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Abstract—Wildfires pose a significant threat to ecosystems, 

human settlements, and air quality, necessitating advanced 

detection and mitigation strategies. Traditional wildfire detection 

methods often rely on manual observation and conventional 

machine learning approaches, which may lack efficiency and 

accuracy. This study proposes a novel deep learning model based 

on the ConvNeXt-Small architecture, a hybrid design that fuses 

the strengths of Convolutional Neural Networks (CNNs) and 

Transformer-inspired mechanisms, enabling more comprehensive 

analysis of wildfire patterns in satellite imagery. The model was 

trained using the Adam optimizer, which provides efficient 

convergence and adaptive learning. The dataset used consists of 

real-world satellite images collected from wildfire-affected regions 

in Canada, covering various geographic and seasonal conditions 

to reflect real environmental diversity. The results underscore the 

potential of ConvNeXt-based architecture for real-time, high-

precision wildfire detection, offering a powerful tool for early 

intervention, disaster mitigation, and environmental monitoring 

efforts. 
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I. INTRODUCTION 

Rapid detection of sudden-onset disasters, such as 
earthquakes, flash floods, and emergencies like road accidents, 
is critical for effective response by emergency organizations. 
However, gathering information during these events is often 
labor-intensive and expensive, requiring manual data processing 
and expert analysis. To reduce these efforts, researchers have 
explored the use of computer vision techniques applied to 
satellite imagery, synthetic aperture radar, and other remote 
sensing data [1]. Despite these advances, such methods remain 
costly to deploy and lack the robustness needed to reliably 
capture relevant data in time-sensitive situations. Additionally, 
satellite imagery is often affected by noise from clouds and 
smoke common during hurricanes and wildfires and provides 
only an overhead perspective of disaster areas. 

Forests play vital roles in our environment and daily lives by 
providing numerous resources. They are often referred to as the 
“lungs of the planet”, as they purify the air by producing oxygen 
(O2) and absorbing carbon dioxide (CO2). Forests also serve as 
habitats for diverse animal species and act as natural 
windbreakers that protect agricultural crops. Moreover, they 
help purify water by filtering out pollutants [2]. Economically, 

forests contribute significantly by providing jobs and boosting 
national incomes. 

In recent years, many forests and wildlands have been 
destroyed by wildfires, which are uncontrolled natural disasters 
posing serious threats to economies worldwide. Each year, 
millions of acres of land are lost, resulting in significant damage 
to human lives, vegetation, and forest resources [3]. Wildfires 
also adversely affect agriculture by drying out the soil and 
destroying crops near affected areas. These fires can start from 
natural causes like lightning or human activities such as 
discarded cigarettes and land clearing. Climate change, rising 
temperatures, and prolonged droughts have intensified wildfire 
frequency and severity, especially in fire-prone regions such as 
California, Australia, and the Mediterranean. The environmental 
impact includes reduced air quality from pollutant emissions and 
accelerated global warming. Wildfires disrupt ecosystems by 
destroying habitats, threatening biodiversity, and increasing soil 
erosion. However, in some ecosystems, wildfires play a natural 
role by clearing dead vegetation and promoting new plant 
growth. Early detection and prevention are essential to minimize 
wildfire damage [4]. Advances in satellite imagery, artificial 
intelligence, and deep learning now enable real-time wildfire 
monitoring and prediction. Natural disasters are inescapable and 
have serious consequences for economies, ecological systems 
and human life. They can cause building collapses, spread 
diseases, and devastate entire nations through events like 
tsunamis, earthquakes, and forest fires. For instance, seismic 
forces from earthquakes can lead to the collapse of millions of 
buildings [5]. Since the 1990s, a variety of machine learning 
algorithms have been used to anticipate wildfires. A recent study 
in Italy used the random forest approach for wildfire 
susceptibility mapping [6]. Floods are the most catastrophic 
natural calamity, causing severe damage to property, 
infrastructure, and human life. To map flood susceptibility, an 
ensemble machine learning strategy using random forest (RF), 
random subspace (RS), and support vector machine (SVM) 
approaches was used. [7]. Studies indicate that immediately 
following a disaster, social media platforms contain valuable 
information for disaster response, including reports of damage 
and urgent needs from affected individuals [8], [9]. Much of this 
information comes in the form of images and videos. Unlike 
traditional data sources such as satellite imagery, leveraging on-
the-ground social media images for relief efforts has remained 
largely unexplored until recently, as demonstrated in our prior 
work [10]. This gap is mainly due to technical challenges. 
Automatically filtering relevant images is difficult because 
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social media streams are noisy, with a large proportion of posts 
unrelated to humanitarian needs. Additionally, effective filtering 
requires robust deep learning models trained on vast amounts of 
labeled data. However, assembling a large-scale, annotated 
dataset for incident recognition in real-world conditions is both 
time-consuming and expensive. 

The structure of this study is as follows: Section II presents 
essential baseline knowledge of machine learning. Section III 
describes the dataset used in detail. Section IV introduces the 
proposed model. Section V discusses the evaluation results, and 
finally, Section VI concludes the study. 

II. BACKGROUND 

In recent years, the integration of satellite imagery with 
machine learning (ML) techniques has become increasingly 
prevalent in various disaster management applications. These 
include monitoring changes in critical infrastructure, evaluating 
the impact of natural disasters, and tracking vegetation dynamics 
[10–11]. Among the ML methods, deep learning, particularly 
convolutional neural networks (CNNs) has shown exceptional 
capability in accurately detecting and classifying patterns in 
satellite data. 

A widely adopted approach for forest fire detection using 
deep learning involves training CNNs on large datasets of 
satellite images. These datasets are commonly obtained from 
sources such as NASA’s Earth Observing System, ESA’s 
Sentinel program, or commercial providers like Planet Labs 
[12]. To prepare these datasets, images are labeled to indicate 
the presence or absence of wildfire activity. Labeling can be 
done manually by experts or semi-automatically using pre-
trained models. Following preprocessing and annotation, the 
dataset is used to train deep learning models such as CNNs or, 
in some cases, recurrent neural networks (RNNs), depending on 
the spatial and temporal complexity of the data. 

Once trained, the model is validated on a separate dataset to 
evaluate performance using metrics like accuracy, precision, 
recall, and F1-score. A successfully validated model can then be 
deployed to classify incoming satellite images in real time, 
enabling early wildfire detection and rapid response. 

Deep learning significantly enhances both the speed and 
precision of wildfire detection, allowing quicker intervention 
and reducing potential damage [13]. Automated systems also 
reduce dependence on manual surveillance, which is often 
slower, more expensive, and less scalable. For instance, a study 
in [13] proposed a system combining the Inception-v3 CNN 
architecture with Local Binary Pattern (LBP) feature extraction, 
achieving high reliability in classifying wildfires from satellite 
imagery. Despite their accuracy, high-performance CNNs often 
come with high computational demands, making them 
unsuitable for mobile or embedded devices. This challenge has 
led to the exploration of lightweight CNN models like 
MobileNetV2 [28], which are optimized for devices with limited 
processing power. MobileNetV2 offers significant reductions in 
memory and computation requirements while maintaining 
competitive accuracy. For example, Wu et al. [1] integrated 
MobileNetV2 into their wildfire detection framework, applying 
data augmentation techniques such as Gaussian blur and 
additive Gaussian noise to simulate harsh visual conditions. This 

improved model robustness and allowed effective transfer 
learning, ensuring reliable performance even on low-resource 
platforms. There is a growing interest in designing neural 
networks that can operate efficiently in constrained 
environments, such as small satellites or unmanned aerial 
vehicles (UAVs). These platforms are essential in remote 
sensing scenarios, where local image classification can 
minimize the amount of data transmitted to ground stations, 
reducing both energy usage and communication delays. Rather 
than sending high-resolution imagery, systems can transmit only 
the classification outcome (e.g., "Fire" or "No Fire"), easing the 
load on communication networks like NASA's Deep Space 
Network (DSN) [29]. This research, therefore, focuses on 
optimizing neural network hyperparameters for wildfire 
detection, addressing challenges such as limited annotated data 
and resource-constrained deployment environments. The 
resulting CNN model is designed for real-time use on 
lightweight platforms like smartphones, small satellites, or 
weather balloons, facilitating accessible and cost-effective 
wildfire monitoring. Previous studies further support the 
effectiveness of CNNs in disaster-related applications. For 
instance, Boonsuk et al. [11] employed a two-layer CNN on the 
extended Cohn-Kanade dataset, comparing classifiers including 
Linear SVM, Linear Discriminant Analysis, and Softmax, and 
achieved over 90% accuracy with minimal variation. In 
challenging terrains such as mountainous regions where natural 
disasters like landslides or snowfall disrupt infrastructure 
deploying human responders can be difficult. In such cases, 
drones equipped with autopilot systems have become vital for 
capturing real-time imagery. Zhou et al. [13] introduced a CNN-
based framework that employs inter-frame difference methods 
for noise removal and classifies disasters based on extracted 
image features. Various researchers have tackled different 
aspects of natural disaster detection and response through 
innovative technological solutions. For example, Sulistijono et 
al. [14] proposed a victim-detection system using aerial imagery 
transmitted to ground stations, enabling quick identification of 
victims following an earthquake. Padmawar et al. [15] 
developed a deep learning model combining Convolutional 
Neural Networks (CNNs) with Modified Particle Swarm 
Optimization (MPSO) to predict flood occurrences and locate 
individuals at risk ahead of time. In the domain of wildfire 
detection, Chen et al. [16] introduced a UAV-based detection 
system that utilized histogram stabilization and image 
smoothing before applying CNN-based classification. To 
enhance smoke recognition, they combined Local Binary 
Pattern (LBP) features with Support Vector Machines (SVMs), 
significantly improving early fire detection performance. Real-
time monitoring has also proven vital for effective disaster 
management. Gonzalez et al. [17] presented the SFEwAN-SD 
model, a CNN architecture built on AlexNet with deconvolution 
layers, designed for real-time fire tracking using UAV imagery. 
Building on this, Samudre et al. [18] enhanced CNN efficiency 
through pipelining on FPGA platforms, which not only reduced 
energy consumption but also accelerated processing speeds. 
Resolution limitations in satellite imagery have posed 
challenges in disaster analysis. To address this, Lee et al. [19] 
adopted CNN models like VGG-13 and GoogleNet to work with 
high-resolution UAV images. Their comprehensive platform 
included forecasting tools, a web-based dashboard, and real-



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

351 | P a g e  

www.ijacsa.thesai.org 

time alert systems, achieving high accuracy in wildfire early 
warning applications. Beyond aerial and satellite imagery, social 
media has become a valuable source for disaster assessment. 
Nguyen et al. [20] used event-specific CNN features to analyze 
social media images during major natural disasters, assessing 
structural damage. Similarly, Direkoglu et al. [21] applied 
optical flow techniques and CNNs to differentiate between 
normal and panic-driven human behavior during disasters, using 
the UMN and PETS2009 datasets. Smoke density classification 
remains a complex task in wildfire analysis. Yuan et al. [22] 
addressed this by introducing W-Net, a wave-shaped CNN 
architecture with encoder-decoder layers tailored for precise 
smoke density detection. Their method leveraged virtual 
datasets and layer feedback mechanisms to boost both 

sensitivity and accuracy. Flood detection has also seen progress 
through CNN-based systems. Layek et al. [23] developed a flood 
identification model enhanced with color filtering techniques. 
Their system consistently outperformed other methods when 
tested across multiple benchmark datasets. 

Table I presents a comparative summary of the datasets, 
methodologies, and outcomes from various state-of-the-art 
studies. Building on these insights, the proposed ConvNeXt-
Small model in this research is designed to achieve accurate, 
rapid, and resource-efficient wildfire detection, making it 
suitable for real-world deployment in resource-constrained 
environments. Consequently, to effectively extract features 
within a given timeframe, it is essential to integrate stationary 
methods like temporal windowing. 

TABLE I. LITERATURE REVIEW 

Authors Methodology Dataset Used Strengths Limitations Results 

Hartawan et 
al. [9] 

Enhanced MLP with CNN on 

Raspberry Pi for victim 
detection using streaming 

cameras. 

Streaming camera 
data 

Real-time detection, suitable 

for low-power embedded 

systems. 

Limited visibility, not 

suitable for satellite 

images. 

Helped evacuation 

teams effectively 

identify victims. 

Amit et 

al.[10] 

CNN on resized satellite 

images for flood and 
landslide detection. 

Resized satellite 

images 

Detects multiple disaster types 

from a broader perspective. 

It depends on the 

resolution and quality of 
satellite images. 

Accurate flood and 

landslide detection via 
CNN. 

Wu H et 

al.[1] 

MobileNetV2 with data 

augmentation (Gaussian blur, 
noise). 

Wildfire satellite 

imagery with 
augmentation 

Efficient, lightweight, 

accurate; ideal for 
mobile/embedded use. 

May not generalize to 

unseen disaster 
conditions. 

High accuracy, fast 

classification on limited 
hardware. 

Zhou et 
al.[13] 

Interframe difference 

technique + CNN for aerial 

disaster classification. 

Raw aerial images 

Enhances image clarity; 

improves classification with 

motion information. 

Requires multiple frames 
and clean aerial data. 

Accurately identified 
disaster characteristics. 

Sulistijono 
et al.[14] 

CNN-based victim detection 

using aerial imagery and 

ground station. 

Aerial images from 
simulation 

Fast victim location via real-
time detection framework. 

Simulated environment; 

lacks real-world 

variability. 

Successfully tested 

framework for locating 

victims. 

Padmawar 

et al.[15] 

CNN + Modified Particle 
Swarm Optimization 

(MPSO) for flood 

forecasting. 

Flood satellite and 

imagery data 

Hybrid ML improves 

robustness and early 
prediction. 

High model complexity; 

expensive in real-time 
systems. 

Predicted flood 

conditions accurately 
and timely. 

Chen et al. 
[16] 

LBP + SVM + CNN on UAV 

imagery after histogram 

equalization and filtering. 

Forest fire UAV 
imagery 

Improved raw image quality; 
enhanced detection accuracy. 

Heavily reliant on 

preprocessing and proper 

lighting conditions. 

Achieved accurate 

UAV-based fire 

detection. 

Gonzalez et 
al. 

[17] 

CNN + AlexNet + SFEwAN-
SD for smoke density 

detection from UAV images. 

UAV-based smoke 

density imagery 

An effective real-time fire 
monitoring system with 

precise smoke localization. 

Dependent on labeled 

training data and real-

time transmission 
quality. 

High performance in 
detecting smoke density 

in real-time. 

Lee et al. 

[19] 

Modified VGG-13 & 

GoogleNet using high-res 

UAV imagery for wildfire 
detection. 

High-resolution 
UAV wildfire 

images 

High spatial resolution 

enhances model precision. 

High computing power 
required on UAV 

platforms. 

Enabled accurate early-

stage wildfire detection. 

Layek et 
al.[23] 

CNN with fusion of social 

media and satellite imagery 

using color filtering. 

Social media 

images + satellite 

data 

Diverse dataset boosts 

accuracy and adaptability 

across event types. 

Needs extensive 

preprocessing to 
normalize diverse 

formats. 

Outperformed other 

detection systems across 

several datasets. 

 

III. DATASETS 

The Forest Fire Mapping System in southern Quebec offers 
a detailed representation of both historical and recent wildfire 
occurrences, primarily within areas located south of the 
attributable forest limit. This mapping effort is vital for 
deepening our understanding of regional fire regimes and 
contributes significantly to the creation of targeted forest 
management strategies following wildfire incidents. Moreover, 
it addresses a broad spectrum of academic, research, and 
operational objectives, including evaluating the effects of 

climate change, modeling ecological recovery, and studying 
long-term forest ecosystem dynamics. 

 
Fig. 1. Dataset location. 
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TABLE II. FOREST FIRE MAP 

Forest Fire Map (Southern Quebec Focus) 

Data Sources (Satellite, Aerials, Surveys, Scar Data, Archives) 

Mapping Categories 

Detailed Mapping 

(1976-present) 

Simplified Outlines 

(1972-present) 

Fire origins 

(1972-Present) 

Historical fires 

(1800s-1975) 

Fire Regime Zoning 

(1890-2020) 

- Total /partial Burn 

- Burn Patterns 
- 0.1 ha precision 

- General perimeters 

- GIS/GPS Integration 

- Ignition Data 

-Protection zones 

- from old forest/eco maps 

-tree scars, documents 

Based on fire data, terrain, species, ignition 

sources 

 

The data used to support this mapping system is compiled from 

various sources, such as satellite imagery, aerial photos, ground 

and aerial reconnaissance, fire scar analysis, and historical 

archives. It is categorized into five main groups, as outlined in 

Table II. Fig. 1 shows the dataset location. 

A. Detailed Fire Mapping (1976–Present) 

This dataset offers high-resolution fire information, 
differentiating between complete and partial burns, and includes 
burn pattern classifications when available. It is capable of 
representing fire-affected areas as small as 0.1 hectares, 
depending on the data source. While coverage in northern 
southern Quebec is limited, the dataset remains an essential 
resource for detailed and precise fire analysis. 

B. Simplified Fire Perimeter Mapping (1972–Present) 

This data layer simplifies the outer boundaries of wildfire 
events by removing internal fragmentation, resulting in a 
streamlined representation of fire perimeters. The purpose of 
this generalization is to produce a more manageable and 
efficient dataset that is well-suited for integration into 
Geographic Information Systems (GIS), Global Positioning 
System (GPS) devices, and other digital mapping and analysis 
tools. Derived from comprehensive and detailed fire datasets, 
this layer is tailored to support a broad spectrum of users, 
including forestry professionals, emergency response teams, 
researchers, and policymakers. By offering a cleaner, more 
accessible view of fire extents, it enhances usability across 
various operational, planning, and analytical applications. 

C. Fire Origin Mapping (1972–Present) 

This dataset documents the ignition points of recorded 
wildfires, as tracked by protection agencies like SOPFEU. It 
includes key information such as the ignition date, the cause of 
the fire (either human activity or lightning), and the designated 
protection zone. The dataset provides comprehensive coverage 
across all regions of Quebec, offering valuable insights into fire 
prevention, analysis, and management efforts. 

D. Historical Fire Mapping (Late 19th Century–1975) 

This component reconstructs historical wildfire events using 
archival forest inventory maps and ecoforest maps. Fire 
occurrence dates are verified through fire-scar tree analysis and 
supporting archival records. Its regional scope includes 
Saguenay–Lac-Saint-Jean, Bas-Saint-Laurent, Gaspésie–Îles-
de-la-Madeleine, Abitibi–Témiscamingue, Mauricie–Centre-
du-Québec, and Lanaudière–Laurentides. 

E. Fire Regime Zoning (1890–2020) 

This map segments southern Quebec into 13 distinct zones, 
each representing a unique fire regime. The delineation of these 

zones is based on factors such as historical burned area data, 
physiographic characteristics, the fire dependency of dominant 
tree species, and sources of ignition—both natural and human-
induced. The classification extends beyond managed forest 
areas to include portions of unmanaged northern territories. 
These zones play a critical role in wildfire risk assessment and 
are instrumental in forecasting future fire behavior influenced by 
climate change, fire suppression strategies, and evolving fuel 
distribution patterns. 

The dataset utilized in this work is known as Wildfire. The 
dataset employed in this study is referred to as the Wildfire 
Prediction Dataset (Satellite Photos). It consists of high-
resolution satellite images, each measuring 350×350 pixels, 
obtained via the MapBox API. These images are generated 
based on precise geographic coordinates, latitude, and longitude 
corresponding to verified wildfire incidents that have affected 
areas greater than 0.01 acres. This targeted spatial sampling 
ensures systematic coverage of significant wildfire events. The 
dataset is divided into two main classes: wildfire images, 
totaling 22,710, and non-wildfire images, providing a balanced 
representation suitable for training a robust classification model. 
A sample from the dataset is illustrated in Fig. 2. This balanced 
class distribution enhances the model’s ability to distinguish 
between wildfire and non-wildfire scenarios accurately. 

 
Fig. 2. Sample from dataset for wildfire and non-wildfire. 

To construct the dataset, satellite imagery was systematically 
retrieved using the coordinates of documented wildfire 
locations. This conversion of traditional tabular incident data 
into visual, spatially referenced images makes the dataset highly 
compatible with deep learning architectures. These images serve 
as rich inputs for training models to predict wildfire risk based 
on spatial patterns observed in previous events. By learning 
from visual cues in the satellite images, the resulting predictive 
model can assess the likelihood of wildfire occurrence in 
specific regions. This capability is essential for supporting early 
intervention strategies, resource allocation, and wildfire 
prevention planning. 
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To promote generalization and mitigate overfitting, the 
dataset is split into three subsets: 70% for training, 15% for 
validation, and 15% for testing. The training set is used to 
optimize model parameters, the validation set assists in tuning 
hyperparameters and monitoring for overfitting, and the test set 
is utilized to evaluate the model’s performance on previously 
unseen data. 

IV. THE PROPOSED MODEL 

This section describes the methodology used for wildfire 
detection, which utilizes a hybrid deep learning approach 
combining ConvNeXt-Small as a feature extractor with a 
custom-designed classification head for binary classification. 
This model harnesses the efficiency of convolutional networks 
while integrating transformer-inspired enhancements, making it 
well-suited for processing high-resolution satellite images, as 
shown in Fig. 3. 

 

Fig. 3. Proposed model. 
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A. Backbone: ConvNeXt-Small as Feature Extractor 

In this study, a deep learning model based on ConvNeXt-
Small is developed, a cutting-edge convolutional neural network 
that incorporates concepts inspired by vision transformers while 
preserving the efficiency of convolutional operations. This 
model was used to classify satellite images into two categories: 
wildfire and non-wildfire. By combining the structured spatial 
biases of CNNs with the representational flexibility of vision 
transformers [24–25], this hybrid architecture significantly 
improves the analysis of high-resolution satellite imagery, 
making it especially effective for wildfire detection and 
monitoring. 

ConvNeXt was selected over traditional CNNs such as 
ResNet [26] and pure transformer-based models like Vision 
Transformers (ViT) due to its balanced advantages. It achieves 
superior performance on vision tasks compared to ResNet, while 
offering efficient training. Unlike ViTs, which generally require 
very large datasets to perform well [27], ConvNeXt demands 
less data, making it better suited for moderately sized datasets. 
Its modular and adaptable architecture also facilitates seamless 
integration with custom classifier heads tailored for specific 
applications. Furthermore, ConvNeXt’s scalability and speed 
make it an excellent choice for real-time wildfire alert and 
detection systems.  ConvNeXt-Small forms the backbone of our 
architecture, enhancing traditional CNNs like ResNet by 
incorporating elements inspired by vision transformers, thereby 
boosting its representational capabilities. To reduce 
computational complexity while effectively capturing both 

spatial and channel-wise features, depthwise separable 
convolutions are utilized. Instead of Batch Normalization, Layer 
Normalization is applied, providing greater stability during 
training, especially with large datasets. The GELU activation 
function is employed to improve gradient flow and introduce 
better non-linearity, resulting in richer feature representations. 
Furthermore, the use of larger kernel sizes enables improved 
context aggregation, emulating the global receptive field 
characteristic of transformers [28]. Pretrained ConvNeXt-Small 
model are used in PyTorch’s torchvision.models, with its 
original classification layer removed. This allows the model to 
leverage pretrained visual features learned from ImageNet such 
as edges, textures, and terrain patterns that are transferable to 
satellite imagery. The final output feature map from ConvNeXt-
Small is a tensor of shape [batch_size, 768], which is then fed 
into the subsequent classification head. 

B. Classification Head: Fully Connected Layer 

After feature extraction, a lightweight fully connected neural 
network serves as the classification head, transforming the high-
dimensional feature vectors into wildfire categories. This 
classification head includes a linear layer that compresses the 
768-dimensional feature vector down to two output neurons, 
representing the two classes: wildfire and no-wildfire. A 
Softmax activation function is then applied to the output logits 
to convert them into a probability distribution, providing clear 
and interpretable prediction scores as shown in Fig. 4. 

 
Fig. 4. ConvNeXt-small architecture. 

Mathematically, the classification process can be 
represented as follows: 

Eq. (1) is Softmax activation function: 

Ŷ=Softmax (W. F + b)                    (1) 

where, “F” represents the feature vector output from 
ConvNeXt, while “W” denote the trainable weight matrix and 
“b” bias term, respectively. This equation ensures that each input 
image is assigned a probability distribution over the two classes, 
where the higher probability value indicates the most likely 

classification. Algorithm 1 shows the ConvNeXt-Small 
Algorithm for wildfire detection. 

Algorithm 1: ConvNeXt-Small Algorithm for Wildfire Detection 

Input: Preprocessed image (224x224) 

# 1. Feature Extraction 

x = Patchify(image)     

 # Conv layer: 4x4 kernel, stride=4 → 96 channels 

x = ConvNeXtBlocks(x, depths= [3,3,9,3])   

 # Stacked blocks across 4 stages 

x = GlobalAveragePooling(x)          # F ∈ ℝ⁷⁶⁸ 
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# 2. Classifier Head 

logits = Linear (F, 768 → 2) 

ŷ = Softmax(logits)           

 # Probabilities for [wildfire, no-wildfire] 

# 3. Loss Function (Cross-Entropy) 

L_CE = -Σ (yᵢ * log(ŷᵢ)) for i in {1, 2} 

# 4. Training Loop (Adam Optimizer) 

for epoch in range(50): 

  for batch in training_data: 

    ŷ = ConvNeXt(batch_images) 

    loss = CrossEntropy(ŷ, batch_labels) 

    Backprop + Adam update 

  if early_stopping_triggered: 

    break 

#Output: Predicted class ŷ, Loss L_CE 

1) The classifier is specifically designed to minimize 

classification errors while achieving high accuracy in 

differentiating between wildfire and non-wildfire cases. During 

training, only the classification head is fine-tuned, while the 

ConvNeXt-Small backbone remains frozen. This approach 

allows the model to effectively leverage the knowledge acquired 

from large-scale ImageNet pretraining and apply it to the 

wildfire classification task, enhancing its generalization ability. 

2) The classification head is optimized using the cross-

entropy loss function, which quantifies the difference between 

the predicted and true labels. The Softmax activation function 

ensures that the predicted class probabilities sum to one, 

enabling them to be interpreted as confidence scores. 

Throughout training, backpropagation updates the weights and 

biases of the classification head to minimize the classification 

loss. 

C. Loss Function: Cross-Entropy 

To optimize model predictions, we use the cross-entropy 
loss function, which measures the divergence between predicted 
probabilities and true class labels. The cross-entropy loss is 
given by: 

Eq. (2) Loss Function: Cross-Entropy 

LCE = -∑ y𝐶
𝑖=1 ᵢ log(ŷᵢ)               (2) 

where, C is the number of classes (wildfire and no-wildfire), 
yᵢ is the true class label, and ŷᵢ is the predicted probability for the 
class. This function ensures that the model maximizes the 
probability of the correct class while reducing the probability of 
incorrect ones. The cross-entropy loss penalizes incorrect 
predictions more severely, ensuring that the model learns to 
focus on correctly classifying challenging samples. This 
encourages the network to assign high confidence scores to the 
correct class while suppressing incorrect predictions, leading to 
a more robust classifier. As training progresses, minimizing this 
loss function results in a model that effectively distinguishes 
wildfire from non-wildfire images with improved confidence 
and reliability. 

D. Optimizer and Training Strategy 

The Adam optimizer was utilized for training, an adaptive 
learning rate algorithm that combines the benefits of momentum 
and RMSprop methods [29]. Adam adjusts learning rates for 

each parameter dynamically by estimating the first moment 
(mean) and second moment (variance) of gradients, which 
promotes efficient and stable convergence. This makes it 
particularly effective for deep learning tasks involving high-
dimensional satellite imagery, as it accelerates training while 
managing sparse gradients. Key training settings included a 
learning rate of 1 × 10⁻⁴, carefully chosen to balance between 
exploration and training stability, and weight decay to regularize 
the model and reduce overfitting. Training was conducted with 
a batch size of 8 over 50 epochs. Early stopping was 
implemented to monitor validation loss and halt training when 
improvements plateaued, thereby avoiding unnecessary 
computation and further preventing overfitting [30]. 

V. RESULTS 

The wildfire detection system built on the ConvNeXt-Small 
architecture follows a structured pipeline, starting with the 
preprocessing of satellite images from historically affected 
areas. Each image is resized to 350×350 pixels, normalized, and 
converted into tensors for PyTorch compatibility. The processed 
images are then passed through the ConvNeXt-Small model, 
which extracts high-dimensional feature vectors that capture 
essential spatial and contextual information. These features are 
fed into a lightweight classifier head, a linear layer followed by 
a Softmax activation that outputs probabilities for two classes: 
wildfire and no-wildfire. During training, the model's 
predictions are compared with actual labels using the cross-
entropy loss function, optimizing performance for accurate 
binary classification. Once the model is trained, it undergoes a 
rigorous evaluation phase to assess its predictive performance 
across multiple metrics. These include test accuracy, precision, 
recall, and F1-score, all of which help measure the model’s 
classification effectiveness from different perspectives. In this 
case, the model achieved outstanding results: an overall test 
accuracy of 99.05%, precision scores of 98% for the no-wildfire 
class and 100% for the wildfire class, and recall and F1-scores 
of 99% across both classes as shown in Table III and Fig. 5 to 
Fig. 7. Furthermore, a confusion matrix is computed to visualize 
true positive, false positive, true negative, and false negative 
rates, providing insight into classification errors as shown in 
Table IV, the model demonstrates excellent discriminative 
ability, making it highly suitable for reliable wildfire detection 
in diverse and real-world environmental conditions. 

TABLE III. PROPOSED MODEL RESULTS 

Class Precision Recall F1-Score Support 

No Wildfire 0.98 0.99 0.99 2820 

Wildfire 1.00 0.99 0.99 3480 

Accuracy   0.99 6300 

Macro Avg 0.99 0.99 0.99 6300 

Weighted Avg 0.99 0.99 0.99 6300 

TABLE IV. CONFUSION MATRIX 

 
Classification 

Positive Negative 

Predicted Positive 2805 15 

Predicted Negative 45 3435 
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Fig. 5. Classification performance comparison for Wildfire. 

 
Fig. 6. Classification performance for No Wildfire. 

 
Fig. 7. Classification performance comparison between Wildfire and No 

Wildfire results. 

VI. CONCLUSION 

In this study, this holistic pipeline spanning data preparation, 
feature extraction, classification, optimization, and evaluation, 
not only ensures high accuracy but also provides scalability and 
robustness needed for deployment in operational wildfire 
monitoring systems. The proposed wildfire detection model, 
built upon the ConvNeXt-Small architecture, has demonstrated 
high effectiveness in identifying wildfire-prone areas using 
satellite imagery. By combining state-of-the-art convolutional 
design with a lightweight, fully connected classifier head, the 
model achieved remarkable predictive performance with a test 
accuracy of 99.05%, precision up to 100% for wildfire cases, 
and consistently high recall and F1-scores across both classes. 
These results confirm the model’s robustness and reliability, 
making it a viable solution for early wildfire risk assessment. 

The model’s strong generalization ability is attributed to an 
efficient preprocessing pipeline, thoughtful training strategy 
using cross-entropy loss and the Adam optimizer, and the 
integration of modern deep learning techniques tailored for 
moderate-sized datasets. Additionally, the high AUC score of 
0.996 indicates excellent discriminative power between wildfire 
and non-wildfire instances. This system offers a scalable and 
practical approach for real-time wildfire detection, with 
potential applications in environmental monitoring, disaster 
prevention, and resource planning. Future work may focus on 
expanding the dataset across different seasons and geographical 
regions, integrating meteorological data, and exploring 
deployment strategies for on-ground alert systems. 
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