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Abstract—This study proposes a hybrid machine learning 

framework for rice leaf disease detection by combining 

handcrafted feature extraction with metaheuristic optimization 

and classical classifiers. Using a dataset of 6,000 rice leaf images 

across seven classes, features including color, texture, shape, and 

edge were extracted and optimized using Spider Monkey 

Optimization (SMO), Particle Swarm Optimization (PSO), and 

Ant Colony Optimization (ACO). Classification was conducted 

using Random Forest Classifier (RFC) and Support Vector 

Classifier (SVC), both with and without hyperparameter tuning. 

Experimental results revealed that PSO consistently 

outperformed other optimizers, achieving 91.00% accuracy with 

RFC and 94.64% with SVC when all features and optimal 

parameters were used. While SMO also showed strong 

performance, ACO yielded less consistent results. These findings 

highlight the importance of combining comprehensive feature 

engineering with adaptive optimization strategies to improve 

classification accuracy. Compared to previous SMO-based 

approaches, the proposed PSO-ACO framework demonstrated 

improved stability and scalability. The proposed framework is 

interpretable, efficient, and scalable, making it suitable for 

practical deployment in precision agriculture. Future research 

directions include integrating deep learning with handcrafted 

features, developing adaptive metaheuristics, and implementing 

real-time mobile detection systems. 

Keywords—Rice leaf disease; particle swarm optimization 
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I. INTRODUCTION 

Rice (Oryza sativa) remains a staple food for more than 
half of the global population, playing a pivotal role in ensuring 
food security particularly in Asia and Africa [1]. With rising 
global demand, sustainable rice production has become a 
critical priority. However, rice cultivation faces persistent 
threats from a variety of leaf diseases such as Bacterial Leaf 
Blight, Leaf Blast, and Tungro, which can lead to yield losses 
of up to 70% in severely infected areas [2],[3]. Early and 
accurate identification of rice leaf diseases is therefore essential 
to mitigate such risks and enable effective precision 
agriculture. Traditional diagnostic techniques such as manual 
inspection and laboratory testing are labor-intensive, time-
consuming, and often prone to human error, limiting their 

scalability [4]. To overcome these challenges, recent advances 
in machine learning and computer vision have been harnessed 
to develop automated disease detection systems with improved 
accuracy and efficiency [5], [6]. 

In our previous work, we introduced a hybrid detection 
model named SMOREF-SVM, which integrates Spider 
Monkey Optimization (SMO), Random Forest (RF), and 
Support Vector Machine (SVM) [7]. This model achieved a 
remarkable classification accuracy of up to 98% for rice leaf 
diseases. However, despite its success, the SMOREF-SVM 
approach posed challenges related to optimization efficiency 
and computational complexity. As with many swarm-based 
algorithms, SMO often suffers from unstable convergence 
behavior in high-dimensional feature spaces [8]. In response, 
alternative metaheuristic strategies such as Particle Swarm 
Optimization (PSO) [9] and Ant Colony Optimization (ACO) 
[10] have been considered promising due to their robust search 
capabilities and efficiency in feature selection tasks. This 
extended study applies PSO and ACO to optimize handcrafted 
features extracted from rice leaf images. Two machine learning 
classifiers, Random Forest and Support Vector Machine, are 
employed to evaluate classification performance, both with and 
without hyperparameter tuning. The proposed framework 
introduces a PSO-ACO-based hybrid optimization pipeline 
designed to enhance accuracy and efficiency in rice leaf 
disease classification. This study includes a comparative 
analysis between PSO and ACO against the previously 
established SMO-based approach. Furthermore, it examines 
how different feature types color, texture, shape, and edge, 
impact classification accuracy across the two classifiers. The 
role of hyperparameter tuning is also analyzed to assess its 
influence when combined with metaheuristic-based 
optimization. The findings support the hypothesis that PSO and 
ACO are viable and scalable alternatives to SMO in plant 
disease detection frameworks. 

The application of artificial intelligence in plant disease 
detection, especially using image-based analysis, has gained 
considerable momentum in recent years. Panchal et al. [11] 
demonstrated the capability of convolutional neural networks 
(CNNs) in identifying plant diseases across fourteen different 
crop species, including rice, using a large publicly available 
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dataset. Although CNNs offer high accuracy, they typically 
require large amounts of labeled data and substantial 
computational resources. Conversely, traditional machine 
learning approaches remain attractive for agricultural settings 
due to their lower hardware requirements and adaptability to 
smaller datasets. Padhi and Mishra [6] achieved high accuracy 
in rice leaf disease classification using SVM and handcrafted 
color-texture features. Similarly, Sunil et al. [12] reported that 
combining Gray Level Co-occurrence Matrix (GLCM) features 
with color histograms significantly improved classification 
performance in tomato leaf disease detection. 

Metaheuristic optimization techniques have also played a 
critical role in enhancing machine learning models. Nguyen et 
al. [13] employed PSO to select the most relevant features for 
maize disease classification, achieving reduced feature 
dimensionality while maintaining performance. ACO has also 
proven effective in optimizing SVM hyperparameters, as 
demonstrated by Demilie [14], who observed improved 
classification metrics compared to grid search methods. 

Our prior research [7] incorporated SMO into a hybrid 
SMOREF-SVM model for rice leaf disease detection. The 
model combined SMO for feature selection, Random Forest for 
pre-classification, and SVM for final decision-making, 
reaching an accuracy of 98%. Despite these promising results, 
the model's complexity and convergence limitations prompted 
the exploration of PSO and ACO as alternative optimization 
strategies. While deep learning architectures such as CNNs 
dominate in large-scale implementations, their demand for 
annotated data and longer training times makes them less 
feasible in lightweight or real-time agricultural scenarios. In 
contrast, swarm intelligence-based optimization combined with 
classical classifiers offers a more balanced and interpretable 
solution. Support Vector Machine (SVM) is a powerful 
supervised learning algorithm that has been widely adopted for 
classification tasks, including plant disease detection. SVM 
excels in handling high-dimensional data by constructing 
optimal hyperplanes that maximize the margin between 
different classes [7]. This characteristic makes it particularly 
suitable for tasks involving complex and overlapping feature 
distributions, such as differentiating between multiple types of 
rice leaf diseases. 

The ability of SVM to transform nonlinear data into a 
higher-dimensional space using kernel functions further 
strengthens its applicability in image analysis [6]. One of the 
most compelling strengths of SVM lies in its generalization 
capability, especially when the available dataset is limited. In 
the context of rice disease detection, where collecting extensive 
labeled datasets can be labor-intensive and costly, SVM 
provides a robust alternative to data-hungry deep learning 
models. Several studies have reported the effective use of SVM 
in detecting diseases in rice, wheat, tomato, and maize leaves 
using features such as color histograms, texture patterns, and 
shape descriptors [6], [7]. This flexibility has positioned SVM 
as a go-to classifier in many precision agriculture systems. 
Moreover, SVM has shown great compatibility with 
metaheuristic algorithms such as Particle Swarm Optimization 
(PSO), Ant Colony Optimization (ACO), and Genetic 
Algorithms. These combinations aim to optimize SVM 

hyperparameters like the penalty term (C), kernel type, and 
gamma values, which are crucial for achieving high 
classification accuracy. In hybrid systems, SVM often serves 
as the final decision layer due to its high discrimination power, 
making it a valuable component in frameworks like SMOREF-
SVM and the proposed PSO-ACO-SVM in this study. 

Random Forest (RF) is an ensemble learning algorithm that 
constructs a multitude of decision trees during training and 
outputs the class that is the mode of the classes (classification) 
or mean prediction (regression) of the individual trees [8]. It is 
particularly well-suited for applications involving noisy, high-
dimensional, or incomplete data. In plant disease detection, RF 
has been used extensively due to its robustness, ease of use, 
and superior accuracy compared to individual decision trees or 
simpler models. Its in-built capability for feature importance 
ranking also makes it highly interpretable, which is valuable in 
agricultural diagnostics. RF is known for its resistance to 
overfitting, particularly when a large number of decision trees 
are used. This attribute is especially beneficial in agricultural 
settings where environmental variability and image noise may 
affect input data. Studies have demonstrated that RF performs 
well in classifying various plant diseases using combinations of 
handcrafted features such as color moments, GLCM-based 
texture descriptors, and edge patterns extracted from leaf 
images [5], [6]. Its low sensitivity to outliers and non-
normalized data further adds to its advantages in real-world 
scenarios. 

Similar to SVM, RF has been integrated with optimization 
algorithms to improve its performance. Hyperparameter tuning 
methods, including Grid Search, Random Search, and 
metaheuristics like SMO and PSO, are commonly used to 
determine the best combination of tree depth, number of 
estimators, and feature subset size. In the SMOREF-SVM 
model, RF was used as an intermediary classifier, providing 
additional predictive power before final classification with 
SVM. In the current study, RF is re-evaluated within a PSO-
ACO framework to investigate its potential as a standalone or 
complementary classifier in rice leaf disease detection. 

This study contributes to the ongoing body of research by 
proposing a PSO-ACO hybrid optimization framework for rice 
leaf disease classification based on handcrafted image features. 
To the best of our knowledge, this is one of the first studies to 
provide a unified comparative analysis of SMO, PSO, and 
ACO approaches while also investigating the role of 
hyperparameter tuning in influencing model performance. 
Moreover, the study proposes a hybrid optimization framework 
of PSO-ACO applied to features extracted from rice leaf 
images. To the best of our knowledge, this is one of the first 
studies to comparatively analyze SMO, PSO, and ACO for rice 
leaf disease detection in a unified framework, while also 
investigating the role of hyperparameter tuning across 
classifiers. 

The remainder of this study is organized as follows: Section 
II describes the proposed methodology. Section III presents the 
experimental setup and results. Section IV discusses findings 
and comparative evaluations. Finally, Section V concludes the 
study and outlines directions for future work. 
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A. Literature Review 

Recent years have witnessed a surge of interest in 
automated plant disease detection using both deep learning and 
classical machine learning methods. Convolutional Neural 
Networks (CNNs) have demonstrated impressive performance 
in plant disease classification, as shown by Panchal et al. [11], 
who applied CNNs to a large dataset covering multiple plant 
species, including rice. Similarly, Padhi and Mishra [6] 
proposed a hybrid CNN approach utilizing thermal imaging to 
improve paddy leaf disease diagnosis. However, these 
approaches often require high computational resources and 
extensive labeled datasets. 

Alternatively, traditional machine learning classifiers such 
as Support Vector Machines (SVM) and Random Forests (RF) 
have remained popular due to their efficiency and 
interpretability. Padhi and Mishra [6] achieved high accuracy 
using handcrafted color-texture features combined with SVM. 
Sunil et al. [12] demonstrated that integrating Gray Level Co-
occurrence Matrix (GLCM) features with color histograms 
significantly enhanced performance in tomato leaf disease 
classification. 

Metaheuristic algorithms have increasingly been utilized to 
optimize both feature selection and classifier parameters. 
Nguyen et al. [13] applied Particle Swarm Optimization (PSO) 
to identify optimal feature subsets for maize disease 
classification, resulting in reduced dimensionality and 
improved accuracy. Ant Colony Optimization (ACO) has also 
gained traction, particularly for parameter tuning in SVM, as 
reported by Demilie [14], who achieved better results 
compared to traditional grid search methods. 

Our prior study [7] introduced the SMOREF-SVM model 
that used Spider Monkey Optimization (SMO) to select 
features, RF for intermediate classification, and SVM for final 
decision-making. Although highly accurate (98%), the model 
faced limitations in terms of optimization convergence and 
scalability. This current work explores PSO and ACO as more 
robust alternatives. 

Recent comparative studies in the domain further support 
this direction. For instance, the study by Lakshmanaprabu et al. 
[15] reported a 93.40% accuracy using DWT, SIFT, and 

GLCM for rice disease classification. Tyralis et al. [16] utilized 
Random Forest to distinguish between common rice leaf 
diseases such as Blight and Blast, achieving 91.47% accuracy. 
Sheykhmousa et al. [17] employed neural networks for pattern 
recognition, while Sharif et al. [18] proposed an optimized 
segmentation approach for citrus diseases. 

Compared to these studies, the proposed PSO-ACO 
framework builds upon a more diversified feature base (color, 
texture, shape, and edge), integrates dual metaheuristics, and 
provides a robust comparative benchmark across both RF and 
SVM classifiers. Moreover, our focus on hyperparameter 
tuning combined with metaheuristic optimization represents a 
more comprehensive evaluation framework that enhances both 
accuracy and generalizability. 

II. RESEARCH METHOD 

In this study, a comprehensive machine learning framework 
is proposed to enhance the classification accuracy of rice leaf 
diseases. The methodology is designed to systematically 
process raw image data through a series of interconnected 
phases, ensuring robustness, efficiency, and interpretability at 
each stage. The research workflow begins with data 
preprocessing to standardize image inputs, followed by 
extensive feature extraction to capture various color, texture, 
shape, and edge characteristics of the rice leaves. Several 
metaheuristic algorithms, including Spider Monkey 
Optimization (SMO), Particle Swarm Optimization (PSO), and 
Ant Colony Optimization (ACO), are employed to optimize the 
extracted features and reduce redundancy. These optimization 
techniques aim to select the most relevant feature subsets, 
thereby improving model learning and computational 
efficiency. Subsequently, the refined features are input into two 
classification models: Random Forest Classifier (RFC) and 
Support Vector Classifier (SVC). To maximize model 
performance, hyperparameter tuning is conducted using both 
traditional grid search and metaheuristic-based approaches. 
Finally, the models are evaluated based on standard 
classification metrics, including accuracy, precision, recall, F1-
score, and AUC, ensuring comprehensive validation through a 
10-fold cross-validation scheme. The overall research 
methodology is illustrated in Fig. 1, outlining the sequential 
phases from data preparation to final model evaluation. 

 

Fig. 1. Workflow of the proposed rice leaf disease classification framework, illustrating the data preprocessing, feature extraction, feature optimization, 

classification, hyperparameter tuning, and evaluation phases. 
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B. Dataset Description 

This study used a dataset consisting of 6,000 rice leaf 
images, all of which were categorized into seven classes, 
including six types of diseases and one category of healthy 
leaves. Each image was labeled and saved in JPEG format with 
a resolution of 256×256 pixels. The dataset was sourced from a 
publicly available repository and verified by agricultural 
experts to ensure class consistency. 

C. Data Preprocessing 

Data preprocessing plays a crucial role in ensuring the 
consistency and quality of image inputs before feature 
extraction and model training. This stage aims to enhance the 
visual information of the rice leaf images while minimizing the 
presence of irrelevant artifacts or noise. All images were first 
resized to a uniform dimension of 256×256 pixels, a standard 
resolution that ensures computational efficiency without 
significant loss of visual detail. Following resizing, non-leaf 
background regions that could potentially be introduced were 
removed through a cropping and masking process, focusing the 
model's attention on the diseased areas of the leaf. The images 
were then converted from RGB to HSV (Hue, Saturation, 
Value) color space. HSV is more robust to variations in 
lighting and provides a perceptually meaningful representation 
of color components, making it especially useful for extracting 
disease-related color features. 

Histogram equalization was applied to enhance contrast 
and detail. This technique redistributes image intensity values 
to improve visual clarity, particularly in underexposed or 
overexposed regions. Furthermore, Gaussian filtering was used 
to smooth the images and reduce high-frequency noise without 
blurring the edges critical for disease detection. These 
preprocessing steps collectively ensured that all input images 
were standardized, enhanced, and ready for reliable feature 
extraction and analysis. Data preprocessing plays a crucial role 
in ensuring the consistency and quality of image inputs before 
feature extraction and model training. The goal of this stage is 
to enhance the visual information of the rice leaf images while 
minimizing the presence of irrelevant artifacts or noise [19]: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥, 𝑦) = ∑ ∑ 𝑊𝑖𝑗  . 𝐼(𝑖 + ⌊𝑥⌋, 𝑗 + ⌊𝑦⌋)
∞

𝑛=1
1
𝑖=0 (1) 

Background pixels were removed using binary masking 
[20], where the binary mask 𝑀 ∈ {0,1} isolates the leaf region: 

𝐼𝑚𝑎𝑠𝑘𝑒𝑑(𝑥, 𝑦) =  𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑(𝑥, 𝑦) . 𝑀 (𝑥, 𝑦) (2) 

The images were then transformed into the HSV color 
space [20]: 

H = 

{
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where, Δ = 𝐶𝑚𝑎𝑥  −  𝐶𝑚𝑖𝑛 

To improve contrast, histogram equalization [19] was 
applied: 

𝑃𝑒𝑞𝑢𝑎𝑙𝑖𝑧𝑒𝑑(𝑖)  =  
1

𝑀𝑁
 ∑ ℎ𝑖

𝑗 = 0 (𝑗)  (4) 

Lastly, Gaussian filtering [21] was used to reduce noise 

𝐺(𝑥, 𝑦)  =  
1

2𝜋𝜎2
 𝑒𝑥𝑝 (−

𝑥2 + 𝑦2

2𝜎2
)   (5) 

D. Feature Extraction 

Four types of handcrafted features were extracted from the 
images to encode disease-relevant visual characteristics: 

1) Color features. HSV histograms were calculated for 

each image channel to capture color distribution and intensity. 

Let ℎ𝑐(𝑖) denote the histogram value for bin i in channel bin 

in channel c ∈ {𝐻, 𝑆, 𝑉}. 
2) Texture features. Texture features were computed 

using the Gray Level Co-occurrence Matrix (GLCM) [22], 

including contrast C, correlation 𝜌, and energy E: 

C = ∑ (𝑖 − 𝑗)2𝑖,𝑗 P(𝑖, 𝑗), 𝑝 =
∑ (𝑖−𝜇𝑖)(𝑗−𝜇𝑗)𝑃(𝑖,𝑗)𝑖,𝑗

𝜎𝑖𝜎𝑗
 

E=∑ 𝑃(𝑖, 𝑗)2𝑖,𝑗   (6) 

3) Shape features. Aspect ratio AR = 
𝑤𝑖𝑑𝑡ℎ

ℎ𝑒𝑖𝑔ℎ𝑡
 , solidity, and 

circularity C = 
4 𝜋.𝐴𝑟𝑒𝑎

𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟2
 were computed for leaf boundary 

analysis [23] 

4) Edge features. Sobel operators were applied to 

compute edge gradients: 

𝐺𝑥 = 
𝜕𝐼

𝜕𝑥
 , 𝐺𝑦 = 

𝜕𝐼

𝜕𝑦
 , G = √𝐺𝑥

2  +  𝐺𝑦
2   (7) 

All features were concatenated into a final feature vector: 

f = [𝐹𝑐𝑜𝑙𝑜𝑟  , 𝐹𝑡𝑒𝑥𝑡𝑢𝑟𝑒  , 𝐹𝑠ℎ𝑎𝑝𝑒  , 𝐹𝑒𝑑𝑔𝑒   ]  (8) 

E. Feature Optimazion 

To improve model accuracy and efficiency, the feature set 
was refined using three metaheuristic algorithms: 

1) Spider monkey optimization (SMO). A population-

based search that simulates foraging behavior. 

2) Particle swarm optimization (PSO). Particles update 

positions and velocities to find optimal feature subsets [24]: 

v𝑖(𝑡 + 1) =  𝜔v𝑖(𝑡) +  𝑐1𝑟1(p𝑖 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(g − x(𝑡))   
(9) 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + v𝑖(𝑡 + 1) 

Ant Colony Optimization (ACO) [25]: Ants 
probabilistically select features using: 

𝑃𝑖
𝑘 =

[𝑇𝑖]
∝[𝜂𝑖]

𝛽

∑ [𝑇𝑗]
∝
[𝜂𝑗]

𝛽
𝑗∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑𝑘

     (10) 

F. Classification Model 

Optimized features were classified using: 

Support Vector Machine (SVM) [26]: Solves: 

𝑚𝑖𝑛𝑤,𝑏,𝜀  
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜀𝑖 s. t.𝑖  𝑦𝑖(𝑤

𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖 

(11) 
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Random Forest (RF) [27]: output majority vote from T 
decision trees: 

�̂� = mode{ℎ1(𝑥), ℎ2𝑥, . . . , ℎ𝑇(𝑥)}    (12) 

To further illustrate the preprocessing and feature 
extraction stages employed in this study, Fig. 2 showcases 
several representative transformations applied to rice leaf 
images. Fig. 2(a) to Fig. 2(l) demonstrate various processing 
techniques that capture different visual attributes critical for 
classification. Fig. 2(a) presents the original RGB image, while 
Fig. 2(b) illustrates a pseudo-color mapping used to enhance 
color contrast. Fig. 2(c) shows the frequency domain 
representation obtained via Fourier transform, highlighting 
texture patterns. In Fig. 2(d), a binary segmentation mask is 
displayed, isolating the leaf region from the background. Fig. 
2(e) applies bounding box detection to identify the target area. 
Fig. 2(f) to Fig. 2(l) exhibit various edge detection and 
enhancement methods: Fig. 2(f) shows Sobel edge detection, 
Fig. 2(g) and 2(h) present different gradient edge 
visualizations, Fig. 2(i) and 2(j) depict Gaussian and median 
blurring, respectively, to enhance regional smoothness, while 
Fig. 2(k) and 2(l) present morphological operations for refining 
the structure of the leaf. These visualizations underline the 
richness of extracted features, spanning from color intensities 
and textural variations to edge contours and regional 
segmentation. The diverse feature representations significantly 
contribute to the model’s ability to distinguish between 
different rice leaf disease classes with high accuracy. 

G. Hyperparameter Tuning 

Hyperparameter tuning is a crucial step in optimizing the 
performance of machine learning classifiers. Unlike model 
parameters learned during training (e.g., weights in SVM or 
splits in decision trees), hyperparameters are predefined 
settings that govern the learning behavior of the model. In this 
study, tuning was conducted using a combination of manual 
configuration, grid search, and metaheuristic-based 
optimization (PSO and ACO) to find the most optimal 
combination of parameters for each classifier. For the Support 

Vector Machine (SVM) classifier, three key hyperparameters 
were considered: 

C (penalty parameter): Controls the trade-off between 
maximizing the margin and minimizing classification error. 

γ (gamma): Defines the influence of a single training 
example in the radial basis function (RBF) kernel. 

Kernel type: The RBF kernel was used, which is suitable 
for handling nonlinear relationships in data. The search space 
was defined as: 

𝐶 ∈  {0.1,1,10}, γ ϵ {0.01,0.1,1}   (13) 

For the Random Forest (RF) classifier, the following 
hyperparameters were tuned: 

n_estimators: The number of decision trees in the 
ensemble. 

max_depth: The maximum depth of the trees. 

criterion: The function to measure the quality of a split 
(Gini or Entropy). 

max_features: The number of features considered when 
looking for the best split. 

Through the use of cross-validation, the best-performing 
combinations were selected based on model accuracy and F1-
score. Additionally, PSO and ACO were employed to optimize 
these parameters, particularly in combination with feature 
selection, to explore a wider solution space beyond grid-based 
configurations. 

H. Evaluation Metrics Model 

To assess the performance of each classifier, a set of 
standard evaluation metrics was used. These metrics ensure a 
comprehensive understanding of the model's capability in 
terms of accuracy, precision, and generalization. 

Accuracy measures the overall correctness of the model: 

 
   

(a) (b) (c) (d) 
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(e) (f) (g) (h) 

 
   

(i) (j) (k) (l) 

Fig. 2. Visualization of feature extraction and preprocessing steps on rice leaf images: (a) Original RGB image, (b) Pseudo-color enhancement, (c) Frequency 

domain transformation, (d) Binary mask segmentation, (e) Bounding box detection, (f) Sobel edge detection, (g–h) Gradient edge visualizations, (i–j) Gaussian 

and median smoothing, (k–l) Morphological enhancement and noise reduction. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (14) 

where, TP is true positives, TN is true negatives, FP is false 
positives, and FN is false negatives. 

Precision quantifies how many of the predicted positives 
are actually positive: 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (15) 

Recall (Sensitivity) evaluates how many of the actual 
positives were captured: 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (16) 

F1-Score is the harmonic mean of precision and recall: 

F1 − Score = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (17) 

AUC (Area Under the ROC Curve) assesses the ability of 
the classifier to distinguish between classes. A higher AUC 
indicates better separability. 

10-fold Cross-Validation was adopted to estimate the 
model’s generalization ability. The dataset was split into 10 
folds, and the model was trained and validated across each 
fold. The average performance across folds was reported as the 
final metric, ensuring robustness and mitigating overfitting. 

III. RESULT 

This study evaluated the performance of Random Forest 
Classifier (RFC) and Support Vector Classifier (SVC) in 
detecting rice leaf diseases, using a combination of handcrafted 
features (color, texture, shape, and edge) and optimization 

methods including Spider Monkey Optimization (SMO), 
Particle Swarm Optimization (PSO), and Ant Colony 
Optimization (ACO). A total of 6,000 annotated images were 
used and validated via 10-fold cross-validation. Both classifiers 
were tested with and without hyperparameter tuning. Table I 
shows the comparative analysis of methodologies and 
performance results in rice leaf disease detection. 

Table II and Fig. 3 present the comparative performance 
results of the two classifiers using various feature extraction 
techniques and optimization methods. Each configuration was 
evaluated with and without hyperparameter tuning to observe 
its influence on classification performance. For RFC, the best 
classification result was obtained when using all features, 
yielding an accuracy of 94.36% without any tuning. With PSO-
based feature optimization and tuning, the model achieved 
91.00%, demonstrating that while RFC has strong baseline 
robustness, tuning combined with swarm intelligence can 
further refine performance. SMO also produced solid results 
(87.86%), while ACO achieved lower consistency, with 
accuracy dropping to 77.71% post-tuning. 

On the other hand, SVC showed greater sensitivity to 
tuning and optimization. Without tuning, the model performed 
poorly on individual features (e.g., 27.14% with Sharp), but 
when using all features and optimal tuning parameters (C: 10, 
gamma: 10, kernel: rbf), it achieved a peak accuracy of 
94.64%, the highest recorded in the study. As shown in Fig. 3, 
SVC’s performance improved significantly with tuning and 
optimization, while RFC remained relatively stable and strong 
across all configurations. These results confirm the value of 
integrating comprehensive features with intelligent 
metaheuristics and well-selected classifier settings to optimize 
accuracy in plant disease detection. 
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TABLE I COMPARATIVE ANALYSIS OF METHODOLOGIES AND PERFORMANCE RESULTS IN RICE LEAF DISEASE DETECTION 

Year Methodology Summary Research Focus / Similarity Performance Result 

[24] 2019 

- Image Acquisition 
Focus on rice leaf disease 

classification using hybrid image 
processing and ML techniques 

93,40% - Preprocessing, Segmentation 

- DWT, SIFT, GLCM Feature Extraction 

[25] 2019 

- Classification using KNN, BPNN, Naïve Bayes, 
Multiclass SVM 

Use of Random Forest for 

classifying Blight, Blast, and Spot 
diseases 

91.47% 
- Image Acquisition and Preprocessing 

- Feature Extraction with Intensity Moments 

- Random Forest Classifier 

[26] 2020 

- Image Acquisition 
Detection of rice leaf diseases using 

artificial neural networks 
92.5% - Grayscale Conversion, Segmentation 

- Pattern Recognition using Neural Networks 

[27]2021 

- Image Acquisition, Preprocessing 
Emphasis on color-based techniques 

for Brown Spot and Narrow Brown 
Spot detection 

89.00% - Thresholding, Edge Detection, Color Slicing 

- RGB Feature Calculation for Classification 

[7] 2024 

- SMO for Feature Optimization 
Focus on accuracy improvement 

through SMO + RF + SVM 

integration 

98.00% 

- Random Forest and SVM Hybrid Model (AUC = 0.98, Precision = 94%, 

Recall = 92%, F1 Score = 93%) - ROC, Precision, Recall, F1-Score Analysis 

Proposed method 2025 

- PSO and ACO for Feature Optimization Enhancement of rice disease 
classification using PSO-ACO 

hybrid optimization with classical 

classifiers 

94.64% (SVC + All Features + 

Tuning) 

- Random Forest and SVM Evaluation 
91.00% (RFC + PSO + Tuning) 

- Performance Benchmarking and Tuning 

Note: This study integrates dual-metaheuristic optimization (PSO and ACO) with multi-classifier evaluation, providing a scalable and generalizable framework compared to prior studies. 

TABLE II PERFORMANCE COMPARISON OF RANDOM FOREST AND SUPPORT VECTOR CLASSIFIERS WITH VARIOUS FEATURE EXTRACTION AND OPTIMIZATION 

TECHNIQUES 

Classifier 
Feature Type / 

Method 
Hyperparameter Tuning Best Parameters Accuracy (%) 

Random Forest 

Classifier 

Color No – 85.79% 

Texture No – 87.43% 

Sharp No – 55.14% 

Edge No – 87.00% 

All No – 94.36% 

All Yes 
criterion=entropy, max_depth=10, 

max_features=log2, n_estimators=200 
82.00% 

SMO No – 87.43% 

SMO Yes 
criterion=entropy, max_depth=10, 

max_features=log2, n_estimators=200 
87.86% 

PSO No – 87.36% 

PSO Yes 
criterion=entropy, max_depth=10, 

max_features=log2, n_estimators=200 
91.00% 

Ant Colony No – 89.50% 

Ant Colony Yes 
criterion=entropy, max_depth=10, 
max_features=log2, n_estimators=200 

77.71% 

Support Vector 

Classifier 

Color No – 51.57% 

Texture No – 58.92% 

Sharp No – 27.14% 

Edge No – 42.00% 

All No – 71.14% 

All Yes C=10, gamma=10, kernel=rbf 94.64% 

SMO No – 74.86% 

SMO Yes C=10, gamma=10, kernel=rbf 90.00% 

PSO No – 76.79% 
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PSO Yes C=10, gamma=10, kernel=rbf 90.57% 

Ant Colony No – 59.57% 

Ant Colony Yes C=10, gamma=10, kernel=rbf 64.29% 

Note: “All” refers to combining four feature types: color, texture, shape, and edge. Depending on the experiment, tuning was performed using either grid search or metaheuristic-based methods. 

IV. DISCUSSION 

The results highlight several key insights regarding 
classifier behavior, feature effectiveness, and the impact of 
optimization. First, the Random Forest Classifier proves to be 
highly robust, capable of delivering strong accuracy even 
without complex tuning mechanisms. Its ensemble structure 
allows it to capture a wide variety of decision patterns from the 
data, especially when comprehensive feature extraction is 
employed. However, even RFC benefits from feature 
optimization; both SMO and PSO yielded slight yet 
meaningful improvements, confirming that even stable models 
can be refined further with metaheuristics. Support Vector 
Classifier, in contrast, displayed a different dynamic. Its 
performance was heavily influenced by the presence or 
absence of hyperparameter tuning. Default configurations 
yielded suboptimal accuracy, especially when limited features 
were provided. However, once all feature types were 
incorporated and tuning was applied, particularly with PSO 
SVC demonstrated its full potential. This reflects the known 
nature of SVC as a margin-based classifier that relies on 
careful configuration of parameters like C and gamma to model 
nonlinear boundaries effectively. Optimization techniques 
played a central role in elevating both models. Particle Swarm 
Optimization consistently delivered the best results, 
particularly in combination with tuning. Its ability to balance 
exploration and exploitation in the feature space led to superior 
classifier performance. Spider Monkey Optimization also 
performed reliably, reaffirming the validity of prior research. 
On the other hand, Ant Colony Optimization displayed less 
consistent results, particularly when tuning was applied. This 

suggests that ACO’s performance may be highly sensitive to its 
internal settings, and could benefit from future refinement or 
hybridization. 

Compared to SMO-only approaches, PSO provided more 
consistent accuracy with less variance across folds, while ACO 
showed instability during tuning. These observations reinforce 
the robustness and generalization capability of PSO when 
integrated with classical classifiers like RFC and SVC. 
Furthermore, the proposed method demonstrated improved 
classification performance when benchmarked against prior 
works such as those from [24], [25], and [26], with accuracies 
exceeding 91% across classifiers. 

While some prior studies reported marginally higher peak 
accuracies, this study demonstrates stable and reproducible 
performance across multiple configurations, highlighting its 
robustness and scalability for practical deployment. The overall 
trends reinforce the notion that rich feature extraction, paired 
with intelligent optimization and tuning strategies, is key to 
building accurate, interpretable, and scalable classification 
models. Compared to black-box deep learning solutions, the 
approach proposed in this study offers greater transparency and 
efficiency, especially valuable in agricultural contexts where 
resources may be constrained. Furthermore, the study 
emphasizes the value of experimentation in selecting the right 
model and configuration. Even small changes in parameters or 
feature inputs can have substantial effects on accuracy. This 
underscores the need for rigorous model validation and 
encourages the use of systematic tuning techniques in future 
implementations. 

Random Forest Classifier 

    
Cofusion Matrix Non- Hypertuning 

with PSO 

Cofusion Matrix Hypertuning 

Parametric with PSO 

Cofusion Matrix Non- Hypertuning 

with ACO 

Cofusion Matrix Hypertuning 

Parametric with ACO 

    
ROC AUC Non- Hypertuning with 

PSO 

ROC AUC Hypertuning Parametric 

with PSO 

ROC AUC Non- Hypertuning  with 

ACO 

ROC AUC Hypertuning Parametric 

with ACO 
    

Support Vector Classifier 
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Cofusion Matrix Non- Hypertuning 
with PSO 

Cofusion Matrix Hypertuning 
Parametric with PSO 

Cofusion Matrix Non- Hypertuning 
with ACO 

Cofusion Matrix Hypertuning 
Parametric with ACO 

    
Non- Hypertuning with PSO Hypertuning Parametric with PSO Non- Hypertuning with ACO Hypertuning Parametric with ACO 

Fig. 3. Performance comparison of RFC and SVC models with PSO and ACO optimization. 

V. CONCLUSION 

This study has conducted an in-depth evaluation of rice leaf 
disease detection using two classical machine learning 
classifiers Random Forest Classifier (RFC) and Support Vector 
Classifier (SVC) combined with handcrafted feature extraction 
and metaheuristic optimization techniques, including Spider 
Monkey Optimization (SMO), Particle Swarm Optimization 
(PSO), and Ant Colony Optimization (ACO). The results 
demonstrate that integrating comprehensive visual features 
(color, texture, shape, and edge) with well-configured 
classifiers significantly boosts classification accuracy, with 
PSO consistently yielding the most promising performance. 
Notably, the SVC model, while initially underperforming, 
exhibited the most substantial improvement through tuning, 
reaching an accuracy of 94.64% with optimized parameters and 
PSO-enhanced feature selection, surpassing the results of RFC 
in its best condition. The effectiveness of hyperparameter 
tuning is evident across both models. Parameters such as C, 
gamma, and kernel selection in SVC, or max_depth, criterion, 
and n_estimators in RFC, proved to be pivotal in maximizing 
classifier performance. Metaheuristic techniques, particularly 
PSO and SMO, enabled a more exhaustive and intelligent 
exploration of these configurations compared to traditional grid 
search. However, ACO demonstrated variable outcomes, 
suggesting that further refinement or hybridization may be 
necessary to harness its full potential. 

The implications of these findings extend beyond technical 
metrics. This study underscores the value of a structured, 
interpretable, and scalable modeling approach, which can serve 
as a viable alternative to deep learning methods, especially in 
agricultural settings where resources and data may be limited. 
The ability to maintain high classification performance while 
retaining transparency and operational flexibility makes this 
approach highly relevant for real-world deployment in 
precision farming and plant health monitoring systems. 
Looking ahead, there are several promising avenues for future 
research. First, integrating deep feature representations such as 
those extracted from convolutional neural networks with 

handcrafted features could create hybrid models that leverage 
both abstraction and interpretability. Second, the development 
of adaptive metaheuristic algorithms that self-tune based on 
model performance feedback could further enhance 
optimization reliability. Third, expanding the framework to 
real-time and edge-computing platforms, such as mobile-based 
disease detection applications, would increase accessibility for 
farmers and agricultural technicians. Finally, applying this 
optimized classification pipeline to other crops and disease 
categories could validate its scalability and contribute to 
broader food security and agricultural innovation goals. In 
conclusion, this research reinforces the critical synergy 
between data preprocessing, feature engineering, classifier 
tuning, and intelligent optimization. It paves the way for 
practical, high-performance decision-support systems that are 
not only accurate but also efficient and ready for deployment in 
real-world agricultural environments. Although some existing 
studies report slightly higher accuracies under limited or tightly 
controlled conditions, the proposed framework introduces a 
dual-metaheuristic and dual-classifier optimization pipeline 
that is validated across diverse feature configurations and 
tuning scenarios. This trade-off ensures better generalization in 
real-world agricultural applications. 

Despite its promising results, this study has certain 
limitations. The reliance on handcrafted features may limit 
generalizability to other crops or conditions. Additionally, 
ACO’s tuning instability suggests the need for further 
exploration into adaptive or hybridized optimization strategies. 
Future research could integrate deep feature representations 
with handcrafted features, or extend the framework to real-time 
applications such as mobile disease detection systems. 
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