

outcomes. 

b) Normalization: In this study, normalization 

significantly improved the speech recognition system. Before 

featuring extraction and model training, the input speech data 

to ensure consistent scaling across samples is normalized, 

reducing biases and making the proposed system more robust 

to amplitude variations. This enhanced the accuracy and 

reliability of the recognition system, leading to consistent and 

trustworthy results across different datasets and conditions. 

C. Artificial Neural Network Architecture 

Artificial Neural Network (ANN) is a computational 
model inspired by the structure and function of the human 
brain’s neural networks. It consists of interconnected nodes, 
or” neurons”, organized in layers. In this specific 
implementation, the ANN for classification tasks was applied, 
integrating Wavelet Transform for feature extraction and 
Independent Component Analysis (ICA) for feature reduction. 
The ANN architecture comprised three layers as shown in Fig. 
7: the first layer contained 10 nodes, the second layer had 7 
nodes, and the output layer consisted of 1 node. This design 
allowed for effective processing and classification of speech 
data while managing computational resources efficiently. 

 

Fig. 7. ANN architecture. 

D. ResNet50 Architecture 

The implemented model employs the ResNet50 model, a 
convolutional neural network renowned for its depth and 
effectiveness. ResNet, designed with 50 layers, introduces 
residual learning to mitigate accuracy degradation as 
networks deepen. This approach enables each layer to learn 
residual mappings in relation to input layers, facilitated by 
skip connections. ResNet50 architecture includes 
convolutional layers, batch normalization, activation 
functions (typically ReLU) [19], and bottleneck blocks to 
manage complexity [20]. In the code, ResNet50 acts as a 
feature extractor for audio data, leveraging pre-training on 
datasets like ImageNet to extract high-level features from 
audio spectrograms. Through transfer learning, ResNet50 is 
represented in Fig. 1 as Model 2. It is capable of effectively 
extracting features for classification tasks, such as audio fake 
detection. The implemented model specifies hyperparameters, 
including 100 epochs, a batch size of 32, Adam optimizer, 
binary cross-entropy loss, and early stopping with a patience 
of 5 for monitoring validation loss. 

E. Wavelet Denoising, Feature Extraction and Dimensionality 

Reduction 

Daubechies 4 (db4) was chosen as the mother wavelet for 
the preprocessing stage because of its smoothness and 
compact support, which makes it ideal for catching fleeting 
patterns in voice data. To balance time-frequency resolution, 
a 4-level wavelet decomposition was used; higher levels offer 
global patterns, while lower levels catch finer details. Four 
levels produced the best trade-off between computing 
efficiency and information retention, according to empirical 
data. The universal soft thresholding rule, which reduces 
high-frequency noise while maintaining significant signal 
structures, was used to attenuate the noise [21]. Because it 
preserves signal continuity and minimizes overfitting in 
subsequent modeling stages, this approach is frequently used. 
Instead of using the reconstructed signals, the extracted 
characteristics were taken straight from the wavelet coefficients 
[22]. The localized time-frequency information that is 
essential for differentiating between authentic and 
fraudulent audio patterns is preserved when raw coefficients 
are used. 

A comparison analysis comparing Principal Component 
Analysis (PCA) and Independent Component Analysis (ICA) 
was carried out to reduce dimensionality [23]. ICA produced 
components that were more statistically independent than 
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PCA, which kept about 92% of the total variance in the first 
10 components. ICA was chosen for this investigation 
because, when evaluated in the classification pipeline, it 
increased the F1-score by over 4% above PCA. 

Z-score normalization (zero mean, unit variance) was used 
to normalize the features. To guarantee that every independent 
component had an equivalent impact during classification, this 
step was implemented following ICA transformation. 
Crucially, for the purpose of preventing data leakage, 
normalization was carried out independently on the training 
and testing sets using statistics that were only calculated from 
the training data. 

IV. MODELS’ APPLICATION AND RESULTS 

In this section, the application of the two distinct models 
for the task of audio speech recognition, along with their 
respective results, are presented. 

A. Model 1: Artificial Neural Network (ANN) with Wavelet 

Transform 

For the first model, an Artificial Neural Network (ANN) 
in conjunction with Wavelet Transform for feature extraction 
was applied. A lightweight yet efficient architecture is 
provided by combining wavelet-domain characteristics with an 
Artificial Neural Network (ANN). Three completely 
connected layers made up the ANN's design, which was 
optimized for classification jobs with less data. The output 
layer has a single sigmoid-activated node for binary 
classification, a hidden layer with seven neurons, and a first 
layer with ten neurons that receives the ICA-reduced wavelet 
coefficients. Simplicity, quick training time, and 
interpretability are advantages of this paradigm. Its scalability 
to larger or more varied datasets is constrained by its 
dependency on manually created feature extraction (wavelets + 
ICA). Performance reporting was made robust by using 4-fold 
cross-validation, and overfitting was avoided by using 
regularization techniques. 

The input data, preprocessed using Wavelet De-noising, 
underwent feature extraction through 4-level wavelet 
decomposition. Following this, Independent Component 
Analysis (ICA) and normalization techniques were employed 
for feature reduction. The ANN, comprising 3 layers (10 
nodes in the first layer, 7 nodes in the second layer, and 1 node 
in the output layer), was trained on the processed data for 
audio speech recognition. The results of this experiment, 
conducted using k-fold cross-validation with k=4, yielded an 
average accuracy across folds of 79.7%, average precision of 
82.1%, average recall of 93.9%, and average F1 score of 
87.6%. 

B. Model 2: Deep Learning with ResNet50 

The second model utilized deep learning techniques, 
specifically ResNet50, for audio speech recognition. The 
ResNet50 model makes utilization of transfer learning and 
deep residual learning. Using spectrogram images produced 
from the DEEP-VOICE dataset, the 50-layer architecture was 
refined after being pre-trained on ImageNet. Hierarchical 
auditory patterns may be captured by the convolutional layers 
thanks to the spectrograms' 2D time-frequency representation 

of audio. 

Binary cross-entropy loss, the Adam optimizer, and a 
batch size of 32 were used to train the model. To reduce 
overfitting, early stopping was used with 5-epoch patience. 
ResNet50's advantage is its capacity to generalize across 
intricate audio circumstances and automatically learn high- 
level audio properties without the need for manual engineering. 
On synthetic speech samples, its deeper architecture offers 
improved recall and classification accuracy. 

The ResNet50 architecture, comprising 50 layers, was pre-
trained on a vast dataset such as ImageNet to extract high-
level features from audio spectrograms. These features were 
then fed into additional layers for classification purposes. The 
results of this experiment, also conducted using k-fold cross-
validation with k=4, demonstrated the superior performance of 
ResNet50 with an average accuracy across folds of 85.9%, 
average precision of 87.3%, average recall of 98.2%, and 
average F1 score of 92.4%. 

Regarding hyperparameters, the implemented model 
employed the following settings: 100 epochs, batch size of 32, 
Adam optimizer, binary cross-entropy loss function, and early 
stopping with patience set to 5. Upon comparison, it is evident 
that the deep learning model with ResNet50 outperformed the 
ANN with Wavelet Transform, exhibiting higher accuracy, 
precision, recall, and F1 score. 

From the comparison shown in Table I, it is evident that 
the deep learning model with ResNet50 outperformed the 
ANN with Wavelet Transform, exhibiting higher accuracy, 
precision, recall, and F1 score. 

TABLE I APPLYING ANN ARCHITECTURE WITH WAVELET TRANSFORM 

VERSUS RESNET50 ARCHITECTURE 

Model 
Avg. 

Accuracy 

Avg. 

Precision 

Avg. 

Recall 

Avg. F1 

Score 

ANN with WT 79.69% 82.14% 93.88% 87.62% 

ResNet50 85.94% 87.29% 98.21% 92.41% 

These results highlight the effectiveness of deep learning 
techniques, particularly ResNet50, for audio speech 
recognition tasks, offering improved performance and 
robustness compared to traditional machine learning 
approaches as shown in Fig. 8. 

 

Fig. 8. Comparative performance metrics of ANN and ResNet50 model. 
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V. DISCUSSION 

Through a comprehensive review of the literature [24], 
valuable insights into current state-of-the-art methodologies 
were gained. This research significantly contributes to this 
body of knowledge by achieving high performance in 
accuracy levels [25], particularly through the utilization of the 
deep learning ResNet50 model, which yielded a testing 
accuracy of 86%. This represents a noteworthy research 
contribution. In comparison to the model applied in [9], which 
employed a CNN architecture and achieved a commendable 
testing accuracy of 89%. This approach addresses some of the 
acknowledged limitations in the literature. For instance, the 
applied methodology incorporates improved signal denoising 
techniques as part of the preprocessing steps, effectively 
resolving the challenges identified. A comparative summary 
of our results alongside existing approaches is presented in 
Table II, demonstrating the strengths and potential limitations 
of each technique in different settings. 

Similarly, [10] demonstrated the effectiveness of the 
VGG-16 model with a remarkable 93% accuracy in the 
original subset. However, challenges related to dataset 
dimensionality were highlighted, emphasizing the need for 
dimensionality reduction techniques. In this model, this 
concern by employing ICA feature reduction, thereby 
mitigating the impact of high-dimensional datasets, is 
addressed. Lastly, [11] achieved impressive results using the 
Random Forest Classifier with 5-fold Cross-Validation, 
attaining an accuracy of 98%. Nonetheless, limitations 
regarding scalability and generalizability were identified, 
along with reliance on handcrafted features, which may not 
always capture the most relevant information present in the 
data. Our approach offers potential advantages in terms of 
scalability and generalizability, as well as automated feature 
extraction techniques, thus providing avenues for further 
research and development in this domain. 

TABLE II COMPARATIVE PERFORMANCE OF PROPOSED MODELS VERSUS 

RELATED WORK 

Feature type Accuracy Dataset Model Study 

Spectrogram 85.5% 
Deep 
voice 

ResNet50 

This 

proposed 

Model 

Wavelet 

coefficient 
79.7% 

Deep 

voice 

ANN + 

Wavelet 
+ICA 

This 

proposed 
Model 

MFCC 93.0% 
Fake or 
real 

VGG-16 
Hamza et al. 
[10] 

Chroma- STM, 

RMS 

(manual) 

98.5% 
Deep 
voice 

Random 
Forest 

Kumar et al. 
[11] 

Mel- spectrogram 92.0% 
Fake or 

real 
TCN 

Khochare et 

al. [12] 

Higher raw accuracy has been obtained by other works 
like Kumar et al. [11] and Hamza et al. [10], but those models 
mainly depend on manually created features and particular 
dataset circumstances. By using automated feature extraction 
(ResNet50 with spectrograms and wavelet ICA), on the other 
hand, our method improves generalization and lessens the 
requirement for domain-specific engineering. Additionally, the 
DEEP-VOICE dataset, which contains intricate, real-world 

deepfake audio produced using sophisticated voice conversion 
techniques, provided a more difficult and realistic assessment 
for these proposed  models. 

Because of this, rather than overfitting a single data format 
or manipulation type [24], our results are more indicative of 
real-world scenarios, where models must generalize across 
several manipulation approaches. 

VI. CONCLUSION AND FUTURE WORK 

In this study, two distinct approaches for audio speech 
recognition were explored: an Artificial Neural Network 
(ANN) with Wavelet Transform and deep learning with 
ResNet50. The study’s comprehensive experimentation and 
evaluation revealed notable performance differences between 
the two models. The ANN with Wavelet Transform 
demonstrated respectable accuracy and precision, achieving an 
average accuracy across folds of 80%. However, the deep 
learning approach using ResNet50 surpassed the ANN model, 
exhibiting higher accuracy, precision, recall, and F1 score. 
ResNet50 exhibited an average accuracy across folds of 86%, 
demonstrating its exceptional ability to effectively process 
complex audio data. This represents a notable improvement in 
performance and robustness, with a nearly 6% increase 
observed compared to previous approaches. 

Our comparison highlights the effectiveness of deep 
learning techniques, particularly ResNet50, for audio speech 
recognition tasks. Leveraging transfer learning and pre-trained 
models like ResNet50 proved highly successful in extracting 
high-level features from audio spectrograms, resulting in 
superior classification accuracy. 

Despite the encouraging results, this study has several 
limitations. First, the models were evaluated on a single 
dataset (DEEP-VOICE), which may limit generalizability 
across other datasets with different characteristics or 
languages. Second, although ResNet50 performed well, its 
computational cost may hinder deployment in real-time or 
embedded systems. Finally, the reliance on spectrogram 
images introduces a preprocessing overhead that may not suit 
all applications. Future work will explore broader dataset 
diversity and model optimization for real-time deployment. 

In conclusion, the findings emphasize the significance of 
utilizing advanced deep learning architectures for audio speech 
recognition tasks, offering enhanced performance and 
scalability compared to traditional machine learning 
approaches. Future research endeavors may focus on further 
optimization techniques and larger datasets to continue 
advancing the accuracy and efficiency of audio speech 
recognition systems. 
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