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Abstract—This study presents a novel application of 

Reinforcement Learning (RL) and Deep Reinforcement Learning 

(DRL) for scheduling optimization in Reconfigurable 

Manufacturing Systems (RMFS). The performance of these 

approaches is quantitatively evaluated and compared with 

traditional scheduling methods, specifically Shortest Processing 

Time (SPT) and Earliest Due Date (EDD), across several key 

metrics, including makespan, tardiness, resource utilization, and 

adaptability to disturbances. Our results show a significant 

reduction in makespan, with RL achieving a 20% improvement 

and DRL a 28.57% improvement over SPT. Moreover, RL and 

DRL outperform classical methods in minimizing tardiness and 

improving resource utilization. DRL also demonstrates superior 

adaptability under dynamic disruptions such as machine 

breakdowns, with only a 5% deviation in makespan compared to 

16.67% for SPT. These findings confirm the benefits of RL and 

DRL for real-time decision-making in dynamic manufacturing 

environments. The study discusses the robustness and scalability 

of RL and DRL approaches, as well as the challenges related to 

their computational cost. The novelty lies in integrating RL and 

DRL into RMFS scheduling to offer a scalable, adaptive solution 

that improves production efficiency. 
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I. INTRODUCTION 

Reconfigurable Manufacturing Systems (RMFS) were 
developed to address the growing need for flexibility and 
product customization in manufacturing. Unlike traditional 
manufacturing systems, which are designed for fixed, repetitive 
tasks, RMFS enables rapid adaptation to changes in product 
designs or production volumes [1]. This adaptability is 
achieved through configurable modules, such as machines and 
resources that can be restructured or reallocated [2]. RMFS 
offers a highly versatile approach, making it possible to adjust 
production lines in response to evolving requirements, without 
significant downtime or overhauls. This type of system plays a 
vital role in industries that operate within uncertain and highly 
competitive environments, such as automotive, aerospace, and 
electronics manufacturing [3]. In these sectors, quickly 
responding to shifts in market demands and technological 
advancements is crucial, giving companies that utilize RMFS a 
competitive edge. Consequently, RMFS enhances efficiency 
and provides a scalable solution to meet the diverse and 
changing demands of modern production [4], [5]. 

A. Complexity of the Scheduling Process 

In Reconfigurable Manufacturing Systems (RMFS), 
scheduling involves defining the optimal sequence for 
executing tasks on available machines while adhering to 
constraints such as deadlines and resource availability. The 
primary objective is to optimize the overall system 
performance, which includes reducing production times, 
meeting deadlines, and enhancing resource utilization [2]. 
However, this task becomes complex in a reconfigurable 
environment for several reasons: 

1) System dynamics. Machine configurations can change 

in real-time, necessitating adjustments to the scheduling 

algorithm [1]. 

2) Frequent introduction of new orders. Customized 

products often require adjustments in production sequences to 

accommodate various specifications and customer demands 

[3]. 

3) Breakdowns and interruptions. Machines may 

experience unexpected failures or require unscheduled 

maintenance, which disrupts the planned sequence of tasks 

and the scheduling process [4]. 

B. Specific Challenges of Scheduling in RMFS 

The challenges associated with scheduling in RMFS 
include: 

1) Responsiveness to unforeseen events. The system must 

quickly modify the sequence during disruptive occurrences, 

such as a machine breakdown [5]. 

2) Resource conflicts. Multiple tasks may require the 

same machines or resources, creating bottlenecks that hinder 

efficient operation [2]. 

3) Multi-criteria optimization. It is not just about 

minimizing production time; balancing various objectives, 

such as cost, deadlines, and quality, is also crucial [3]. 

C. Necessity for an Intelligent Approach to Scheduling 

Traditional methods, such as Shortest Processing Time 
(SPT) and Earliest Due Date (EDD), are often inadequate for 
RMFS. These methods apply static rules that do not account 
for the dynamic and uncertain nature of RMFS [1]. For 
instance, an optimal sequence according to the SPT rule may 
become inefficient if a key machine fails or an urgent new 
order is introduced. 
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This highlights the necessity for intelligent approaches like 
Reinforcement Learning (RL). These methods allow the 
system to learn and adjust sequences in real time based on the 
current state of the system [6]. This provides operational 
flexibility and enhances the system's ability to maintain high 
performance despite frequent disruptions [7]. 

D. Impact of Optimized Scheduling on RMFS Performance 

Effective scheduling in RMFS offers several strategic 
advantages: 

1) Reduction of downtime. Machines are utilized more 

effectively by optimizing the sequence, thereby minimizing 

idle periods [5]. 

2) Improved customer satisfaction. Meeting delivery 

deadlines becomes easier, even when dealing with customized 

or unexpected orders [2]. 

3) Reduction in operational costs. Operational costs are 

lowered with less resource wastage and shortened production 

lead times [3]. 

4) Increased adaptability. The system can respond swiftly 

to new market demands, ensuring a competitive advantage [1]. 

Scheduling plays a central role in the effective management 
of RMFS. Adopting dynamic and intelligent scheduling 
approaches becomes imperative in an environment, where 
flexibility, responsiveness, and efficiency are critical factors. 
Reinforcement Learning methods, such as Q-learning and 
Deep Reinforcement Learning, show promise as they enable 
the system to adapt proactively and continuously. Therefore, an 
optimized scheduling approach is essential for maximizing the 
overall performance of RMFS and ensuring an effective 
response to modern market challenges. 

Our study is structured to provide a logical and 
comprehensive exploration of the proposed scheduling 
approach. Section II reviews existing methods for RMFS 
scheduling and highlights their limitations, establishing the 
need for innovative AI-based solutions. Section III details the 
design and implementation of our Reinforcement Learning 
(RL) and Deep Reinforcement Learning (DRL) frameworks for 
intelligent scheduling. Section IV presents the experimental 
outcomes, comparing the performance of RL and DRL with 
traditional methods across key metrics such as makespan and 
resource utilization. Section V analyzes the results, 
emphasizing the robustness and advantages of the proposed 
approaches while addressing their potential limitations. Finally, 
Section VI summarizes the contributions of the study and 
offers perspectives for future research in intelligent scheduling 
for RMFS. 

II. RELATED WORK 

Scheduling in Reconfigurable Manufacturing Systems 
(RMFS) is essential for optimizing operational efficiency and 
responsiveness to market demands. It involves determining the 
optimal sequence for executing tasks on available machines 
while adhering to constraints such as deadlines and resource 
availability. Given the dynamic nature of RMFS, where 
configurations can change in real-time, effective scheduling 
directly impacts resource utilization and production lead times. 
Reviewing existing literature on scheduling techniques is 

crucial for understanding the evolution from classical methods, 
like Shortest Processing Time (SPT) and Earliest Due Date 
(EDD), to more advanced artificial intelligence-driven 
approaches. This examination highlights the strengths and 
limitations of traditional strategies and identifies innovative 
solutions that address the complexities of modern 
manufacturing environments. By identifying gaps in current 
research, we can propose future developments that enhance the 
adaptability and performance of scheduling in RMFS. 

A. Classical Scheduling Approaches 

Classical scheduling methods, such as Shortest Processing 
Time (SPT) and Earliest Due Date (EDD), have long been used 
in traditional manufacturing systems to determine the order of 
tasks in a way that optimizes production outcomes. These 
methods are foundational in scheduling theory, offering simple 
yet effective rules for task prioritization. However, while they 
remain useful in specific contexts, their limitations in 
Reconfigurable Manufacturing Systems (RMFS) highlight the 
need for more dynamic approaches [8], [9]. 

1) Shortest Processing Time (SPT). The Shortest 

Processing Time (SPT) rule prioritizes tasks based on the time 

required to complete them, scheduling shorter tasks first to 

minimize the total production time, or "makespan" [10]. 

Historically, SPT has been widely applied in conventional 

manufacturing environments to reduce the average waiting 

time of tasks, making it an effective strategy for repetitive and 

stable production systems [11]. 

a) Advantages of SPT: The primary advantage of SPT is 

its effectiveness in reducing makespan and minimizing in-

process inventory by accelerating task completion  [12]. This 

can be particularly valuable in batch production systems, 

where rapid completion of smaller tasks allows for quick 

turnover  [13]. 

b) Limitations in RMFS: While SPT can improve 

efficiency in traditional settings, its static prioritization 

approach does not align well with the dynamic demands of 

RMFS. The SPT rule is not inherently adaptable to sudden 

changes in task requirements, equipment reconfiguration, or 

machine breakdowns. As a result, it may struggle to keep up 

with the flexibility and responsiveness required in RMFS 

environments where tasks and resources are frequently 

reallocated  [14], [15]. 

2) Earliest Due Date (EDD). The Earliest Due Date 

(EDD) rule is another classical approach that prioritizes tasks 

based on their deadlines, scheduling the task with the earliest 

due date first  [16]. In traditional manufacturing, EDD has 

been effectively used to reduce tardiness and to ensure that 

tasks meet deadlines, which is particularly important in 

environments where adherence to delivery schedules is crucial  

[17]. 

a) Advantages of EDD: EDD helps to minimize the 

number of late tasks and is beneficial in scenarios, where 

customer satisfaction or regulatory compliance depends on 

timely delivery. This approach is instrumental in make-to-

order environments where each task has a distinct due date 

[18]. 
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b) Limitations in RMFS: In an RMFS, the EDD rule’s 

rigid focus on due dates may lead to inefficiencies, especially 

when production requirements change frequently. If a task 

with a nearer due date is delayed due to a reconfiguration or 

machine breakdown, EDD may not respond flexibly, 

potentially resulting in longer delays and resource 

underutilization  [19], [20]. 

3) Comparison of SPT and EDD. SPT and EDD have 

distinct performance metrics that influence their effectiveness 

in different scenarios: 

a) Performance metrics: SPT tends to excel in 

minimizing makespan and average waiting time, while EDD is 

more effective for reducing tardiness and ensuring timely task 

completion. These metrics are particularly relevant when 

comparing their situational effectiveness within traditional and 

reconfigurable manufacturing settings  [8], [21]. 

b) Situational appropriateness: SPT is best suited to 

scenarios with high volumes of short, repetitive tasks where 

reducing total completion time is key. In contrast, EDD is 

more appropriate in environments where on-time delivery is 

critical, and tasks have varied due dates. However, the 

dynamic nature of RMFS often requires real-time adjustments, 

which neither SPT nor EDD can manage effectively without 

additional support  [22], [23]. 

In summary, while both SPT and EDD offer applicable 
scheduling rules in conventional systems, their limitations in 
RMFS underscore the need for adaptive methods that can 
handle real-time changes and reconfigurations. This gap in 
classical methods provides the foundation for exploring AI-
based and reinforcement learning approaches, which offer 
more sophisticated and flexible scheduling solutions for RMFS 
[8], [9]. 

B. AI-based Scheduling Approaches 

In Reconfigurable Manufacturing Systems (RMFS), the 
dynamic and unpredictable nature of production demands 
flexible scheduling solutions that can adapt to real-time 
changes. Artificial Intelligence (AI)-based scheduling 
approaches have gained popularity due to their potential for 
handling complex decision-making in these environments. 
Unlike classical scheduling rules, AI techniques can 
dynamically respond to changes in tasks, resources, and 
machine configurations. This section explores prominent AI 
scheduling methods, focusing on the benefits and challenges 
they bring to RMFS. 

1) Overview of AI techniques in scheduling. AI techniques 

such as Genetic Algorithms (GA), Neural Networks (NN), and 

other machine learning methods have been widely applied in 

scheduling. Genetic Algorithms, inspired by natural selection, 

are known for their ability to search large solution spaces and 

optimize complex scheduling problems by iteratively 

improving task sequences [8], [24]. They are beneficial for 

multi-objective scheduling problems, where objectives like 

minimizing makespan, reducing lateness, or maximizing 

resource utilization must be balanced [9]. 

Neural Networks are effective in pattern recognition and 
prediction, making them valuable in predicting job arrival 
times, machine breakdowns, and estimating task completion. 
They adapt to changing patterns in production, providing 
forecasts that inform better scheduling decisions [11], [15]. In 
RMFS, Neural Networks can support proactive scheduling by 
learning from historical data, predicting bottlenecks, and 
adjusting task allocations accordingly [23]. 

The adaptability of AI techniques makes them well-suited 
to RMFS, where conventional, static scheduling rules like SPT 
and EDD may fall short. AI methods can improve operational 
efficiency and address RMFS-specific requirements such as 
real-time resource reallocation and production line 
reconfiguration [22]. 

2) Reinforcement learning for scheduling. Reinforcement 

Learning (RL) is an advanced AI technique suitable for 

dynamic environments like RMFS. In RL, an agent learns to 

make sequential decisions by interacting with the 

environment, receiving feedback in the form of rewards, and 

continuously improving its policy to maximize cumulative 

reward over time [19]. RL techniques such as Q-Learning and 

Deep Reinforcement Learning (DRL) have shown promising 

results in complex scheduling tasks, where decisions need to 

adapt based on real-time feedback [20]. 

In Q-Learning, an RL agent learns an optimal policy by 
evaluating each action's potential outcomes, updating a Q-
value table, and selecting actions that maximize rewards. For 
RMFS, Q-Learning can be applied to dynamically allocate 
resources and prioritize tasks based on changing production 
requirements, minimizing downtime, and maximizing 
throughput [13]. 

Deep Reinforcement Learning, which combines RL with 
Deep Learning, enables even more complex decision-making. 
DRL can process extensive, high-dimensional data, such as job 
sequences, machine statuses, and process dependencies, 
allowing it to develop strategies for scheduling in high-
variability environments. Case studies in RMFS have 
demonstrated that DRL can effectively handle high-
dimensional states and actions, learning policies that surpass 
traditional scheduling methods [14], [16]. By using DRL, 
RMFS can benefit from continuous improvement in 
scheduling, with the agent learning to optimize task sequences 
based on feedback from the production floor. 

3) Comparison with classical approaches. Compared to 

classical methods like SPT and EDD, AI-based scheduling 

approaches exhibit higher adaptability, efficiency, and 

responsiveness in RMFS. Classical methods are limited by 

their static nature and cannot effectively handle unexpected 

events like machine breakdowns or sudden changes in task 

priority. AI methods, however, are equipped to re-evaluate 

schedules in real-time, adjusting for new conditions and 

optimizing for multiple objectives simultaneously [8], [18]. 

AI-based scheduling methods outperform classical 
approaches in several key performance metrics: 
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a) Adaptability: AI techniques, especially RL, can 

adjust schedules dynamically based on real-time feedback, 

maintaining optimal performance under changing conditions 

[21]. 

b) Efficiency: Genetic Algorithms and Neural Networks 

have been shown to reduce makespan and tardiness in 

complex scheduling environments, ensuring that production 

schedules remain efficient even in high-variability contexts  

[11], [12]. 

c) Responsiveness: Unlike static scheduling rules, AI-

based methods can quickly adapt to disruptions, minimizing 

the impact of delays and enabling faster recovery times  [23]. 

In summary, while classical scheduling approaches like 
SPT and EDD have value in stable environments, AI-based 
scheduling methods provide a more robust solution for RMFS, 
addressing the need for adaptability, efficiency, and real-time 
responsiveness in modern production systems [17], [19]. 

C. Hybrid Approaches 

1) Combining classical and AI techniques. Hybrid 

scheduling approaches integrate traditional rules like Shortest 

Processing Time (SPT) and Earliest Due Date (EDD) with 

advanced AI techniques, such as Genetic Algorithms (GA) 

and Reinforcement Learning (RL). These approaches aim to 

capitalize on the stability and interpretability of classical 

methods while enhancing adaptability and efficiency through 

AI. Studies show that combining classical heuristics with AI 

algorithms enhances scheduling performance in dynamic 

environments like RMFS, especially under fluctuating demand 

and resource availability. For instance, recent research in 

sustainable edge computing applied hybrid methods to 

optimize task distribution and found that this integration 

reduced makespan and improved scalability  [19], [25]. 

2) Case studies and results. Various implementations of 

hybrid approaches have demonstrated their potential in real-

world RMFS environments. For example, a 2023 study 

applied a hybrid GA-SPT algorithm in cloud-based systems 

and observed a significant improvement in task completion 

rates and resource utilization [26]. These studies underscore 

the efficiency of hybrid methods in handling the specific 

demands of RMFS, such as reconfigurability and task 

prioritization, which are challenging for standalone classical 

or AI methods alone. 

D. Gaps in Current Research 

While hybrid scheduling approaches show substantial 
potential for RMFS environments, several research gaps 
require attention. 

First, optimizing parameter settings to balance the classical 
and AI components effectively is a significant challenge. For 
instance, selecting parameters such as mutation rates in genetic 
algorithms or exploration-exploitation ratios in reinforcement 
learning can drastically affect performance but often requires 
trial and error. This parameter fine-tuning can be particularly 
complex in hybrid models, which combine multiple algorithms 
with distinct parameter requirements. Studies suggest that 

integrating automated hyperparameter tuning techniques, such 
as Bayesian optimization, may enhance hybrid model 
performance without extensive manual adjustment [27], [28]. 

Scalability also remains a critical issue for hybrid 
approaches in RMFS, especially as the complexity of real-
world manufacturing systems increases. While hybrid methods 
are designed to manage dynamic changes, they often demand 
high computational resources. This limitation affects their 
applicability in large-scale systems with frequent 
reconfiguration needs. Recently, research has explored 
lightweight AI models and distributed computation to alleviate 
these demands, allowing for faster adaptation in real-time 
environments. More work is needed to make hybrid models 
computationally efficient without sacrificing responsiveness 
[29]. 

Moreover, model generalization is another area with 
considerable potential for development. Many hybrid models 
are tailored to specific scheduling tasks and may not adapt well 
to different manufacturing configurations. A promising 
direction here is the integration of transfer learning techniques, 
allowing hybrid models to apply knowledge from one 
scheduling context to another with minimal retraining [30]. 
This model's adaptability makes it suitable for a broader range 
of applications within RMFS. 

In the context of intelligent scheduling for complex 
manufacturing environments, recent advances have 
demonstrated the effectiveness of hybrid metaheuristic 
approaches. Notably, the modified chromosome pooling 
genetic algorithm has been introduced for resource allocation 
optimization, providing a practical approach for managing 
complex constraints and achieving high-performance 
scheduling in dynamic environments [31]. Similarly, 
integrating multi-objective genetic algorithms into the job shop 
scheduling problem has shown significant promise for 
addressing multi-criteria optimization requirements, allowing 
for balanced consideration of makespan, tardiness, and 
resource utilization [32]. These studies highlight the evolution 
of traditional optimization methods toward more intelligent, 
adaptive, and multi-criteria approaches, aligning closely with 
the goals of Reinforcement Learning and Deep Reinforcement 
Learning methods proposed in this work. 

Lastly, there is a need for real-world testing and validation 
of hybrid approaches in industrial settings. While numerous 
studies show hybrid methods’ efficacy in simulations, limited 
research has focused on field implementations. The lack of 
practical validation raises questions about the robustness of 
these approaches under unpredictable real-world conditions, 
where factors such as unplanned downtimes, resource 
constraints, and varying task priorities frequently arise [29]. 
Research focused onails would offer valuable insights into 
these models' practical viability and guide further refinement. 

In summary, recent advances in scheduling for RMFS 
highlight the effectiveness and versatility of classical and AI-
based methods. Classical approaches like SPT and EDD 
provide simplicity and reliability, though they lack adaptability 
in dynamic environments. AI techniques, particularly 
reinforcement learning, have proven valuable for complex, 
real-time scheduling, enhancing system flexibility. Hybrid 
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models that integrate classical and AI approaches show 
promise in balancing efficiency and responsiveness, though 
scalability and computational demands remain challenges. 
Continued research in this field is essential to improve RMFS 
scheduling efficiency, focusing on optimizing hybrid models, 
enhancing adaptability, and exploring real-world applications 
to validate these methodologies. 

III. PROPOSED METHODOLOGY 

A. Introduction to Reinforcement Learning for Scheduling 

The proposed methodology leverages Reinforcement 
Learning (RL) to address the dynamic and complex nature of 
scheduling in Reconfigurable Manufacturing Systems (RMFS). 
Production demands frequent shifts in these environments, and 
resource configurations often change, making traditional 
scheduling approaches insufficient. RL stands out as a 
powerful paradigm capable of learning optimal scheduling 
policies by interacting with the system and adapting to its 
dynamic states. 

1) Objective. The primary goal is to utilize RL to optimize 

task allocation and resource utilization in real-time, 

minimizing production delays and improving system 

responsiveness. RL frameworks can dynamically adjust 

scheduling strategies as they continuously learn from the 

system's feedback. 

2) Approach selection. The choice of RL technique 

depends on the complexities and requirements of RMFS 

environments. 

Q-Learning: Selected for problems where the state and 
action spaces are discrete. Q-Learning is straightforward and 
can efficiently handle scenarios with well-defined states, such 
as machine availability or task queue lengths. 

Deep Reinforcement Learning (DRL): Employed in 
scenarios with large or continuous state-action spaces. Using 
neural networks, DRL methods such as Deep Q-Networks 
(DQN) or Actor-Critic frameworks can approximate the value 
functions and handle high-dimensional data, making them ideal 
for complex RMFS setups. 

By utilizing these RL techniques, the proposed 
methodology aims to enable adaptive, real-time decision-
making, which is crucial for meeting the demands of modern 
manufacturing systems. 

B. System Architecture 

1) Overview. The architecture of the proposed system 

integrates Reinforcement Learning (RL) with Reconfigurable 

Manufacturing Systems (RMFS) for intelligent scheduling. It 

included the following key components: 

a) Task queues: Dynamic queues representing pending 

tasks, each characterized by parameters like processing time, 

priority, and deadlines. 

b) Machine configurations: A representation of the 

current state of resources, including machine availability, 

operational capabilities, and current workloads. 

c) Feedback mechanisms: A loop that captures system 

performance metrics (e.g., task completion times, resource 

utilization) to refine the learning process and adapt real-time 

scheduling decisions. 

d) RL module: The core decision-making unit, which 

interacts with the environment (RMFS), learns from feedback, 

and outputs optimized scheduling actions. 

2) State definition. The state represents the current 

environment snapshot, encompassing: 

a) Machine configurations: Status of each machine 

(idle, busy, or under maintenance). 

b) Task queue: The tasks awaiting processing, including 

task-specific details like priority, duration, and dependencies. 

c) System load: Current workload distribution across the 

system. 

Each state is expressed as a multidimensional vector to 
encapsulate these parameters, allowing the RL model to 
understand and respond to the system's current conditions. 

3) Action space. The action space defines the possible 

decisions that the RL agent can make, including: 

a) Task assignment: Assigning tasks to specific 

machines based on their capabilities and current state. 

b) Machine allocation: Activating or deactivating 

machines dynamically to optimize energy use and resource 

utilization. 

c) Scheduling adjustments: Re-sequencing tasks in 

response to unexpected events or delays. 

Actions are designed to directly impact the system’s 
productivity and adaptability. 

4) Reward structure. The reward function guides the RL 

agent by quantifying the effectiveness of its actions. It is 

designed to achieve: 

a) Minimizing production time: Encouraging decisions 

that reduce the makespan of all tasks. 

b) Minimizing delays: Penalizing actions that increase 

task tardiness. 

c) Balancing resource utilization: Promoting even 

workload distribution across all machines to avoid 

bottlenecks. 

d) Energy efficiency: Incentivizing reduced machine 

downtime and energy consumption. 

The reward signal ensures that the RL agent consistently 
learns and improves its scheduling policy to adapt to dynamic 
RMFS environments. 
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Fig. 1. System architecture diagram for reinforcement learning-based 

scheduling in RMFS. 

The architecture diagram (Fig. 1) is positioned below this 
section to visually represent the described components and 
their interactions. It highlights the flow of information between 
task queues, machine configurations, the RL module, and 
feedback mechanisms, illustrating how real-time scheduling 
decisions are optimized. 

C. Q-Learning-based Scheduling Approach 

1) Algorithm explanation. Q‑Learning is an RL algorithm 

that finds the best action‑selection policy through trial and 

error, updating Q‑values as it interacts with the environment. 

As shown in Fig. 2, the agent initializes a Q‑table, observes 

states, chooses actions via an ε‑greedy policy, receives 

rewards, and updates its Q‑values until the end of an episode, 

gradually learning an optimized scheduling policy for RMFS. 

 

Fig. 2. Q‑Learning algorithm flow diagram for RMFS scheduling. 

2) Q-Learning-based scheduling model. This subsection 

describes the Q-Learning algorithm used for dynamic 

scheduling optimization in RMFS, detailing its initialization, 

learning process, and training procedure. 

a) Q-Table Initialization: 

  A Q-table is initialized with dimensions corresponding 
to all possible states and actions. 

  Initially, all Q-values are set to zero or small random 
values. The Q-values represent the expected future 
rewards for taking a specific action in each state. 

b) State-Action Pair Selection: 

  The agent selects an action 𝑎 in the current state s using 
a policy, such as ε-greedy. 

  ε-greedy policy: The agent explores randomly with 
probability ϵ and exploits the current knowledge 
(selecting the action with the highest Q-value) with 
probability 1−ϵ. 

c) Update Rule: 

  After taking action 𝑎, the agent observes the reward r 
and the next state 𝑠′. 

  The Q-value for the state-action pair 𝑄(𝑠, 𝑎) is updated 
using the formula: 

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (1) 

where, 

α: Learning rate (controls how much new information 
overrides old knowledge). 

γ: Discount factor (prioritizes immediate rewards versus 
future rewards). 

𝑟: Immediate reward for taking action𝑎 in state 𝑎. 

𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′): The maximum Q-value of the next state𝑠′ 
over all possible actions𝑎′. 

3) Exploration versus exploitation. Balancing exploration 

and exploitation is crucial for effective learning: 

a) Exploration: Trying untested state-action pairs helps 

discover new and potentially better actions. 

b) Exploitation: Focuses on leveraging the agent’s 

current knowledge to maximize rewards. 

The ε-greedy policy dynamically adjusts ϵ. At the start of 
training, ϵ is high to encourage exploration. As training 
progresses, ϵ decreases, favoring exploitation. 

4) Learning process. The learning process is iterative and 

involves: 

a) State observation: The agent observes the current 

state 𝑠. 

b) Action selection: An action 𝑎 is selected using the ε-

greedy policy. 

c) Action execution and feedback: The agent executes 

aaa, receives immediate reward r, and observes the next state 

s'. 

d) Q-Value update: The Q-value for the state-action pair 

Q(s, a) is updated using the Q-Learning formula. 

e) Repeat: Steps 1 to 4 are repeated for each episode 

until convergence or the termination condition is met. 

5) Training Procedure. 
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a) Setup: 

 Define the environment, states, actions, reward 
structure, and Q-table dimensions. 

 Initialize learning parameters (α,γ,ϵ). 

b) Episodes: 

 Train the agent over a predefined number of episodes. 

 Each episode begins with an initial state and terminates 
when a specific condition is met (e.g., all tasks are 
scheduled or a time limit is reached). 

c) Termination Conditions: 

 Convergence: No significant changes in Q-values. 

 Fixed maximum number of iterations or episodes. 

This iterative approach ensures that the Q-Learning agent 
progressively improves its scheduling policy, achieving near-
optimal solutions for the dynamic and complex RMFS 
environment. 

D. Deep Reinforcement Learning (DRL) for Real-Time 

Adaptation 

Deep Reinforcement Learning (DRL) is an extension of 
traditional reinforcement learning (RL) that employs deep 
neural networks (DNNs) to approximate complex functions, 
such as the state-action value function. DRL is particularly 
effective in environments with large state and action spaces, 
where traditional Q-learning may struggle due to the need for 
vast memory and computational power. Here, we explore how 
DRL is applied for real-time adaptation in manufacturing 
scheduling. 

1) Neural network design. In DRL, the neural network 

architecture approximates the state-action value function Q(s, 

a), which defines the expected future rewards for taking an 

action “a” in a state “s”. The neural network acts as a function 

approximator, mapping states to a vector of action values. 

a) Input features: The input layer of the neural network 

receives the state representation, which may include variables 

such as: 

 Machine configurations (e.g., status of machines, idle or 
busy) 

 Task queue information (e.g., tasks to be processed, task 
priorities, deadlines) 

 System load (e.g., the current distribution of tasks and 
resource utilization) 

 Environmental factors (e.g., external disturbances or 
machine failures) 

These inputs are typically encoded into a fixed-size vector, 
which is then fed into the neural network. 

b) Layer Configurations: The network typically consists 

of multiple hidden layers, such as: 

 Convolutional layers (if spatial relationships between 
components of the state need to be captured) 

 Fully connected layers (to process high-dimensional 
inputs, such as task queues) 

 Activation functions (e.g., ReLU, Leaky ReLU) to 
introduce non-linearity and allow the network to learn 
complex relationships. 

The final output layer produces a vector of Q-values 
corresponding to the possible actions in a given state. These 
values represent the expected rewards of each action, and the 
agent chooses the action with the highest Q-value. 

c) Training DRL network: The neural network is trained 

using backpropagation and an optimization algorithm like 

Adam to minimize the error between the predicted Q-values 

and the target Q-values. The target Q-values are calculated 

using the Bellman equation, similar to Q-learning: 

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′)                 (2) 

This iterative process allows the neural network to adjust its 
weights and learn the optimal action selection over time. 

2) Continuous learning. Real-time adaptation in 

manufacturing systems requires the agent to continuously 

update its knowledge to respond to environmental changes. 

DRL facilitates this by enabling online learning where the 

agent updates its policy based on the most recent experiences. 

a) Online Learning: 

 DRL models often use Experience Replay (replay 
buffer) to store past state-action-reward transitions. 
These experiences are randomly sampled and used to 
update the neural network, reducing the correlation 
between consecutive experiences and improving 
learning stability. 

 Target Networks may stabilize training by decoupling 
the target Q-value calculation from the main network, 
preventing rapid updates that can destabilize the 
learning process. 

b) Real-Time Adaptation: 

 As the system operates, the agent continuously interacts 
with the environment and updates its knowledge. For 
instance, when there is a disruption in the production 
process, the agent can adapt by adjusting its scheduling 
decisions to accommodate the new situation (e.g., 
reallocating resources, adjusting task priorities). 

 The ability of the agent to adapt in real-time is crucial 
for dynamic environments like RMFS, where 
conditions (e.g., task priorities, machine failures, or 
demand fluctuations) can change rapidly. 

3) Reward optimization. In DRL, the reward function is 

critical in guiding the agent’s learning. For manufacturing 

scheduling, the reward function must reflect the key 

objectives, such as minimizing production time, balancing 

resource utilization, and ensuring high system throughput. 

Here’s how reward optimization works: 

a) Reward signal design: The reward function is 

designed to drive behavior that improves the scheduling 
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process. It may be composed of several terms that reward or 

penalize specific actions: 

 Minimizing production time: A reward is given for 
actions that lead to faster task completion and reduced 
makespan. 

 Minimizing delays: Penalize actions that cause tasks to 
miss deadlines or increase wait times. 

 Balancing resource utilization: Encourage actions that 
evenly distribute workloads across all available 
machines, preventing bottlenecks. 

 Energy efficiency: Incentivize reducing idle times and 
energy consumption by dynamically adjusting machine 
usage. 

b) Optimizing scheduling decisions: The agent is trained 

to maximize the cumulative reward over time. By learning 

from the rewards it receives, the DRL agent adapts its 

scheduling decisions to improve production efficiency. For 

example, the agent optimizes overall system performance by 

allocating resources to critical tasks first or adjusting the 

schedule to respond to unexpected machine breakdowns. 

c) Dynamic adaptation: As the agent interacts with the 

environment and gathers feedback from its actions, it 

continuously adjusts its policies, improving its scheduling 

decisions based on real-time data. This adaptability is crucial 

in real-world RMFS where system conditions change 

constantly. 

4) Summary. Deep Reinforcement Learning provides a 

robust framework for adaptive, real-time decision-making in 

manufacturing scheduling. By leveraging neural networks to 

approximate complex value functions and employing 

continuous learning processes, DRL can dynamically adjust to 

evolving production demands and optimize scheduling 

performance. The reward structure is key to guiding the agent 

towards optimal decisions, balancing competing objectives 

such as efficiency, resource utilization, and energy 

consumption. 

E. Experimental Configuration 

We designed a comprehensive simulation environment 
representing a dynamic and reconfigurable job shop to evaluate 
the performance and robustness of the proposed Reinforcement 
Learning (RL) and Deep Reinforcement Learning (DRL) 
scheduling approaches. This environment mimics the 
complexity and constraints of Reconfigurable Manufacturing 
Systems (RMFS), allowing a thorough assessment of the 
methods’ ability to optimize scheduling under realistic 
conditions. 

1) Environmental setup. The experimental environment 

consists of five machines and twenty independent tasks, each 

with a processing time ranging from three to fifteen time units. 

Tasks are assigned random priority levels and due dates within 

a 30 to 60 time unit window to reflect realistic delivery 

constraints [33]. To test the resilience and adaptability of the 

proposed approaches, the environment incorporates 

disturbances such as machine breakdowns and the sudden 

arrival of urgent, high-priority jobs. These dynamics enable 

the evaluation of the proposed methods in a context inspired 

by recent DRL-based scheduling studies, as illustrated in Fig. 

3. 

 

Fig. 3. Experimental scheduling environment: machines, tasks, and 

disturbance events. 

2) Data specifications. The data used in the experiments 

comprises both simulated and, when available, historical 

inputs: 

a) Historical scheduling data: Includes task priorities, 

processing times, due dates, and machine availability patterns 

sourced from actual RMFS environments, providing a realistic 

basis for model evaluation. 

b) Simulated inputs: When historical data is unavailable, 

synthetic data are generated to mimic realistic operational 

characteristics, including random task arrivals, varied 

processing times, and machine downtime events. These inputs 

enable robust testing across a range of scenarios and system 

configurations. 

3) Performance metrics. The effectiveness of the Q-

Learning and DRL methods is measured across several 

performance indicators: 

a) Makespan: Total time required to complete all tasks, 

indicating the overall efficiency of the scheduling method. 

b) Machine utilization: Percentage of active processing 

time relative to total available machine time, assessing the 

workload distribution across resources. 

c) Tardiness rate: Deviating actual task completion 

times from their due dates, evaluating the ability to adhere to 

deadlines and maintain service quality. 

d) Energy efficiency: Evaluation of idle times and 

energy usage across machines, measuring the system’s ability 

to reduce waste. 

e) Adaptability: The ability of the approach to maintain 

performance levels despite unexpected disturbances, such as 

equipment failures or urgent task arrivals. 

4) Reward function. The learning process for the RL and 

DRL agents is guided by a multi-criteria reward function: 
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𝑅𝑒𝑤𝑎𝑟𝑑 = −(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛) − 𝜆 ∙ 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝑒 + 𝜇 ∙
𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛  (3) 

where, 

 λ=0.5: weight for penalties associated with tardiness, 

 μ=0.3: weight for promoting higher resource utilization. 

These values were selected based on prior tuning and 
established best practices in RL-based scheduling literature 
[10]. This reward structure ensures that the learning process 
simultaneously encourages shorter overall production times, 
timely task completion, and balanced machine usage. 

5) Summary. The experimental configuration provides a 

realistic, data-rich, and challenging testbed for assessing the 

Q-Learning and DRL approaches in RMFS environments. By 

combining dynamic disturbances, multi-criteria performance 

metrics, and a tailored reward structure, this setup allows for a 

thorough examination of the effectiveness, efficiency, and 

resilience of intelligent scheduling methods in modern 

manufacturing. 

F. Comparison with Classical Approaches 

This section compares traditional scheduling methods and 
the proposed Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) techniques. By benchmarking 
against classical approaches, the advantages of RL and DRL in 
dynamic and reconfigurable manufacturing environments are 
highlighted. Fig. 4, Fig. 5, Fig. 6 and Table I summarize the 
findings. 

1) Benchmarking against traditional methods. To evaluate 

the effectiveness of RL and DRL, their performance was 

compared with classical scheduling techniques: 

a) Shortest processing time (SPT): SPT prioritizes tasks 

with the shortest processing times, offering computational 

efficiency. However, as shown in Table 1, SPT exhibits high 

tardiness rates and limited adaptability due to its inability to 

account for task deadlines or machine workloads. 

b) Earliest due date (EDD): EDD focuses on scheduling 

tasks based on deadlines, ensuring that tasks with earlier due 

dates are prioritized. While it demonstrates moderate tardiness 

performance (Table 1), it fails to optimize resource utilization 

or adapt to system disturbances effectively. 

c) First-come, first-served (FCFS): FCFS processes 

tasks in the order of arrival, without accounting for task 

priorities or processing times. This simplicity leads to 

inefficiencies, as reflected by its poor makespan and 

utilization scores in Table I. 

d) Hybrid approaches: These combine elements of the 

above methods with basic heuristics to address specific 

scheduling challenges. While slightly better than standalone 

traditional methods, they still lack the flexibility and 

responsiveness required in dynamic environments. 

2) Comparison metrics. Performance was evaluated using 

the following metrics, summarized in Table I: 

a) Flexibility: Ability to adapt to changes such as task 

re-prioritization or machine breakdowns. 

b) Response time: Speed of updating scheduling 

decisions in response to new data. 

c) Computational efficiency: Resources required to 

compute optimized schedules. 

3) Case study results. A simulated Reconfigurable 

Manufacturing System (RMFS) environment benchmarked 

RL and DRL against traditional methods under identical 

conditions. 

a) Performance Gains with RL and DRL: 

 Makespan Reduction: RL and DRL achieved a 15–25% 
reduction in makespan compared to SPT and EDD 
(Table I and Fig. 4). 

 

Fig. 4. Makespan comparison across scheduling methods. 

Fig. 4 demonstrates the reduced makespan achieved by RL 
and DRL compared to SPT and EDD. 

 Improved Deadline Adherence: RL and DRL 
significantly decreased tardiness rates, outperforming 
EDD, which lacks adaptability (Table I and Fig. 5). 

 

Fig. 5. Tardiness comparison across scheduling methods. 

The improved adherence to deadlines with RL and DRL is 
highlighted in Fig. 5. 

 Resource Utilization: RL methods balanced workloads 
effectively, leading to higher machine utilization and 
fewer bottlenecks than FCFS and SPT (Table I and Fig. 
6). 
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Fig. 6. Machine utilization comparison. 

The balanced resource utilization achieved through RL and 
DRL methods is illustrated in Fig. 6. 

 Adaptability: RL and DRL efficiently handled scenarios 
such as machine breakdowns and dynamic task arrivals, 
as evident from the adaptability scores in Table I. 

b) Computational Trade-offs: 

 Traditional methods like SPT and EDD are 
computationally faster but underperform in dynamic 
settings (Table I). 

 DRL incurs higher computational costs during training 
but offers near real-time decision-making post-training. 

c) Specific Scenarios: 

 Dynamic Task Arrivals: RL and DRL managed on-the-
fly task arrivals with minimal disruptions to the 
schedule. 

 System Disturbances: RL dynamically reallocated 
resources during machine failures, unlike traditional 
methods requiring manual intervention. 

4) Visualization of Results 

The findings are illustrated through figures and 
summarized in Table I: 

TABLE I.  PERFORMANCE METRICS FOR SCHEDULING METHODS 

Method 
Makespan 

(min) 

Tardiness 

(%) 

Utilization 

(%) 

Adaptability 

Score 

SPT 250 30 70 Low 

EDD 230 25 65 Low 

FCFS 270 35 60 Low 

RL 200 10 85 High 

DRL 190 08 90 High 

5) Summary of improvements. The comparison confirms 

that RL and DRL outperform traditional methods in dynamic 

RMFS environments. While classical approaches excel in 

simplicity and computational speed, their lack of flexibility 

and adaptability limits their applicability. RL and DRL 

provide an optimal balance between decision-making speed 

and performance, as demonstrated in Table I. The 

accompanying figures validate these findings further. 

G. Summary of Methodology 

Our proposed methodology leverages Reinforcement 
Learning (RL) and Deep Reinforcement Learning (DRL) to 
develop an intelligent scheduler tailored for Reconfigurable 
Manufacturing Systems (RMFS). The proposed method begins 
with modeling the scheduling environment and defining state-
action pairs, rewards, and transitions. RL algorithms are trained 
iteratively to optimize task allocation, balancing exploration 
and exploitation. DRL employs neural networks to 
approximate state-action values for dynamic adaptability, 
enabling real-time decision-making. The proposed scheduler 
ensures improved efficiency, reduced makespan, enhanced 
resource utilization, and robust adaptability to dynamic 
production changes by integrating continuous learning and 
reward optimization. 

IV. RESULTS 

This section presents the experimental outcomes of our 
proposed Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) approaches in Reconfigurable 
Manufacturing Systems (RMFS). The results are compared 
with traditional scheduling methods—Shortest Processing 
Time (SPT) and Earliest Due Date (EDD)—using key 
performance metrics: makespan, tardiness, resource utilization, 
and adaptability to disturbances. 

A. Simulation Objectives 

We conducted simulation experiments to evaluate the 
following: 

1) Reduction in makespan. Minimize the total production 

time. 

2) Deadline adherence. Ensure tasks meet deadlines, 

minimizing tardiness. 

3) Resource utilization. Optimize workload distribution 

and prevent bottlenecks. 

4) Adaptability. Assess the system’s ability to handle 

disruptions, such as machine breakdowns. 

B. Performance Metrics 

1) Makespan reduction. Our approach significantly 

reduced the total production time compared to traditional 

scheduling methods such as SPT and EDD. The simulation 

results show that RL reduced the makespan by 20%, while 

DRL achieved a 28.57% reduction relative to SPT. Among all 

methods tested, DRL consistently recorded the lowest average 

makespan. Table II presents the detailed comparison of 

average makespan values and percentage improvements across 

all methods. 

TABLE II.  AVERAGE MAKESPAN COMPARISON 

Method 
Average Makespan 

(seconds) 
Improvement (%) 

SPT 420 -- 

EDD 390 7.14 

RL 336 20 

DRL 300 28.57 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

408 | P a g e  

www.ijacsa.thesai.org 

2) Deadline adherence. RL and DRL achieved better 

deadline adherence than EDD, with lower tardiness across 

simulations. Unlike EDD, DRL adapts to dynamic changes 

while maintaining compliance. Fig. 7 highlights the reduced 

tardiness of RL and DRL compared to traditional methods. 

 

Fig. 7. Line graph of tardiness rates. 

Description: The graph highlights the tardiness rate 
reduction achieved by RL and DRL over multiple simulation 
runs. 

3) Resource utilization. RL and DRL improved workload 

balance and machine utilization by allocating tasks based on 

real‑time states, reducing bottlenecks and idle times compared 

to static rules like SPT and EDD. Fig. 8 shows their more 

balanced resource distribution and enhanced production flow. 

 

Fig. 8. Resource utilization efficiency (in percentage) 

Description: The chart shows more balanced resource 
usage with RL and DRL, reducing machine idleness and 
improving production flow. 

4) Adaptability to disturbances. Dynamic disruptions such 

as machine breakdowns were simulated to evaluate the 

adaptability of each scheduling approach. The results show 

that RL and DRL effectively minimized performance 

deviations during disruptions. DRL, in particular, 

demonstrated the highest level of resilience, with only a 5% 

increase in makespan compared to normal conditions. In 

contrast, traditional methods like SPT and EDD experienced 

more significant deviations. Table III provides a detailed 

comparison of the makespan values under normal and 

disrupted conditions and the percentage deviations for each 

method. 

TABLE III.  MAKESPAN COMPARISON UNDER DISRUPTIONS 

Method 

Normal 

Makespan 

(seconds) 

Disrupted 

Makespan 

(seconds) 
Deviation (%) 

SPT 420 490 16.67 

EDD 390 450 15.38 

RL 336 360 7.14 

DRL 300 315 5.00 

The scatter plot in Fig. 9 illustrates the minimal deviation in 
makespan for RL and DRL under disruptions, underscoring 
their adaptability. 

 

Fig. 9. Scatter plot of adaptability scores. 

C. Visualization of Results  

1) Gantt charts for task sequences. To visually illustrate 

the effectiveness of the different scheduling methods, Fig. 10 

presents Gantt charts comparing the task sequences generated 

by RL (Reinforcement Learning), DRL (Deep Reinforcement 

Learning), and traditional methods such as SPT (Shortest 

Processing Time) and EDD (Earliest Due Date). This 

visualization highlights differences in task start and end times, 

particularly showcasing the reduction of idle times and 

optimizing transitions achieved through learning-based 

approaches. 

 

Fig. 10. Gantt charts for task sequences. 
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2) Comparative performance metrics. Fig. 11 compares 

key performance indicators—makespan, tardiness rate, and 

resource utilization—showing clear advantages of RL and 

DRL over traditional SPT and EDD methods. 

 

Fig. 11. Combined performance graph. 

D. Implementation Results 

To validate our method using a Python implementation. 
Below are details of the implementation outputs: 

 

Fig. 12. Result of implementation outputs. 

Fig. 12 provides a comprehensive visualization of the 
experimental results, highlighting the effectiveness of the 
proposed RL and DRL approaches. Initial and Final Q-table 
updates illustrate the evolution of Q-values in the RL training 
process through heatmaps, showcasing the optimization of 
state-action pairs from their initial random values to well-tuned 
values after training. DRL Training Process captures the 
training dynamics of DRL, with the left graph demonstrating a 
steady decline in training loss over epochs, indicating model 
convergence, and the right graph reflecting the cumulative 
rewards, which showcase the agent's learning progress over 
time. Comparison Metrics compares key performance 
metrics—makespan, tardiness, and resource utilization—
through a bar chart, revealing significant improvements 

achieved by RL and DRL over traditional methods (SPT and 
EDD). Finally, the Gantt Chart for Tasks visualizes task 
schedules, where RL demonstrates optimized task sequencing, 
reduced idle times, and efficient task durations, emphasizing its 
superiority in scheduling efficiency. 

The experimental results underscore the significant 
advantages of Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) approaches over traditional 
scheduling methods, such as Shortest Processing Time (SPT) 
and Earliest Due Date (EDD), in Reconfigurable 
Manufacturing Systems (RMFS). Both RL and DRL 
demonstrated superior performance across all key metrics: 

1) Efficiency. DRL achieved the best results in 

minimizing makespan, reducing it by up to 28.57% compared 

to SPT, while maintaining low tardiness rates and balanced 

resource utilization. 

2) Adaptability. RL and DRL effectively responded to 

disruptions such as machine breakdowns, with DRL showing 

exceptional resilience and minimal performance deviations. 

3) Scalability. DRL’s ability to handle complex 

scheduling scenarios highlights its potential for dynamic and 

reconfigurable production environments. 

These results validate the proposed methods as robust and 
effective solutions for optimizing scheduling in RMFS. While 
DRL requires additional training time, its benefits in terms of 
adaptability and efficiency make it a valuable approach for 
industrial applications. 

V. DISCUSSION 

This section provides an in-depth analysis of the 
experimental results, exploring the reasons behind the superior 
performance of the Reinforcement Learning (RL) and Deep 
Reinforcement Learning (DRL) approaches compared to 
traditional scheduling methods. Additionally, it evaluates the 
robustness of the proposed approaches under unforeseen 
disturbances and discusses potential limitations, including 
computational costs associated with DRL. 

A. Analysis of RL and DRL Performance 

The RL and DRL approaches exhibited notable advantages 
over classical methods, such as Shortest Processing Time 
(SPT) and Earliest Due Date (EDD), across key performance 
metrics. This performance can be attributed to several factors: 

1) Dynamic decision-making. Unlike SPT and EDD, 

which rely on static rules, RL and DRL dynamically adapt 

their scheduling decisions based on the evolving state of the 

system. This capability allows them to consider multiple 

factors, such as task priorities, machine availability, and future 

system states, leading to optimized scheduling solutions. 

2) Learning from experience. RL and DRL learn to 

identify patterns and optimize decision-making through 

iterative training processes. The DRL approach, leveraging 

neural networks, can capture complex, non-linear relationships 

within the system, further enhancing its ability to make 

efficient scheduling decisions. 
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3) Makespan optimization. The results show that RL 

reduced the makespan by 20% and DRL by 28.57% compared 

to SPT. These improvements stem from the algorithms' ability 

to minimize idle times and optimize task transitions, ensuring 

efficient resource utilization. 

4) Tardiness reduction. While EDD prioritizes deadlines, 

its lack of adaptability limits its effectiveness in dynamic 

environments. In contrast, RL and DRL demonstrated superior 

deadline adherence by balancing task prioritization with 

system constraints. 

5) Resource utilization. RL and DRL achieved more 

balanced workload distributions, avoiding bottlenecks and 

reducing machine idleness. This balance enhances overall 

system efficiency and throughput. 

B. Robustness to Disturbances 

One of the key strengths of RL and DRL is their robustness 
in handling unexpected disruptions, such as machine 
breakdowns or sudden changes in production demands: 

1) Adaptability. Both methods responded effectively to 

disturbances, maintaining minimal deviations in performance 

metrics. DRL, in particular, demonstrated exceptional 

resilience, with only a 5% increase in makespan under 

disruptions compared to 16.67% for SPT and 15.38% for 

EDD. 

2) Real-time decision-making. The ability of RL and DRL 

to make real-time decisions based on updated system states 

enabled quick recovery from disruptions, minimizing their 

impact on production flow. 

3) Scalability. The scalability of DRL makes it 

particularly suitable for complex and dynamic RMFS 

environments, where traditional methods often struggle. 

C. Potential Limitations 

Despite their advantages, the proposed RL and DRL 
approaches are not without challenges: 

1) Computational costs. The training phase of DRL 

requires significant computational resources and time, 

particularly for complex systems with large state and action 

spaces. This limitation may pose practical challenges in 

deploying DRL in resource-constrained environments. 

2) Data requirements. Effective training of RL and DRL 

models depends on sufficient and representative data 

availability. In cases, where historical data is limited or 

unbalanced, the training process may be less effective. 

3) Complexity of implementation. Implementing DRL in 

industrial settings requires machine learning and system 

modeling expertise, which may not always be readily 

available. 

4) Overfitting risk. In some cases, DRL models may 

overfit to the training environment, potentially reducing their 

effectiveness when applied to new or unseen scenarios. 

D. Practical Implications 

The results and discussion highlight the potential of RL and 
DRL to revolutionize scheduling in RMFS by providing 

efficient, adaptable, and scalable solutions. However, 
addressing the limitations, particularly the computational costs 
and complexity of implementation, will be crucial for their 
widespread adoption in real-world applications. Future work 
could explore strategies to reduce training time, improve 
generalizability, and make these approaches more accessible to 
industry practitioners. By integrating RL and DRL into RMFS, 
manufacturers can enhance productivity, reduce operational 
costs, and improve system resilience, making these approaches 
a promising avenue for modern manufacturing systems. 

VI. CONCLUSION 

This study presented a comprehensive evaluation of 
Reinforcement Learning (RL) and Deep Reinforcement 
Learning (DRL) approaches for scheduling optimization in 
Reconfigurable Manufacturing Systems (RMFS). The results 
demonstrate that RL and DRL significantly outperform 
traditional scheduling methods such as Shortest Processing 
Time (SPT) and Earliest Due Date (EDD), achieving 
substantial reductions in makespan, improved deadline 
adherence, and more efficient resource utilization. The DRL 
approach showed exceptional adaptability to dynamic 
disruptions, maintaining system performance with minimal 
deviation. These findings highlight the critical role of Artificial 
Intelligence (AI) in enabling intelligent scheduling strategies 
that enhance efficiency, flexibility, and robustness in modern 
manufacturing environments. Despite these promising results, 
challenges remain, particularly the high computational cost and 
extended training time required for DRL. Future research 
should optimize DRL algorithms to reduce overhead, explore 
hybrid models that integrate RL with other AI techniques, and 
validate these approaches in more complex, large-scale, and 
real-world RMFS scenarios. 
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