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Abstract—Natural disasters pose significant threats to human 

life and infrastructure. Timely detection and assessment of these 

events are crucial for effective disaster management. This study 

proposes an automatic detection system for natural disasters using 

aerial imagery. Accurate and timely detection of natural disasters 

is critical for minimizing their impact and supporting emergency 

response efforts. This study presents a comparative analysis of 

deep learning architectures for natural disaster detection using 

satellite and aerial imagery. Four models were evaluated as 

baseline CNN, ResNet50, Faster-CNN, and Faster R-CNN with a 

ResNet50 backbone using standard classification metrics. The 

results demonstrate that deeper and more sophisticated models 

significantly enhance detection performance. While the baseline 

CNN achieved modest results with 85.3% accuracy, integrating 

residual learning in ResNet50 improved accuracy to 92.7%. 

Region-based models further boosted performance, with Faster-

CNN and Faster R-CNN attaining 95.1% and 97.1% accuracy, 

respectively. The superior performance of the Faster R-CNN with 

ResNet50 highlights its robustness and suitability for real-time 

disaster monitoring, offering a scalable and reliable solution for 

operational deployment in disaster management systems. 
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I. INTRODUCTION 

Natural disasters are becoming more frequent and severe, 
underlining the urgent need for enhanced detection and 
management strategies. Traditional approaches often depend on 
manual analysis of aerial images, a process that can be both 
time-consuming and prone to human error. However, recent 
advancements in deep learning have opened new avenues for 
automating this task. Natural disasters (NDs), which include 
volcanic eruptions, earthquakes, landslides, floods, tsunamis, 
hurricanes, tornadoes, droughts, wildfires, and severe 
temperatures, pose enormous dangers to human life and 
infrastructure [1,2]. Throughout history, these events have 
caused widespread devastation and substantial loss of life. 
From earthquakes and volcanic eruptions to hurricanes, floods, 
and wildfires, natural disasters have profoundly affected both 
populations and the environment. Among the deadliest 
recorded were the 1931 China floods, triggered by intense 
rainfall and river overflows, which inundated over 50,000 
square miles and claimed an estimated 3.7 million lives. Other 
significant natural disasters in history include the 1883 eruption 
of Krakatoa in Indonesia, which caused over 36,000 deaths and 

generated a massive tsunami that damaged coastal communities 
across the region [3]. The 1985 Mexico City earthquake, with a 
magnitude of 8.0, caused extensive damage to the city’s 
infrastructure, resulting in more than 10,000 fatalities and 
leaving over 100,000 people homeless [4]. In recent years, 
natural disasters have continued to profoundly impact 
communities worldwide [5, 6]. For example, the 2011 Tohoku 
earthquake and tsunami in Japan claimed over 15,000 lives and 
severely damaged the country’s infrastructure. In 2017, 
Hurricane Maria devastated Puerto Rico, causing widespread 
destruction and leaving most of the island without power for 
months [7]. Many communities face long-term struggles to 
rebuild their lives after such events, as the consequences of 
natural disasters can last for years or even decades, including 
the loss of homes and infrastructure, displacement of 
populations, and destruction of ecosystems. 

Climate change has intensified the frequency and severity 
of these catastrophes, making it increasingly critical to develop 
strategies to mitigate their impacts [8]. In summary, natural 
disasters have historically caused tremendous harm to both 
communities and the environment. While technological 
advancements and improvements in disaster preparedness such 
as early flood detection systems, predictive analytics, machine 
learning, remote sensing, geographical information systems 
(GIS), satellite navigation, drone technology, cloud computing, 
enhanced communication and information sharing, resilient 
infrastructure, and early warning systems [9–12] have helped 
lessen their effects, natural disasters continue to pose serious 
challenges globally. Therefore, sustained investment in disaster 
preparedness and response remains essential to minimizing the 
impact on human lives, infrastructure, and ecosystems. 

Fortunately, technological progress has greatly enhanced 
our ability to predict, respond to, and recover from these 
catastrophic events [13]. Technologies like remote sensing, 
radar, and satellite imaging provide diverse tools for monitoring 
the Earth’s surface and atmosphere from a distance. Advances 
in these fields now allow for real-time tracking of natural 
disasters such as volcanic eruptions, wildfires, and landslides. 
By analyzing data collected through remote sensing systems, 
we can improve our understanding of the scale and intensity of 
these events, which supports the development of effective 
evacuation plans and recovery efforts. Leveraging this 
information is a key strategy for strengthening disaster 
preparedness. Additionally, technologies such as the Internet of 
Things (IoT), smartphones, and social media play a crucial role 
in the rapid collection and dissemination of information during 
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natural disasters [14–21]. IoT devices, such as weather 
monitoring instruments and seismic sensors, provide real-time 
data that help emergency responders make quick, well-
informed decisions. Likewise, smartphones and social media 
platforms serve as effective channels for alerting people in 
affected areas, delivering vital updates on evacuation routes, 
shelter availability, and other essential resources. 

This study aims to thoroughly investigate how various 
technologies contribute to natural disaster management. It 
explores the roles of Remote Sensing, Radar, Satellite Imaging, 
Autonomous Robots and Drones, IoT, Smartphones, and social 
media in responding to events like earthquakes, volcanic 
eruptions, landslides, and tsunamis. These technologies have 
been key in safeguarding lives, enabling coordinated rescue 
operations, and reducing damage to infrastructure. 

The structure of this study is as follows: Section II presents 
background information on natural disasters and their 
environmental impact. Section III offers a comprehensive 
description of the dataset utilized. Section IV outlines the 
methodology and the proposed model. Section V discusses the 
evaluation results, and finally, Section VI provides the 
conclusion. 

II. BACKGROUND 

In recent years, the integration of satellite imagery with 
machine learning (ML) and deep learning methods has seen 

widespread use in various disaster management applications. 

a) Earthquakes and volcanic eruptions: Earthquakes are 

among the most severe natural disasters, triggered by the 

sudden movement of tectonic plates beneath the Earth’s 

surface, resulting in ground shaking and displacement [22]. 

These seismic events can cause extensive damage to 

infrastructure such as buildings, roads, and homes, and often 

lead to significant loss of life. The intensity of an earthquake is 

measured on the Richter Scale, which ranges from 1 to 10, with 

higher values indicating stronger quakes. According to the 

United States Geological Survey (USGS), approximately 

20,000 earthquakes occur globally each year, with around 16 

reaching a magnitude of 7.0 or above [23]. Earthquakes can also 

initiate secondary disasters such as landslides, tsunamis, and 

volcanic eruptions, increasing their overall impact (USGS, 

2021) [24]. 

Volcanic eruptions represent another dangerous type of 
natural disaster. These occur when magma from beneath the 
Earth’s surface rises and is expelled, often due to tectonic 
activity. Eruptions can result in pyroclastic flows, ash falls, and 
lava flows, all of which can cause widespread destruction and 
loss of life. The Volcanic Explosivity Index (VEI) is used to 
quantify the magnitude of an eruption, considering the volume 
of ash, lava, and other materials released during the event 
(USGS, 2021) [25]. The consequences of natural disasters such 
as earthquakes and volcanic eruptions often extend far beyond 
their initial impact. Earthquakes can reshape landscapes, 
redirect rivers and streams, and thereby alter ecosystems and 
wildlife habitats. Similarly, volcanic eruptions that release 
significant quantities of ash and gases into the atmosphere can 
influence global weather patterns and air quality [26]. 

Vulnerable communities exposed to risks from earthquakes, 
quarry blasts, and volcanic activity can significantly reduce 
their vulnerability through proactive planning and mitigation 
strategies [27, 28]. The loss of lives and property can be 
minimized when individuals and authorities establish well-
structured emergency plans, including evacuation routes, in 
advance. Furthermore, governments play a crucial role by 
enforcing resilient building codes and investing in 
infrastructure that is capable of withstanding seismic and 
volcanic events. 

Public education is also a vital component in reducing 
disaster impact. It provides people with accurate knowledge 
and preparedness about resources, such as how to respond 
during an earthquake or volcanic eruption empowers 
communities to act swiftly and effectively in times of crisis. 
Raising awareness and building local capacity helps ensure a 
more resilient response to future natural disasters. 

Ultimately, earthquakes and volcanic eruptions are 
devastating events with the potential to cause long-lasting harm 
to both human populations and the environment. Mitigating 
their effects requires a combination of infrastructure 
investment, disaster planning, and community education. In 
alignment with these goals, this research centers on enhancing 
the performance of neural networks for detecting natural 
disasters, particularly under constraints like limited labeled 
datasets and low-power hardware environments. The optimized 
Faster R-CNN model developed through this work is tailored 
for real-time implementation on lightweight platforms such as 
smartphones, satellites, and high-altitude weather balloons, 
making it a scalable and cost-effective solution for broad 
disaster monitoring and response. 

b) Landslides and tsunamis: Landslides and tsunamis are 

among the most devastating natural disasters, capable of 

causing significant destruction and loss of life. Landslides 

typically occur due to the instability of soil and rock on slopes, 

often triggered by factors such as intense rainfall or seismic 

activity. The severity of a landslide is measured using the 

Landslide Hazard Scale, which considers its potential to 

damage infrastructure and endanger lives. Beyond their 

immediate destruction, landslides can have long-term 

environmental consequences, such as altering watercourse 

paths and destroying habitats. 

Tsunamis, on the other hand, are massive ocean waves 
usually triggered by underwater earthquakes or other 
subsurface disturbances. These waves can cause widespread 
flooding and infrastructural devastation, especially in coastal 
regions. Their severity is measured by the Tsunami Magnitude 
Scale, which assesses their destructive potential based on wave 
height. Due to their ability to affect vast oceanic regions, 
tsunamis are particularly dangerous, illustrated by the 2004 
Indian Ocean tsunami, which claimed over 200,000 lives across 
multiple countries [29]. Preparedness strategies can greatly 
reduce the impact of these disasters, as shown in Fig. 2. These 
include enforcing resilient construction standards, developing 
detailed emergency and evacuation plans, and implementing 
monitoring systems for early warning. Educating at-risk 
communities on recognizing early signs of landslides or 
tsunamis and how to respond appropriately is also crucial. 
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Technological solutions such as early warning systems have 
proven effective in reducing disaster impact [30–34]. 
Governments and organizations can further mitigate landslide 
risks through reforestation and improved land management, 
while coastal engineering solutions like seawalls and 
breakwaters help shield populations from tsunamis. 

As illustrated in Fig. 1, the findings from related studies 
categorize the impact of various natural disasters across four 
critical domains: infrastructure damage, loss of life, 
environmental impact, and potential to trigger secondary 
disasters. Earthquakes and tsunamis score the highest in 
infrastructure damage and fatalities, both rated at 5, 
highlighting their extreme destructive capabilities. Volcanic 
eruptions follow with slightly lower but still severe impacts on 
infrastructure and human life, and they are rated highest for 
environmental damage with a score of 5 attributable to lava 
flows, ash dispersion, and toxic emissions. Landslides rank 
comparatively lower across all categories, particularly in their 
ability to cause secondary disasters, where they score 2. 

Previous studies on disaster severity scales consistently 
highlight the varying degrees of impact that different natural 
disasters impose on communities and environments. Research 

emphasizes that earthquakes and tsunamis rank among the most 
severe disasters. Volcanic eruptions, while sometimes less 
destructive to build environments, are noted for their significant 
environmental impacts, including long-term effects on air 
quality and ecosystems. Landslides typically score lower on 
severity scales, as their effects tend to be more localized and 
less likely to trigger widespread secondary disasters. These 
findings highlight the need for disaster-specific risk 
assessments and preparedness strategies. 

Table I provides a summary of methodologies, datasets, 
strengths, limitations, and findings related to earthquake, 
volcanic, landslide, and tsunami studies. 

Their methodology includes reviewing impact metrics such 
as the Richter Scale and Volcanic Explosivity Index. The 
organization also emphasizes disaster preparedness through 
policy recommendations that include education, resilient 
infrastructure, and evacuation planning. Although the studies 
are largely descriptive and lack predictive modeling or modern 
machine learning integration, they highlight the importance of 
early warning systems and community resilience in reducing 
disaster impact. 

 

Fig. 1. Disaster severity scales. 

 

Fig. 2. Impact comparison of natural disasters. 
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TABLE I SUMMARY OF REVIEWED LITERATURE ON NATURAL DISASTERS INCLUDING METHODOLOGIES, DATASETS USED, STRENGTHS, LIMITATIONS, AND 

KEY FINDINGS (ADAPTED FROM USGS SOURCES [22–34]) 

Authors Methodology Dataset Used Strengths Limitations Results 

USGS [22-26] 

Review and statistical 

analysis of natural 
disaster events including 

earthquakes and volcanic 

eruptions 

USGS earthquake 

and volcano datasets 

Covers a wide range of 

disaster types and 
global data; provides 

detailed impact metrics 

(e.g., Richter, VEI) 

Primarily descriptive; 

lacks predictive 

modeling or real-time 
response components 

About 20,000 

earthquakes/year; 16 with 
magnitude ≥7.0; volcanoes 

cause atmospheric impact and 

secondary disasters 

USGS [27-28] 

Policy recommendations 

and preventive strategies 

for earthquake and 
volcanic events 

Preparedness 

guidelines, 

infrastructure 
resilience studies 

Emphasizes disaster 

risk reduction through 

education and 
infrastructure 

Limited in terms of 

implementation 

analysis or specific 
case studies 

Recommendations for 

community preparedness, 

evacuation plans, and resilient 
construction 

USGS [29-34] 

Descriptive analysis and 

historical review of 
landslides and tsunamis 

Historical tsunami 

data (e.g., 2004 

Indian Ocean 
event), Landslide 

Hazard Scale 

Combines geological 
triggers with societal 

impact; includes early 

warning systems 

Descriptive in nature, 
lacks integration with 

modern ML-based 

forecasting systems 

Landslides disrupt habitats and 
waterways; tsunamis cause 

mass casualties and 

international devastation 

 

III. DATASET 

The dataset employed in this study is composed of satellite 
images capturing the aftermath of landslides and floods across 
selected regions in Japan and Thailand. The images were 
carefully selected to encompass a wide range of environmental 
and urban settings, enhancing the model’s ability to generalize 
effectively. This dataset forms the foundation for training and 
evaluating the proposed deep learning model aimed at 
accurately classifying and identifying disaster-affected areas. In 
total, approximately 10,000 images were compiled, with an 
equal distribution between landslide, earthquake and flood 
scenarios to ensure a balanced learning dataset. 

A. Data Collection 

The images were acquired through publicly accessible 
geospatial platforms, primarily Google Earth, which offers 
high-resolution satellite images of global terrain. The selection 
process involved identifying locations in Japan and Thailand 
historically affected by floods, Earthquakes and landslides, 
followed by extracting relevant imagery from these regions. 
Care was taken to exclude poor-quality or ambiguous images to 
maintain the reliability of the dataset. This manual curation 
ensured that the resulting image collection was both 
representative and robust for the purposes of training a 
convolutional neural network (CNN) for disaster classification. 

B. Annotations 

To prepare the dataset for supervised learning, each image 
was annotated with bounding boxes highlighting the regions 
impacted by either landslides or floods. These annotations were 
carefully reviewed to ensure precision in identifying disaster-
affected zones. Each bounding box was labeled with a 
corresponding class identifier, such as "landslide" or "flood", 
enabling the model to learn category-specific features. The 
annotations were stored in JSON format, which ensures 
compatibility with common deep learning frameworks and 
streamlines their integration into the training and evaluation 
pipeline. 

IV. METHODOLOGY 

A. Data Processing 

Data processing plays a foundational role in the success of 
any deep learning pipeline, especially when dealing with 

image-based tasks such as Natural Disasters detection. The 
process begins with normalization, a critical step that involves 
scaling the raw pixel intensity values of each image to a 
standardized range typically [0, 1]. This transformation ensures 
uniformity across all input data, mitigating the effects of 
varying image brightness or contrast that could otherwise bias 
the learning process. Normalization also improves the stability 
and speed of training by helping the optimizer navigate the loss 
landscape more effectively. 

Following normalization, the dataset undergoes a 
systematic splitting procedure to facilitate robust model 
training and evaluation. Using stratified sampling, the dataset is 
divided into three distinct subsets: 70% of the images are 
assigned to the training set, 15% to the validation set, and the 
remaining 15% to the testing set. Stratification ensures that the 
class distribution (i.e., Flood, Earthquakes and Landslide 
images) remains consistent across all subsets, which is essential 
for obtaining an unbiased performance evaluation and 
preventing skewed learning outcomes. 

To further prepare the images for ingestion into the deep 
learning model, a series of image processing techniques are 
applied to enhance both the quality and diversity of the dataset. 
First, all images are resized to a fixed dimension of 224×224 
pixels, which aligns with the input layer requirements of 
architectures of ResNet50 and ConvNeXt-Small. This uniform 
resizing ensures that the model receives input in a consistent 
shape, reducing computational complexity and memory 
overhead while preserving key spatial information. 

Next, noise reduction is performed using Gaussian filtering, 
a technique that smooths out high-frequency noise that may be 
present due to atmospheric distortions, sensor limitations, or 
compression artifacts in the satellite imagery. By applying a 
Gaussian kernel, subtle variations in pixel values are averaged 
in a way that retains important edges and features while 
suppressing random noise, thereby improving feature 
extraction in the early convolutional layers of the model. 

To combat overfitting and improve the model’s 
generalization to unseen data, data augmentation techniques are 
extensively employed. These include random rotations, 
horizontal and vertical flips, and color jittering, each of which 
introduces controlled variability into the training data without 
altering its semantic content. For instance, rotating an image by 
a few degrees or flipping it horizontally simulates different 
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orientations of wildfires captured by satellites, making the 
model invariant to spatial transformations. Similarly, jittering 
the color channels mimics variations in lighting conditions and 
image sensors, thereby improving robustness. 

Lastly, image enhancement is applied using histogram 
equalization, a method that redistributes the intensity values in 
an image to span a wider range of contrasts. This process makes 
subtle features more visually prominent, such as smoke 
patterns, vegetation boundaries, or burn scars, which might 
otherwise be indistinguishable in low-contrast areas. Enhanced 
contrast not only benefits visual interpretation but also 
improves the sensitivity of the model to faint or ambiguous 
features that are crucial for early wildfire detection. 

Taken together, this comprehensive data and image 
preprocessing strategy ensures that the input images fed into the 
deep learning model are clean, balanced, diverse, and 
information-rich. It significantly enhances the model’s ability 
to learn meaningful patterns, generalize real-world conditions, 
and make reliable predictions in operational wildfire 
monitoring systems. Fig. 3 shows the data processing 
flowchart. 

B. Model Architecture 

The proposed model for object detection in Natural disaster 
imagery leverages the power of Faster R-CNN, a state-of-the-
art deep learning framework designed for efficient and accurate 
object localization and classification. Faster R-CNN integrates 
two key components: a Region Proposal Network (RPN) and a 
Fast R-CNN detection network. 

 

Fig. 3. Data processing. 

1) Backbone ResNet50 as feature extractor. ResNet50, a 

deep convolutional neural network with 50 layers, has become 

a foundational architecture in image recognition and computer 

vision due to its innovative residual learning approach. A major 

challenge when training very deep networks is the vanishing 

gradient problem, where gradients diminish as they are 

propagated backward through numerous layers during training 

[35]. ResNet50 addresses this issue by incorporating skip 

connections, or residual connections, which allow gradients to 

flow more freely by bypassing one or more layers. These 

connections enable the network to learn identity mappings, 

helping the optimization process converge more quickly and 

reliably despite the increased network depth. With its 50 layers, 

ResNet50 effectively captures hierarchical representations of 

input images, learning simple features such as edges and 

textures in the initial layers and progressively more complex, 

abstract patterns like shapes, objects, and spatial relationships 

in the deeper layers. This capability is particularly 

advantageous for satellite image analysis, where features can 

vary significantly in scale, rotation, texture, and context. 

Whether distinguishing collapsed buildings, flooded areas, or 

wildfire scars, ResNet50’s rich and multiscale feature 

representations allow for more accurate identification of 

disaster-affected regions. In this system, ResNet50 acts as the 

feature extraction backbone of the detection pipeline, 

converting raw satellite imagery into a feature map that encodes 

spatial and contextual information crucial for downstream 

object detection. 

2) Region proposal network. The Region Proposal 

Network (RPN) scans the image to generate potential regions 

of interest (ROIs) that are likely to contain objects. Meanwhile, 

the Relationship Proposal Network (Rel-PN) is a deep learning 

architecture designed to improve scene understanding by 

effectively detecting meaningful relationships between objects 

within an image [36,37]. The process starts with an input image 

that is passed through a Backbone Convolutional Neural 

Network (CNN) to extract detailed feature maps. These feature 

maps are then analyzed by the RPN, which proposes candidate 

regions in the image that are likely to contain objects. 

Instead of examining all possible object pairs (which grow 
quadratically), the Rel-PN intelligently selects only the most 
promising object pairs that are likely to be involved in a 
relationship. This selection is based on learned spatial and 
contextual cues. These relevant object pairs are then passed to 
a Relationship Classifier, which determines the specific type of 
interaction or relationship between them such as "person riding 
horse" or "dog next to man” [38]. 

3) Fast R-CNN detection network. The Fast R-CNN 

component refines the proposed regions by classifying them 

and adjusting their bounding boxes. Fast R-CNN is a deep 

learning architecture designed for efficient and precise object 

detection in images. The process begins with an input image 

that passes through multiple convolutional layers to extract 

feature maps. These feature maps are then processed by the 

Region of Interest (RoI) Pooling layer, which selects regions 
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likely to contain objects [39]. The selected regions are further 

passed through fully connected layers to produce high-level 

features. Finally, the network generates two outputs: a 

classification output that predicts the object classes, and a 

bounding box regression output that fine-tunes the coordinates 

of the bounding boxes around the detected objects. 

This architecture greatly enhances both the speed and 
accuracy of object detection by sharing convolutional 
computations and utilizing RoI pooling to focus on relevant 
image regions. Its unified design supports end-to-end training 
and significantly speeds up the detection process compared to 
earlier two-stage detectors. 

At the core of this architecture lies the ResNet50 backbone, 
a deep convolutional neural network renowned for its powerful 
feature extraction. ResNet50 employs residual learning through 
skip connections, allowing gradients to bypass one or more 
layers during backpropagation. This approach addresses the 
vanishing gradient problem, enabling effective training of very 
deep networks. Consequently, ResNet50 excels at learning rich, 
hierarchical visual representations, which are essential for 
accurately detecting wildfire-related features in satellite or 
aerial imagery. 

The training procedure was meticulously crafted to 
maximize the model’s performance on the prepared dataset. 
The network was trained over 10 epochs using stochastic 
gradient descent (SGD) with a momentum term to speed up 
convergence and minimize oscillations. A learning rate of 0.005 
was set to regulate the step size during weight updates, while a 
weight decay of 0.0005 served as a regularization method to 
prevent overfitting. These training parameters collectively 
helped develop a highly effective detection model, capable of 
accurately identifying fire-prone areas within complex visual 
scenes. 

Algorithm I: Faster R-CNN with ResNet50 Algorithm for Natural Disasters 
Detection 

Input: Image I 

Output: List of detected objects with class labels and bounding boxes 

# Step 1: Preprocessing 

I_preprocessed = Preprocess(I)  # resize, normalize, augment 
(rotation, flip, jitter) 

 

# Step 2: Feature Extraction using ResNet50 

Feature_Map = ResNet50_Backbone(I_preprocessed) 

# Step 3: Region Proposal Network (RPN) 

Anchors = GenerateAnchors(Feature_Map) 

Objectness_Scores, BBox_Offsets = RPN(Feature_Map, Anchors) 

# Step 4: Proposal Selection 

Proposals = ApplyBoundingBoxRegression(Anchors, BBox_Offsets) 

Proposals = FilterLowScores(Proposals, Objectness_Scores, 
threshold) 

Proposals = NonMaximumSuppression(Proposals, iou_threshold) 

 

# Step 5: RoI Pooling 

Fixed_Size_Features = [] 

For each Proposal in Proposals: 

    RoI_Feature = RoIAlign(Feature_Map, Proposal) 

    Fixed_Size_Features.append(RoI_Feature) 

 

# Step 6: Fast R-CNN Head 

Class_Scores, Final_BBox_Offsets = 
FastRCNN(Fixed_Size_Features) 

# Step 7: Bounding Box Refinement 

Final_BBoxes = ApplyBoundingBoxRegression(Proposals, 
Final_BBox_Offsets) 

 

# Step 8: Final Classification & Suppression 

For each box in Final_BBoxes: 

    if max(Class_Scores) > class_threshold: 

        Keep box with label = argmax(Class_Scores) 

    else: 

        Discard box 

Final_Detections = NonMaximumSuppression(Final_BBoxes, 
iou_threshold) 

Return Final_Detections 

In this pipeline, the Faster R-CNN algorithm (Algorithm I) 
functions as a two-stage object detection framework that 
combines high-accuracy classification with precise 
localization. Initially, input images are fed into a deep 
convolutional backbone ResNet50, which extracts hierarchical 
feature maps. These feature maps are then processed by the 
Region Proposal Network (RPN), which generates candidate 
object regions by assessing anchor boxes based on their 
objectiveness scores and refining their positions. The top 
proposals are further refined through Region of Interest (RoI) 
pooling and passed to the Fast R-CNN module, which classifies 
each region and adjusts its bounding box coordinates. During 
training, the model simultaneously optimizes classification loss 
(using cross-entropy) and localization loss (using Smooth L1), 
employing stochastic gradient descent (SGD) with momentum 
and weight decay for parameter updates. This architecture 
strikes an effective balance between speed and accuracy, 
making it well-suited for detecting complex patterns in high-
resolution images, such as those captured by satellites. Fig. 4  
presents the block diagram of  proposed  Faster  R-CNN.
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Fig. 4. Block diagram of proposed Faster R-CNN.

C. Training Phase: Loss Computation and Optimization 

During the training phase of a two-stage object detection 
model like Faster R-CNN, the network learns to classify objects 
and accurately localize them within images. This is 
accomplished through a multi-task loss function that combines 
classification loss and localization loss. The model parameters 
are then optimized using backpropagation with Stochastic 
Gradient Descent (SGD), incorporating momentum and weight 
decay. 

Classification Loss measures how closely the predicted 
class probabilities align with the true labels. Specifically, 
Cross-Entropy Loss is employed, with Softmax Cross-Entropy 
used for multi-class classification tasks. Given a predicted 
probability distribution p and the ground truth class c, the 
classification loss is: 

Where,                         Lcls=−log(pc)     (1) 

pc is the predicted probability for the correct class c. 

Localization Loss  Lloc measures how precisely the 
predicted bounding boxes align with the ground truth boxes. 
Typically, SmoothL1 Loss is used for this purpose, as it is less 
sensitive to outliers compared to the standard L2 loss. For each 
coordinate x of the bounding box, the SmoothL1 loss is defined 
as follows: 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) = {
0.5|𝑥|             < 1 

|𝑥| − 0.5  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Therefore, the overall localization loss between the 
predicted bounding box t and the ground truth t* is defined as: 

Lloc= ∑   
i∈{x,y,w,h} SmoothL1(ti−ti

*)   (2) 

The total loss function is then: 

LTotal=Lcls+λ⋅Lloc        (3) 

where, λ is a balancing factor (usually set to 1), adjusting 
the relative importance of classification and localization. 

D. Backpropagation and Optimization 

After calculating the loss, the gradients of the loss with 
respect to the model’s parameters are determined through 
backpropagation. The optimizer used is Stochastic Gradient 
Descent (SGD) with Momentum, a technique that enhances 
gradient descent by speeding up convergence, particularly in 
situations involving high curvature or noisy gradients. The 
weight update rule is: 

Vt+1=μvt−η⋅∇L    (4) 

θt+1= θt +Vt+1    (5) 

Here, θ represents the model weights, Vt denotes the 
velocity (momentum term), μ is the momentum coefficient set 
to 0.9, and η is the learning rate, which is 0.005. ∇L represents 
the gradient of the loss with respect to the parameters. Weight 
decay helps reduce overfitting by discouraging large weight 
values. It alters the parameter update rule as follows: 

θt+1=θt+Vt+1−η⋅λw⋅θt   (6) 

where, λw  is the weight decay factor (0.0005). 
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Fig. 5. Proposed model. 
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V. RESULTS 

The performance of the proposed Natural Disasters 
detection models (Fig. 5) was comprehensively evaluated using 
standard classification metrics accuracy, precision, recall, and 
F1-score across four different architectures: CNN, ResNet50, 
Faster-CNN, and Faster R-CNN with a ResNet50 backbone ( 
see Fig. 6). The baseline CNN model attained an accuracy of 
85.3%, with precision at 82.1%, recall at 78.5%, and an F1-
score of 80.2%. Although this model served as a reasonable 
starting point, it exhibited limitations in generalization, likely 
due to its shallow depth and limited feature extraction 
capabilities. Significant improvement was achieved with 
ResNet50, which utilizes residual connections to facilitate 
learning in deeper networks. This model reached 92.7% 
accuracy, 90.4% precision, 89.3% recall, and an F1-score of 
89.8%, demonstrating its superior ability to capture complex 
patterns in wildfire imagery. Further gains were observed with 
the Faster-CNN model, which incorporates region-based object 
detection. It attained 95.1% accuracy, 94.0% precision, 92.8% 
recall, and an F1-score of 93.4%, highlighting the advantage of 
combining detection and classification techniques. The highest 
performance was achieved by the Faster R-CNN architecture 
with a ResNet50 backbone, delivering outstanding results with 
97.1% accuracy, 95.8% precision, 96.2% recall, and a well-
balanced F1-score of 96.0%. 

 

Fig. 6. Comparison of model performance metrics. 

 
Fig. 7. ROC Curve comparison of models. 

These metrics underscore the model's ability to detect 
Natural disasters regions with high reliability and minimal false 

predictions. ROC curve analysis further validated these 
findings. The AUC scores increased progressively across 
models, with CNN yielding the lowest AUC at 0.59, followed 
by ResNet50 at 0.67, Faster-CNN at 0.77, and the highest AUC 
of 0.83 achieved by the Faster R-CNN + ResNet50 model ( see 
Fig. 7). 

These results confirm the superior classification capability 
of the proposed framework, demonstrating robust performance 
and high discriminative power across all classes. This strong 
performance highlights the model's readiness for real-world 
deployment in early wildfire detection systems. Table II 
presents the proposed model results. 

TABLE II PROPOSED MODEL RESULTS 

Model Accuracy Precision Recall F1-Score 

CNN 85.3% 82.1% 78.5% 80.2% 

ResNet50 92.7% 90.4% 89.3% 89.8% 

Faster-

CNN 
95.1% 94.0% 92.8% 93.4% 

Faster R-

CNN + 
ResNet50 

97.1% 95.8% 96.2% 96.0% 

VI. CONCLUSION 

This study systematically evaluated the effectiveness of 
deep learning architectures for natural disaster detection using 
remote sensing imagery. The baseline CNN, although 
functional, struggled with generalization due to its limited 
depth. Incorporating residual connections through ResNet50 
significantly enhanced feature representation and classification 
performance. Further integration of region-based object 
detection in the Faster-CNN model yielded additional 
improvements. The highest-performing model, Faster R-CNN 
with a ResNet50 backbone, achieved exceptional accuracy, 
precision, recall, and F1-score, demonstrating its potential for 
real-time disaster detection. These results underscore the value 
of combining deep residual learning with object detection 
mechanisms for robust and scalable disaster response solutions. 
Future work may focus on expanding dataset diversity, 
incorporating multimodal data, and optimizing inference speed 
for deployment in real-time early warning systems. Future work 
will focus on expanding the dataset with additional disaster 
types and temporal satellite data to analyze changes over time. 
Moreover, integrating multi-spectral satellite data could further 
enhance feature discrimination, improving detection in low-
visibility or cloud-covered scenarios. 
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