
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

398 | P a g e

www.ijacsa.thesai.org

Reinforcement Learning for Real-Time Scheduling in

Dynamic Reconfigurable Manufacturing Systems

Salah Hammedi1, Abdallah Namoun2, Mohamed Shili3

Networked Objects, Control, and Communication Systems (NOCCS), ENISo, University of Sousse, Tunisia1

AI Center, Faculty of Computer and Information Systems, Islamic University of Madinah, Madinah 42351, Saudi Arabia2

Innov’COM Laboratory, National Engineering School of Cartahage, Tunisia3

Abstract—This study presents a novel application of

Reinforcement Learning (RL) and Deep Reinforcement Learning

(DRL) for scheduling optimization in Reconfigurable

Manufacturing Systems (RMFS). The performance of these

approaches is quantitatively evaluated and compared with

traditional scheduling methods, specifically Shortest Processing

Time (SPT) and Earliest Due Date (EDD), across several key

metrics, including makespan, tardiness, resource utilization, and

adaptability to disturbances. Our results show a significant

reduction in makespan, with RL achieving a 20% improvement

and DRL a 28.57% improvement over SPT. Moreover, RL and

DRL outperform classical methods in minimizing tardiness and

improving resource utilization. DRL also demonstrates superior

adaptability under dynamic disruptions such as machine

breakdowns, with only a 5% deviation in makespan compared to

16.67% for SPT. These findings confirm the benefits of RL and

DRL for real-time decision-making in dynamic manufacturing

environments. The study discusses the robustness and scalability

of RL and DRL approaches, as well as the challenges related to

their computational cost. The novelty lies in integrating RL and

DRL into RMFS scheduling to offer a scalable, adaptive solution

that improves production efficiency.

Keywords—Adaptability, deep reinforcement learning (DRL);

makespan; manufacturing systems; reinforcement learning (RL);

resource utilization; scheduling optimization; shortest processing

time (SPT); tardiness; traditional scheduling methods

I. INTRODUCTION

Reconfigurable Manufacturing Systems (RMFS) were
developed to address the growing need for flexibility and
product customization in manufacturing. Unlike traditional
manufacturing systems, which are designed for fixed, repetitive
tasks, RMFS enables rapid adaptation to changes in product
designs or production volumes [1]. This adaptability is
achieved through configurable modules, such as machines and
resources that can be restructured or reallocated [2]. RMFS
offers a highly versatile approach, making it possible to adjust
production lines in response to evolving requirements, without
significant downtime or overhauls. This type of system plays a
vital role in industries that operate within uncertain and highly
competitive environments, such as automotive, aerospace, and
electronics manufacturing [3]. In these sectors, quickly
responding to shifts in market demands and technological
advancements is crucial, giving companies that utilize RMFS a
competitive edge. Consequently, RMFS enhances efficiency
and provides a scalable solution to meet the diverse and
changing demands of modern production [4], [5].

A. Complexity of the Scheduling Process

In Reconfigurable Manufacturing Systems (RMFS),
scheduling involves defining the optimal sequence for
executing tasks on available machines while adhering to
constraints such as deadlines and resource availability. The
primary objective is to optimize the overall system
performance, which includes reducing production times,
meeting deadlines, and enhancing resource utilization [2].
However, this task becomes complex in a reconfigurable
environment for several reasons:

1) System dynamics. Machine configurations can change

in real-time, necessitating adjustments to the scheduling

algorithm [1].

2) Frequent introduction of new orders. Customized

products often require adjustments in production sequences to

accommodate various specifications and customer demands

[3].

3) Breakdowns and interruptions. Machines may

experience unexpected failures or require unscheduled

maintenance, which disrupts the planned sequence of tasks

and the scheduling process [4].

B. Specific Challenges of Scheduling in RMFS

The challenges associated with scheduling in RMFS
include:

1) Responsiveness to unforeseen events. The system must

quickly modify the sequence during disruptive occurrences,

such as a machine breakdown [5].

2) Resource conflicts. Multiple tasks may require the

same machines or resources, creating bottlenecks that hinder

efficient operation [2].

3) Multi-criteria optimization. It is not just about

minimizing production time; balancing various objectives,

such as cost, deadlines, and quality, is also crucial [3].

C. Necessity for an Intelligent Approach to Scheduling

Traditional methods, such as Shortest Processing Time
(SPT) and Earliest Due Date (EDD), are often inadequate for
RMFS. These methods apply static rules that do not account
for the dynamic and uncertain nature of RMFS [1]. For
instance, an optimal sequence according to the SPT rule may
become inefficient if a key machine fails or an urgent new
order is introduced.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

399 | P a g e

www.ijacsa.thesai.org

This highlights the necessity for intelligent approaches like
Reinforcement Learning (RL). These methods allow the
system to learn and adjust sequences in real time based on the
current state of the system [6]. This provides operational
flexibility and enhances the system's ability to maintain high
performance despite frequent disruptions [7].

D. Impact of Optimized Scheduling on RMFS Performance

Effective scheduling in RMFS offers several strategic
advantages:

1) Reduction of downtime. Machines are utilized more

effectively by optimizing the sequence, thereby minimizing

idle periods [5].

2) Improved customer satisfaction. Meeting delivery

deadlines becomes easier, even when dealing with customized

or unexpected orders [2].

3) Reduction in operational costs. Operational costs are

lowered with less resource wastage and shortened production

lead times [3].

4) Increased adaptability. The system can respond swiftly

to new market demands, ensuring a competitive advantage [1].

Scheduling plays a central role in the effective management
of RMFS. Adopting dynamic and intelligent scheduling
approaches becomes imperative in an environment, where
flexibility, responsiveness, and efficiency are critical factors.
Reinforcement Learning methods, such as Q-learning and
Deep Reinforcement Learning, show promise as they enable
the system to adapt proactively and continuously. Therefore, an
optimized scheduling approach is essential for maximizing the
overall performance of RMFS and ensuring an effective
response to modern market challenges.

Our study is structured to provide a logical and
comprehensive exploration of the proposed scheduling
approach. Section II reviews existing methods for RMFS
scheduling and highlights their limitations, establishing the
need for innovative AI-based solutions. Section III details the
design and implementation of our Reinforcement Learning
(RL) and Deep Reinforcement Learning (DRL) frameworks for
intelligent scheduling. Section IV presents the experimental
outcomes, comparing the performance of RL and DRL with
traditional methods across key metrics such as makespan and
resource utilization. Section V analyzes the results,
emphasizing the robustness and advantages of the proposed
approaches while addressing their potential limitations. Finally,
Section VI summarizes the contributions of the study and
offers perspectives for future research in intelligent scheduling
for RMFS.

II. RELATED WORK

Scheduling in Reconfigurable Manufacturing Systems
(RMFS) is essential for optimizing operational efficiency and
responsiveness to market demands. It involves determining the
optimal sequence for executing tasks on available machines
while adhering to constraints such as deadlines and resource
availability. Given the dynamic nature of RMFS, where
configurations can change in real-time, effective scheduling
directly impacts resource utilization and production lead times.
Reviewing existing literature on scheduling techniques is

crucial for understanding the evolution from classical methods,
like Shortest Processing Time (SPT) and Earliest Due Date
(EDD), to more advanced artificial intelligence-driven
approaches. This examination highlights the strengths and
limitations of traditional strategies and identifies innovative
solutions that address the complexities of modern
manufacturing environments. By identifying gaps in current
research, we can propose future developments that enhance the
adaptability and performance of scheduling in RMFS.

A. Classical Scheduling Approaches

Classical scheduling methods, such as Shortest Processing
Time (SPT) and Earliest Due Date (EDD), have long been used
in traditional manufacturing systems to determine the order of
tasks in a way that optimizes production outcomes. These
methods are foundational in scheduling theory, offering simple
yet effective rules for task prioritization. However, while they
remain useful in specific contexts, their limitations in
Reconfigurable Manufacturing Systems (RMFS) highlight the
need for more dynamic approaches [8], [9].

1) Shortest Processing Time (SPT). The Shortest

Processing Time (SPT) rule prioritizes tasks based on the time

required to complete them, scheduling shorter tasks first to

minimize the total production time, or "makespan" [10].

Historically, SPT has been widely applied in conventional

manufacturing environments to reduce the average waiting

time of tasks, making it an effective strategy for repetitive and

stable production systems [11].

a) Advantages of SPT: The primary advantage of SPT is

its effectiveness in reducing makespan and minimizing in-

process inventory by accelerating task completion [12]. This

can be particularly valuable in batch production systems,

where rapid completion of smaller tasks allows for quick

turnover [13].

b) Limitations in RMFS: While SPT can improve

efficiency in traditional settings, its static prioritization

approach does not align well with the dynamic demands of

RMFS. The SPT rule is not inherently adaptable to sudden

changes in task requirements, equipment reconfiguration, or

machine breakdowns. As a result, it may struggle to keep up

with the flexibility and responsiveness required in RMFS

environments where tasks and resources are frequently

reallocated [14], [15].

2) Earliest Due Date (EDD). The Earliest Due Date

(EDD) rule is another classical approach that prioritizes tasks

based on their deadlines, scheduling the task with the earliest

due date first [16]. In traditional manufacturing, EDD has

been effectively used to reduce tardiness and to ensure that

tasks meet deadlines, which is particularly important in

environments where adherence to delivery schedules is crucial

[17].

a) Advantages of EDD: EDD helps to minimize the

number of late tasks and is beneficial in scenarios, where

customer satisfaction or regulatory compliance depends on

timely delivery. This approach is instrumental in make-to-

order environments where each task has a distinct due date

[18].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

400 | P a g e

www.ijacsa.thesai.org

b) Limitations in RMFS: In an RMFS, the EDD rule’s

rigid focus on due dates may lead to inefficiencies, especially

when production requirements change frequently. If a task

with a nearer due date is delayed due to a reconfiguration or

machine breakdown, EDD may not respond flexibly,

potentially resulting in longer delays and resource

underutilization [19], [20].

3) Comparison of SPT and EDD. SPT and EDD have

distinct performance metrics that influence their effectiveness

in different scenarios:

a) Performance metrics: SPT tends to excel in

minimizing makespan and average waiting time, while EDD is

more effective for reducing tardiness and ensuring timely task

completion. These metrics are particularly relevant when

comparing their situational effectiveness within traditional and

reconfigurable manufacturing settings [8], [21].

b) Situational appropriateness: SPT is best suited to

scenarios with high volumes of short, repetitive tasks where

reducing total completion time is key. In contrast, EDD is

more appropriate in environments where on-time delivery is

critical, and tasks have varied due dates. However, the

dynamic nature of RMFS often requires real-time adjustments,

which neither SPT nor EDD can manage effectively without

additional support [22], [23].

In summary, while both SPT and EDD offer applicable
scheduling rules in conventional systems, their limitations in
RMFS underscore the need for adaptive methods that can
handle real-time changes and reconfigurations. This gap in
classical methods provides the foundation for exploring AI-
based and reinforcement learning approaches, which offer
more sophisticated and flexible scheduling solutions for RMFS
[8], [9].

B. AI-based Scheduling Approaches

In Reconfigurable Manufacturing Systems (RMFS), the
dynamic and unpredictable nature of production demands
flexible scheduling solutions that can adapt to real-time
changes. Artificial Intelligence (AI)-based scheduling
approaches have gained popularity due to their potential for
handling complex decision-making in these environments.
Unlike classical scheduling rules, AI techniques can
dynamically respond to changes in tasks, resources, and
machine configurations. This section explores prominent AI
scheduling methods, focusing on the benefits and challenges
they bring to RMFS.

1) Overview of AI techniques in scheduling. AI techniques

such as Genetic Algorithms (GA), Neural Networks (NN), and

other machine learning methods have been widely applied in

scheduling. Genetic Algorithms, inspired by natural selection,

are known for their ability to search large solution spaces and

optimize complex scheduling problems by iteratively

improving task sequences [8], [24]. They are beneficial for

multi-objective scheduling problems, where objectives like

minimizing makespan, reducing lateness, or maximizing

resource utilization must be balanced [9].

Neural Networks are effective in pattern recognition and
prediction, making them valuable in predicting job arrival
times, machine breakdowns, and estimating task completion.
They adapt to changing patterns in production, providing
forecasts that inform better scheduling decisions [11], [15]. In
RMFS, Neural Networks can support proactive scheduling by
learning from historical data, predicting bottlenecks, and
adjusting task allocations accordingly [23].

The adaptability of AI techniques makes them well-suited
to RMFS, where conventional, static scheduling rules like SPT
and EDD may fall short. AI methods can improve operational
efficiency and address RMFS-specific requirements such as
real-time resource reallocation and production line
reconfiguration [22].

2) Reinforcement learning for scheduling. Reinforcement

Learning (RL) is an advanced AI technique suitable for

dynamic environments like RMFS. In RL, an agent learns to

make sequential decisions by interacting with the

environment, receiving feedback in the form of rewards, and

continuously improving its policy to maximize cumulative

reward over time [19]. RL techniques such as Q-Learning and

Deep Reinforcement Learning (DRL) have shown promising

results in complex scheduling tasks, where decisions need to

adapt based on real-time feedback [20].

In Q-Learning, an RL agent learns an optimal policy by
evaluating each action's potential outcomes, updating a Q-
value table, and selecting actions that maximize rewards. For
RMFS, Q-Learning can be applied to dynamically allocate
resources and prioritize tasks based on changing production
requirements, minimizing downtime, and maximizing
throughput [13].

Deep Reinforcement Learning, which combines RL with
Deep Learning, enables even more complex decision-making.
DRL can process extensive, high-dimensional data, such as job
sequences, machine statuses, and process dependencies,
allowing it to develop strategies for scheduling in high-
variability environments. Case studies in RMFS have
demonstrated that DRL can effectively handle high-
dimensional states and actions, learning policies that surpass
traditional scheduling methods [14], [16]. By using DRL,
RMFS can benefit from continuous improvement in
scheduling, with the agent learning to optimize task sequences
based on feedback from the production floor.

3) Comparison with classical approaches. Compared to

classical methods like SPT and EDD, AI-based scheduling

approaches exhibit higher adaptability, efficiency, and

responsiveness in RMFS. Classical methods are limited by

their static nature and cannot effectively handle unexpected

events like machine breakdowns or sudden changes in task

priority. AI methods, however, are equipped to re-evaluate

schedules in real-time, adjusting for new conditions and

optimizing for multiple objectives simultaneously [8], [18].

AI-based scheduling methods outperform classical
approaches in several key performance metrics:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

401 | P a g e

www.ijacsa.thesai.org

a) Adaptability: AI techniques, especially RL, can

adjust schedules dynamically based on real-time feedback,

maintaining optimal performance under changing conditions

[21].

b) Efficiency: Genetic Algorithms and Neural Networks

have been shown to reduce makespan and tardiness in

complex scheduling environments, ensuring that production

schedules remain efficient even in high-variability contexts

[11], [12].

c) Responsiveness: Unlike static scheduling rules, AI-

based methods can quickly adapt to disruptions, minimizing

the impact of delays and enabling faster recovery times [23].

In summary, while classical scheduling approaches like
SPT and EDD have value in stable environments, AI-based
scheduling methods provide a more robust solution for RMFS,
addressing the need for adaptability, efficiency, and real-time
responsiveness in modern production systems [17], [19].

C. Hybrid Approaches

1) Combining classical and AI techniques. Hybrid

scheduling approaches integrate traditional rules like Shortest

Processing Time (SPT) and Earliest Due Date (EDD) with

advanced AI techniques, such as Genetic Algorithms (GA)

and Reinforcement Learning (RL). These approaches aim to

capitalize on the stability and interpretability of classical

methods while enhancing adaptability and efficiency through

AI. Studies show that combining classical heuristics with AI

algorithms enhances scheduling performance in dynamic

environments like RMFS, especially under fluctuating demand

and resource availability. For instance, recent research in

sustainable edge computing applied hybrid methods to

optimize task distribution and found that this integration

reduced makespan and improved scalability [19], [25].

2) Case studies and results. Various implementations of

hybrid approaches have demonstrated their potential in real-

world RMFS environments. For example, a 2023 study

applied a hybrid GA-SPT algorithm in cloud-based systems

and observed a significant improvement in task completion

rates and resource utilization [26]. These studies underscore

the efficiency of hybrid methods in handling the specific

demands of RMFS, such as reconfigurability and task

prioritization, which are challenging for standalone classical

or AI methods alone.

D. Gaps in Current Research

While hybrid scheduling approaches show substantial
potential for RMFS environments, several research gaps
require attention.

First, optimizing parameter settings to balance the classical
and AI components effectively is a significant challenge. For
instance, selecting parameters such as mutation rates in genetic
algorithms or exploration-exploitation ratios in reinforcement
learning can drastically affect performance but often requires
trial and error. This parameter fine-tuning can be particularly
complex in hybrid models, which combine multiple algorithms
with distinct parameter requirements. Studies suggest that

integrating automated hyperparameter tuning techniques, such
as Bayesian optimization, may enhance hybrid model
performance without extensive manual adjustment [27], [28].

Scalability also remains a critical issue for hybrid
approaches in RMFS, especially as the complexity of real-
world manufacturing systems increases. While hybrid methods
are designed to manage dynamic changes, they often demand
high computational resources. This limitation affects their
applicability in large-scale systems with frequent
reconfiguration needs. Recently, research has explored
lightweight AI models and distributed computation to alleviate
these demands, allowing for faster adaptation in real-time
environments. More work is needed to make hybrid models
computationally efficient without sacrificing responsiveness
[29].

Moreover, model generalization is another area with
considerable potential for development. Many hybrid models
are tailored to specific scheduling tasks and may not adapt well
to different manufacturing configurations. A promising
direction here is the integration of transfer learning techniques,
allowing hybrid models to apply knowledge from one
scheduling context to another with minimal retraining [30].
This model's adaptability makes it suitable for a broader range
of applications within RMFS.

In the context of intelligent scheduling for complex
manufacturing environments, recent advances have
demonstrated the effectiveness of hybrid metaheuristic
approaches. Notably, the modified chromosome pooling
genetic algorithm has been introduced for resource allocation
optimization, providing a practical approach for managing
complex constraints and achieving high-performance
scheduling in dynamic environments [31]. Similarly,
integrating multi-objective genetic algorithms into the job shop
scheduling problem has shown significant promise for
addressing multi-criteria optimization requirements, allowing
for balanced consideration of makespan, tardiness, and
resource utilization [32]. These studies highlight the evolution
of traditional optimization methods toward more intelligent,
adaptive, and multi-criteria approaches, aligning closely with
the goals of Reinforcement Learning and Deep Reinforcement
Learning methods proposed in this work.

Lastly, there is a need for real-world testing and validation
of hybrid approaches in industrial settings. While numerous
studies show hybrid methods’ efficacy in simulations, limited
research has focused on field implementations. The lack of
practical validation raises questions about the robustness of
these approaches under unpredictable real-world conditions,
where factors such as unplanned downtimes, resource
constraints, and varying task priorities frequently arise [29].
Research focused onails would offer valuable insights into
these models' practical viability and guide further refinement.

In summary, recent advances in scheduling for RMFS
highlight the effectiveness and versatility of classical and AI-
based methods. Classical approaches like SPT and EDD
provide simplicity and reliability, though they lack adaptability
in dynamic environments. AI techniques, particularly
reinforcement learning, have proven valuable for complex,
real-time scheduling, enhancing system flexibility. Hybrid

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

402 | P a g e

www.ijacsa.thesai.org

models that integrate classical and AI approaches show
promise in balancing efficiency and responsiveness, though
scalability and computational demands remain challenges.
Continued research in this field is essential to improve RMFS
scheduling efficiency, focusing on optimizing hybrid models,
enhancing adaptability, and exploring real-world applications
to validate these methodologies.

III. PROPOSED METHODOLOGY

A. Introduction to Reinforcement Learning for Scheduling

The proposed methodology leverages Reinforcement
Learning (RL) to address the dynamic and complex nature of
scheduling in Reconfigurable Manufacturing Systems (RMFS).
Production demands frequent shifts in these environments, and
resource configurations often change, making traditional
scheduling approaches insufficient. RL stands out as a
powerful paradigm capable of learning optimal scheduling
policies by interacting with the system and adapting to its
dynamic states.

1) Objective. The primary goal is to utilize RL to optimize

task allocation and resource utilization in real-time,

minimizing production delays and improving system

responsiveness. RL frameworks can dynamically adjust

scheduling strategies as they continuously learn from the

system's feedback.

2) Approach selection. The choice of RL technique

depends on the complexities and requirements of RMFS

environments.

Q-Learning: Selected for problems where the state and
action spaces are discrete. Q-Learning is straightforward and
can efficiently handle scenarios with well-defined states, such
as machine availability or task queue lengths.

Deep Reinforcement Learning (DRL): Employed in
scenarios with large or continuous state-action spaces. Using
neural networks, DRL methods such as Deep Q-Networks
(DQN) or Actor-Critic frameworks can approximate the value
functions and handle high-dimensional data, making them ideal
for complex RMFS setups.

By utilizing these RL techniques, the proposed
methodology aims to enable adaptive, real-time decision-
making, which is crucial for meeting the demands of modern
manufacturing systems.

B. System Architecture

1) Overview. The architecture of the proposed system

integrates Reinforcement Learning (RL) with Reconfigurable

Manufacturing Systems (RMFS) for intelligent scheduling. It

included the following key components:

a) Task queues: Dynamic queues representing pending

tasks, each characterized by parameters like processing time,

priority, and deadlines.

b) Machine configurations: A representation of the

current state of resources, including machine availability,

operational capabilities, and current workloads.

c) Feedback mechanisms: A loop that captures system

performance metrics (e.g., task completion times, resource

utilization) to refine the learning process and adapt real-time

scheduling decisions.

d) RL module: The core decision-making unit, which

interacts with the environment (RMFS), learns from feedback,

and outputs optimized scheduling actions.

2) State definition. The state represents the current

environment snapshot, encompassing:

a) Machine configurations: Status of each machine

(idle, busy, or under maintenance).

b) Task queue: The tasks awaiting processing, including

task-specific details like priority, duration, and dependencies.

c) System load: Current workload distribution across the

system.

Each state is expressed as a multidimensional vector to
encapsulate these parameters, allowing the RL model to
understand and respond to the system's current conditions.

3) Action space. The action space defines the possible

decisions that the RL agent can make, including:

a) Task assignment: Assigning tasks to specific

machines based on their capabilities and current state.

b) Machine allocation: Activating or deactivating

machines dynamically to optimize energy use and resource

utilization.

c) Scheduling adjustments: Re-sequencing tasks in

response to unexpected events or delays.

Actions are designed to directly impact the system’s
productivity and adaptability.

4) Reward structure. The reward function guides the RL

agent by quantifying the effectiveness of its actions. It is

designed to achieve:

a) Minimizing production time: Encouraging decisions

that reduce the makespan of all tasks.

b) Minimizing delays: Penalizing actions that increase

task tardiness.

c) Balancing resource utilization: Promoting even

workload distribution across all machines to avoid

bottlenecks.

d) Energy efficiency: Incentivizing reduced machine

downtime and energy consumption.

The reward signal ensures that the RL agent consistently
learns and improves its scheduling policy to adapt to dynamic
RMFS environments.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

403 | P a g e

www.ijacsa.thesai.org

Fig. 1. System architecture diagram for reinforcement learning-based

scheduling in RMFS.

The architecture diagram (Fig. 1) is positioned below this
section to visually represent the described components and
their interactions. It highlights the flow of information between
task queues, machine configurations, the RL module, and
feedback mechanisms, illustrating how real-time scheduling
decisions are optimized.

C. Q-Learning-based Scheduling Approach

1) Algorithm explanation. Q‑Learning is an RL algorithm

that finds the best action‑selection policy through trial and

error, updating Q‑values as it interacts with the environment.

As shown in Fig. 2, the agent initializes a Q‑table, observes

states, chooses actions via an ε‑greedy policy, receives

rewards, and updates its Q‑values until the end of an episode,

gradually learning an optimized scheduling policy for RMFS.

Fig. 2. Q‑Learning algorithm flow diagram for RMFS scheduling.

2) Q-Learning-based scheduling model. This subsection

describes the Q-Learning algorithm used for dynamic

scheduling optimization in RMFS, detailing its initialization,

learning process, and training procedure.

a) Q-Table Initialization:

 A Q-table is initialized with dimensions corresponding
to all possible states and actions.

 Initially, all Q-values are set to zero or small random
values. The Q-values represent the expected future
rewards for taking a specific action in each state.

b) State-Action Pair Selection:

 The agent selects an action 𝑎 in the current state s using
a policy, such as ε-greedy.

 ε-greedy policy: The agent explores randomly with
probability ϵ and exploits the current knowledge
(selecting the action with the highest Q-value) with
probability 1−ϵ.

c) Update Rule:

 After taking action 𝑎, the agent observes the reward r
and the next state 𝑠′.

 The Q-value for the state-action pair 𝑄(𝑠, 𝑎) is updated
using the formula:

𝑄(𝑠, 𝑎) = 𝑄(𝑠, 𝑎) + 𝛼[𝑟 + 𝛾𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)] (1)

where,

α: Learning rate (controls how much new information
overrides old knowledge).

γ: Discount factor (prioritizes immediate rewards versus
future rewards).

𝑟: Immediate reward for taking action𝑎 in state 𝑎.

𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′): The maximum Q-value of the next state𝑠′
over all possible actions𝑎′.

3) Exploration versus exploitation. Balancing exploration

and exploitation is crucial for effective learning:

a) Exploration: Trying untested state-action pairs helps

discover new and potentially better actions.

b) Exploitation: Focuses on leveraging the agent’s

current knowledge to maximize rewards.

The ε-greedy policy dynamically adjusts ϵ. At the start of
training, ϵ is high to encourage exploration. As training
progresses, ϵ decreases, favoring exploitation.

4) Learning process. The learning process is iterative and

involves:

a) State observation: The agent observes the current

state 𝑠.

b) Action selection: An action 𝑎 is selected using the ε-

greedy policy.

c) Action execution and feedback: The agent executes

aaa, receives immediate reward r, and observes the next state

s'.

d) Q-Value update: The Q-value for the state-action pair

Q(s, a) is updated using the Q-Learning formula.

e) Repeat: Steps 1 to 4 are repeated for each episode

until convergence or the termination condition is met.

5) Training Procedure.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

404 | P a g e

www.ijacsa.thesai.org

a) Setup:

 Define the environment, states, actions, reward
structure, and Q-table dimensions.

 Initialize learning parameters (α,γ,ϵ).

b) Episodes:

 Train the agent over a predefined number of episodes.

 Each episode begins with an initial state and terminates
when a specific condition is met (e.g., all tasks are
scheduled or a time limit is reached).

c) Termination Conditions:

 Convergence: No significant changes in Q-values.

 Fixed maximum number of iterations or episodes.

This iterative approach ensures that the Q-Learning agent
progressively improves its scheduling policy, achieving near-
optimal solutions for the dynamic and complex RMFS
environment.

D. Deep Reinforcement Learning (DRL) for Real-Time

Adaptation

Deep Reinforcement Learning (DRL) is an extension of
traditional reinforcement learning (RL) that employs deep
neural networks (DNNs) to approximate complex functions,
such as the state-action value function. DRL is particularly
effective in environments with large state and action spaces,
where traditional Q-learning may struggle due to the need for
vast memory and computational power. Here, we explore how
DRL is applied for real-time adaptation in manufacturing
scheduling.

1) Neural network design. In DRL, the neural network

architecture approximates the state-action value function Q(s,

a), which defines the expected future rewards for taking an

action “a” in a state “s”. The neural network acts as a function

approximator, mapping states to a vector of action values.

a) Input features: The input layer of the neural network

receives the state representation, which may include variables

such as:

 Machine configurations (e.g., status of machines, idle or
busy)

 Task queue information (e.g., tasks to be processed, task
priorities, deadlines)

 System load (e.g., the current distribution of tasks and
resource utilization)

 Environmental factors (e.g., external disturbances or
machine failures)

These inputs are typically encoded into a fixed-size vector,
which is then fed into the neural network.

b) Layer Configurations: The network typically consists

of multiple hidden layers, such as:

 Convolutional layers (if spatial relationships between
components of the state need to be captured)

 Fully connected layers (to process high-dimensional
inputs, such as task queues)

 Activation functions (e.g., ReLU, Leaky ReLU) to
introduce non-linearity and allow the network to learn
complex relationships.

The final output layer produces a vector of Q-values
corresponding to the possible actions in a given state. These
values represent the expected rewards of each action, and the
agent chooses the action with the highest Q-value.

c) Training DRL network: The neural network is trained

using backpropagation and an optimization algorithm like

Adam to minimize the error between the predicted Q-values

and the target Q-values. The target Q-values are calculated

using the Bellman equation, similar to Q-learning:

𝑄(𝑠, 𝑎) = 𝑟 + 𝛾𝑚𝑎𝑥a′𝑄(𝑠′, 𝑎′) (2)

This iterative process allows the neural network to adjust its
weights and learn the optimal action selection over time.

2) Continuous learning. Real-time adaptation in

manufacturing systems requires the agent to continuously

update its knowledge to respond to environmental changes.

DRL facilitates this by enabling online learning where the

agent updates its policy based on the most recent experiences.

a) Online Learning:

 DRL models often use Experience Replay (replay
buffer) to store past state-action-reward transitions.
These experiences are randomly sampled and used to
update the neural network, reducing the correlation
between consecutive experiences and improving
learning stability.

 Target Networks may stabilize training by decoupling
the target Q-value calculation from the main network,
preventing rapid updates that can destabilize the
learning process.

b) Real-Time Adaptation:

 As the system operates, the agent continuously interacts
with the environment and updates its knowledge. For
instance, when there is a disruption in the production
process, the agent can adapt by adjusting its scheduling
decisions to accommodate the new situation (e.g.,
reallocating resources, adjusting task priorities).

 The ability of the agent to adapt in real-time is crucial
for dynamic environments like RMFS, where
conditions (e.g., task priorities, machine failures, or
demand fluctuations) can change rapidly.

3) Reward optimization. In DRL, the reward function is

critical in guiding the agent’s learning. For manufacturing

scheduling, the reward function must reflect the key

objectives, such as minimizing production time, balancing

resource utilization, and ensuring high system throughput.

Here’s how reward optimization works:

a) Reward signal design: The reward function is

designed to drive behavior that improves the scheduling

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

405 | P a g e

www.ijacsa.thesai.org

process. It may be composed of several terms that reward or

penalize specific actions:

 Minimizing production time: A reward is given for
actions that lead to faster task completion and reduced
makespan.

 Minimizing delays: Penalize actions that cause tasks to
miss deadlines or increase wait times.

 Balancing resource utilization: Encourage actions that
evenly distribute workloads across all available
machines, preventing bottlenecks.

 Energy efficiency: Incentivize reducing idle times and
energy consumption by dynamically adjusting machine
usage.

b) Optimizing scheduling decisions: The agent is trained

to maximize the cumulative reward over time. By learning

from the rewards it receives, the DRL agent adapts its

scheduling decisions to improve production efficiency. For

example, the agent optimizes overall system performance by

allocating resources to critical tasks first or adjusting the

schedule to respond to unexpected machine breakdowns.

c) Dynamic adaptation: As the agent interacts with the

environment and gathers feedback from its actions, it

continuously adjusts its policies, improving its scheduling

decisions based on real-time data. This adaptability is crucial

in real-world RMFS where system conditions change

constantly.

4) Summary. Deep Reinforcement Learning provides a

robust framework for adaptive, real-time decision-making in

manufacturing scheduling. By leveraging neural networks to

approximate complex value functions and employing

continuous learning processes, DRL can dynamically adjust to

evolving production demands and optimize scheduling

performance. The reward structure is key to guiding the agent

towards optimal decisions, balancing competing objectives

such as efficiency, resource utilization, and energy

consumption.

E. Experimental Configuration

We designed a comprehensive simulation environment
representing a dynamic and reconfigurable job shop to evaluate
the performance and robustness of the proposed Reinforcement
Learning (RL) and Deep Reinforcement Learning (DRL)
scheduling approaches. This environment mimics the
complexity and constraints of Reconfigurable Manufacturing
Systems (RMFS), allowing a thorough assessment of the
methods’ ability to optimize scheduling under realistic
conditions.

1) Environmental setup. The experimental environment

consists of five machines and twenty independent tasks, each

with a processing time ranging from three to fifteen time units.

Tasks are assigned random priority levels and due dates within

a 30 to 60 time unit window to reflect realistic delivery

constraints [33]. To test the resilience and adaptability of the

proposed approaches, the environment incorporates

disturbances such as machine breakdowns and the sudden

arrival of urgent, high-priority jobs. These dynamics enable

the evaluation of the proposed methods in a context inspired

by recent DRL-based scheduling studies, as illustrated in Fig.

3.

Fig. 3. Experimental scheduling environment: machines, tasks, and

disturbance events.

2) Data specifications. The data used in the experiments

comprises both simulated and, when available, historical

inputs:

a) Historical scheduling data: Includes task priorities,

processing times, due dates, and machine availability patterns

sourced from actual RMFS environments, providing a realistic

basis for model evaluation.

b) Simulated inputs: When historical data is unavailable,

synthetic data are generated to mimic realistic operational

characteristics, including random task arrivals, varied

processing times, and machine downtime events. These inputs

enable robust testing across a range of scenarios and system

configurations.

3) Performance metrics. The effectiveness of the Q-

Learning and DRL methods is measured across several

performance indicators:

a) Makespan: Total time required to complete all tasks,

indicating the overall efficiency of the scheduling method.

b) Machine utilization: Percentage of active processing

time relative to total available machine time, assessing the

workload distribution across resources.

c) Tardiness rate: Deviating actual task completion

times from their due dates, evaluating the ability to adhere to

deadlines and maintain service quality.

d) Energy efficiency: Evaluation of idle times and

energy usage across machines, measuring the system’s ability

to reduce waste.

e) Adaptability: The ability of the approach to maintain

performance levels despite unexpected disturbances, such as

equipment failures or urgent task arrivals.

4) Reward function. The learning process for the RL and

DRL agents is guided by a multi-criteria reward function:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

406 | P a g e

www.ijacsa.thesai.org

𝑅𝑒𝑤𝑎𝑟𝑑 = −(𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛) − 𝜆 ∙ 𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝑒 + 𝜇 ∙
𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (3)

where,

 λ=0.5: weight for penalties associated with tardiness,

 μ=0.3: weight for promoting higher resource utilization.

These values were selected based on prior tuning and
established best practices in RL-based scheduling literature
[10]. This reward structure ensures that the learning process
simultaneously encourages shorter overall production times,
timely task completion, and balanced machine usage.

5) Summary. The experimental configuration provides a

realistic, data-rich, and challenging testbed for assessing the

Q-Learning and DRL approaches in RMFS environments. By

combining dynamic disturbances, multi-criteria performance

metrics, and a tailored reward structure, this setup allows for a

thorough examination of the effectiveness, efficiency, and

resilience of intelligent scheduling methods in modern

manufacturing.

F. Comparison with Classical Approaches

This section compares traditional scheduling methods and
the proposed Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL) techniques. By benchmarking
against classical approaches, the advantages of RL and DRL in
dynamic and reconfigurable manufacturing environments are
highlighted. Fig. 4, Fig. 5, Fig. 6 and Table I summarize the
findings.

1) Benchmarking against traditional methods. To evaluate

the effectiveness of RL and DRL, their performance was

compared with classical scheduling techniques:

a) Shortest processing time (SPT): SPT prioritizes tasks

with the shortest processing times, offering computational

efficiency. However, as shown in Table 1, SPT exhibits high

tardiness rates and limited adaptability due to its inability to

account for task deadlines or machine workloads.

b) Earliest due date (EDD): EDD focuses on scheduling

tasks based on deadlines, ensuring that tasks with earlier due

dates are prioritized. While it demonstrates moderate tardiness

performance (Table 1), it fails to optimize resource utilization

or adapt to system disturbances effectively.

c) First-come, first-served (FCFS): FCFS processes

tasks in the order of arrival, without accounting for task

priorities or processing times. This simplicity leads to

inefficiencies, as reflected by its poor makespan and

utilization scores in Table I.

d) Hybrid approaches: These combine elements of the

above methods with basic heuristics to address specific

scheduling challenges. While slightly better than standalone

traditional methods, they still lack the flexibility and

responsiveness required in dynamic environments.

2) Comparison metrics. Performance was evaluated using

the following metrics, summarized in Table I:

a) Flexibility: Ability to adapt to changes such as task

re-prioritization or machine breakdowns.

b) Response time: Speed of updating scheduling

decisions in response to new data.

c) Computational efficiency: Resources required to

compute optimized schedules.

3) Case study results. A simulated Reconfigurable

Manufacturing System (RMFS) environment benchmarked

RL and DRL against traditional methods under identical

conditions.

a) Performance Gains with RL and DRL:

 Makespan Reduction: RL and DRL achieved a 15–25%
reduction in makespan compared to SPT and EDD
(Table I and Fig. 4).

Fig. 4. Makespan comparison across scheduling methods.

Fig. 4 demonstrates the reduced makespan achieved by RL
and DRL compared to SPT and EDD.

 Improved Deadline Adherence: RL and DRL
significantly decreased tardiness rates, outperforming
EDD, which lacks adaptability (Table I and Fig. 5).

Fig. 5. Tardiness comparison across scheduling methods.

The improved adherence to deadlines with RL and DRL is
highlighted in Fig. 5.

 Resource Utilization: RL methods balanced workloads
effectively, leading to higher machine utilization and
fewer bottlenecks than FCFS and SPT (Table I and Fig.
6).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

407 | P a g e

www.ijacsa.thesai.org

Fig. 6. Machine utilization comparison.

The balanced resource utilization achieved through RL and
DRL methods is illustrated in Fig. 6.

 Adaptability: RL and DRL efficiently handled scenarios
such as machine breakdowns and dynamic task arrivals,
as evident from the adaptability scores in Table I.

b) Computational Trade-offs:

 Traditional methods like SPT and EDD are
computationally faster but underperform in dynamic
settings (Table I).

 DRL incurs higher computational costs during training
but offers near real-time decision-making post-training.

c) Specific Scenarios:

 Dynamic Task Arrivals: RL and DRL managed on-the-
fly task arrivals with minimal disruptions to the
schedule.

 System Disturbances: RL dynamically reallocated
resources during machine failures, unlike traditional
methods requiring manual intervention.

4) Visualization of Results

The findings are illustrated through figures and
summarized in Table I:

TABLE I. PERFORMANCE METRICS FOR SCHEDULING METHODS

Method
Makespan

(min)

Tardiness

(%)

Utilization

(%)

Adaptability

Score

SPT 250 30 70 Low

EDD 230 25 65 Low

FCFS 270 35 60 Low

RL 200 10 85 High

DRL 190 08 90 High

5) Summary of improvements. The comparison confirms

that RL and DRL outperform traditional methods in dynamic

RMFS environments. While classical approaches excel in

simplicity and computational speed, their lack of flexibility

and adaptability limits their applicability. RL and DRL

provide an optimal balance between decision-making speed

and performance, as demonstrated in Table I. The

accompanying figures validate these findings further.

G. Summary of Methodology

Our proposed methodology leverages Reinforcement
Learning (RL) and Deep Reinforcement Learning (DRL) to
develop an intelligent scheduler tailored for Reconfigurable
Manufacturing Systems (RMFS). The proposed method begins
with modeling the scheduling environment and defining state-
action pairs, rewards, and transitions. RL algorithms are trained
iteratively to optimize task allocation, balancing exploration
and exploitation. DRL employs neural networks to
approximate state-action values for dynamic adaptability,
enabling real-time decision-making. The proposed scheduler
ensures improved efficiency, reduced makespan, enhanced
resource utilization, and robust adaptability to dynamic
production changes by integrating continuous learning and
reward optimization.

IV. RESULTS

This section presents the experimental outcomes of our
proposed Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL) approaches in Reconfigurable
Manufacturing Systems (RMFS). The results are compared
with traditional scheduling methods—Shortest Processing
Time (SPT) and Earliest Due Date (EDD)—using key
performance metrics: makespan, tardiness, resource utilization,
and adaptability to disturbances.

A. Simulation Objectives

We conducted simulation experiments to evaluate the
following:

1) Reduction in makespan. Minimize the total production

time.

2) Deadline adherence. Ensure tasks meet deadlines,

minimizing tardiness.

3) Resource utilization. Optimize workload distribution

and prevent bottlenecks.

4) Adaptability. Assess the system’s ability to handle

disruptions, such as machine breakdowns.

B. Performance Metrics

1) Makespan reduction. Our approach significantly

reduced the total production time compared to traditional

scheduling methods such as SPT and EDD. The simulation

results show that RL reduced the makespan by 20%, while

DRL achieved a 28.57% reduction relative to SPT. Among all

methods tested, DRL consistently recorded the lowest average

makespan. Table II presents the detailed comparison of

average makespan values and percentage improvements across

all methods.

TABLE II. AVERAGE MAKESPAN COMPARISON

Method
Average Makespan

(seconds)
Improvement (%)

SPT 420 --

EDD 390 7.14

RL 336 20

DRL 300 28.57

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

408 | P a g e

www.ijacsa.thesai.org

2) Deadline adherence. RL and DRL achieved better

deadline adherence than EDD, with lower tardiness across

simulations. Unlike EDD, DRL adapts to dynamic changes

while maintaining compliance. Fig. 7 highlights the reduced

tardiness of RL and DRL compared to traditional methods.

Fig. 7. Line graph of tardiness rates.

Description: The graph highlights the tardiness rate
reduction achieved by RL and DRL over multiple simulation
runs.

3) Resource utilization. RL and DRL improved workload

balance and machine utilization by allocating tasks based on

real‑time states, reducing bottlenecks and idle times compared

to static rules like SPT and EDD. Fig. 8 shows their more

balanced resource distribution and enhanced production flow.

Fig. 8. Resource utilization efficiency (in percentage)

Description: The chart shows more balanced resource
usage with RL and DRL, reducing machine idleness and
improving production flow.

4) Adaptability to disturbances. Dynamic disruptions such

as machine breakdowns were simulated to evaluate the

adaptability of each scheduling approach. The results show

that RL and DRL effectively minimized performance

deviations during disruptions. DRL, in particular,

demonstrated the highest level of resilience, with only a 5%

increase in makespan compared to normal conditions. In

contrast, traditional methods like SPT and EDD experienced

more significant deviations. Table III provides a detailed

comparison of the makespan values under normal and

disrupted conditions and the percentage deviations for each

method.

TABLE III. MAKESPAN COMPARISON UNDER DISRUPTIONS

Method

Normal

Makespan

(seconds)

Disrupted

Makespan

(seconds)
Deviation (%)

SPT 420 490 16.67

EDD 390 450 15.38

RL 336 360 7.14

DRL 300 315 5.00

The scatter plot in Fig. 9 illustrates the minimal deviation in
makespan for RL and DRL under disruptions, underscoring
their adaptability.

Fig. 9. Scatter plot of adaptability scores.

C. Visualization of Results

1) Gantt charts for task sequences. To visually illustrate

the effectiveness of the different scheduling methods, Fig. 10

presents Gantt charts comparing the task sequences generated

by RL (Reinforcement Learning), DRL (Deep Reinforcement

Learning), and traditional methods such as SPT (Shortest

Processing Time) and EDD (Earliest Due Date). This

visualization highlights differences in task start and end times,

particularly showcasing the reduction of idle times and

optimizing transitions achieved through learning-based

approaches.

Fig. 10. Gantt charts for task sequences.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

409 | P a g e

www.ijacsa.thesai.org

2) Comparative performance metrics. Fig. 11 compares

key performance indicators—makespan, tardiness rate, and

resource utilization—showing clear advantages of RL and

DRL over traditional SPT and EDD methods.

Fig. 11. Combined performance graph.

D. Implementation Results

To validate our method using a Python implementation.
Below are details of the implementation outputs:

Fig. 12. Result of implementation outputs.

Fig. 12 provides a comprehensive visualization of the
experimental results, highlighting the effectiveness of the
proposed RL and DRL approaches. Initial and Final Q-table
updates illustrate the evolution of Q-values in the RL training
process through heatmaps, showcasing the optimization of
state-action pairs from their initial random values to well-tuned
values after training. DRL Training Process captures the
training dynamics of DRL, with the left graph demonstrating a
steady decline in training loss over epochs, indicating model
convergence, and the right graph reflecting the cumulative
rewards, which showcase the agent's learning progress over
time. Comparison Metrics compares key performance
metrics—makespan, tardiness, and resource utilization—
through a bar chart, revealing significant improvements

achieved by RL and DRL over traditional methods (SPT and
EDD). Finally, the Gantt Chart for Tasks visualizes task
schedules, where RL demonstrates optimized task sequencing,
reduced idle times, and efficient task durations, emphasizing its
superiority in scheduling efficiency.

The experimental results underscore the significant
advantages of Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL) approaches over traditional
scheduling methods, such as Shortest Processing Time (SPT)
and Earliest Due Date (EDD), in Reconfigurable
Manufacturing Systems (RMFS). Both RL and DRL
demonstrated superior performance across all key metrics:

1) Efficiency. DRL achieved the best results in

minimizing makespan, reducing it by up to 28.57% compared

to SPT, while maintaining low tardiness rates and balanced

resource utilization.

2) Adaptability. RL and DRL effectively responded to

disruptions such as machine breakdowns, with DRL showing

exceptional resilience and minimal performance deviations.

3) Scalability. DRL’s ability to handle complex

scheduling scenarios highlights its potential for dynamic and

reconfigurable production environments.

These results validate the proposed methods as robust and
effective solutions for optimizing scheduling in RMFS. While
DRL requires additional training time, its benefits in terms of
adaptability and efficiency make it a valuable approach for
industrial applications.

V. DISCUSSION

This section provides an in-depth analysis of the
experimental results, exploring the reasons behind the superior
performance of the Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL) approaches compared to
traditional scheduling methods. Additionally, it evaluates the
robustness of the proposed approaches under unforeseen
disturbances and discusses potential limitations, including
computational costs associated with DRL.

A. Analysis of RL and DRL Performance

The RL and DRL approaches exhibited notable advantages
over classical methods, such as Shortest Processing Time
(SPT) and Earliest Due Date (EDD), across key performance
metrics. This performance can be attributed to several factors:

1) Dynamic decision-making. Unlike SPT and EDD,

which rely on static rules, RL and DRL dynamically adapt

their scheduling decisions based on the evolving state of the

system. This capability allows them to consider multiple

factors, such as task priorities, machine availability, and future

system states, leading to optimized scheduling solutions.

2) Learning from experience. RL and DRL learn to

identify patterns and optimize decision-making through

iterative training processes. The DRL approach, leveraging

neural networks, can capture complex, non-linear relationships

within the system, further enhancing its ability to make

efficient scheduling decisions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

410 | P a g e

www.ijacsa.thesai.org

3) Makespan optimization. The results show that RL

reduced the makespan by 20% and DRL by 28.57% compared

to SPT. These improvements stem from the algorithms' ability

to minimize idle times and optimize task transitions, ensuring

efficient resource utilization.

4) Tardiness reduction. While EDD prioritizes deadlines,

its lack of adaptability limits its effectiveness in dynamic

environments. In contrast, RL and DRL demonstrated superior

deadline adherence by balancing task prioritization with

system constraints.

5) Resource utilization. RL and DRL achieved more

balanced workload distributions, avoiding bottlenecks and

reducing machine idleness. This balance enhances overall

system efficiency and throughput.

B. Robustness to Disturbances

One of the key strengths of RL and DRL is their robustness
in handling unexpected disruptions, such as machine
breakdowns or sudden changes in production demands:

1) Adaptability. Both methods responded effectively to

disturbances, maintaining minimal deviations in performance

metrics. DRL, in particular, demonstrated exceptional

resilience, with only a 5% increase in makespan under

disruptions compared to 16.67% for SPT and 15.38% for

EDD.

2) Real-time decision-making. The ability of RL and DRL

to make real-time decisions based on updated system states

enabled quick recovery from disruptions, minimizing their

impact on production flow.

3) Scalability. The scalability of DRL makes it

particularly suitable for complex and dynamic RMFS

environments, where traditional methods often struggle.

C. Potential Limitations

Despite their advantages, the proposed RL and DRL
approaches are not without challenges:

1) Computational costs. The training phase of DRL

requires significant computational resources and time,

particularly for complex systems with large state and action

spaces. This limitation may pose practical challenges in

deploying DRL in resource-constrained environments.

2) Data requirements. Effective training of RL and DRL

models depends on sufficient and representative data

availability. In cases, where historical data is limited or

unbalanced, the training process may be less effective.

3) Complexity of implementation. Implementing DRL in

industrial settings requires machine learning and system

modeling expertise, which may not always be readily

available.

4) Overfitting risk. In some cases, DRL models may

overfit to the training environment, potentially reducing their

effectiveness when applied to new or unseen scenarios.

D. Practical Implications

The results and discussion highlight the potential of RL and
DRL to revolutionize scheduling in RMFS by providing

efficient, adaptable, and scalable solutions. However,
addressing the limitations, particularly the computational costs
and complexity of implementation, will be crucial for their
widespread adoption in real-world applications. Future work
could explore strategies to reduce training time, improve
generalizability, and make these approaches more accessible to
industry practitioners. By integrating RL and DRL into RMFS,
manufacturers can enhance productivity, reduce operational
costs, and improve system resilience, making these approaches
a promising avenue for modern manufacturing systems.

VI. CONCLUSION

This study presented a comprehensive evaluation of
Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) approaches for scheduling optimization in
Reconfigurable Manufacturing Systems (RMFS). The results
demonstrate that RL and DRL significantly outperform
traditional scheduling methods such as Shortest Processing
Time (SPT) and Earliest Due Date (EDD), achieving
substantial reductions in makespan, improved deadline
adherence, and more efficient resource utilization. The DRL
approach showed exceptional adaptability to dynamic
disruptions, maintaining system performance with minimal
deviation. These findings highlight the critical role of Artificial
Intelligence (AI) in enabling intelligent scheduling strategies
that enhance efficiency, flexibility, and robustness in modern
manufacturing environments. Despite these promising results,
challenges remain, particularly the high computational cost and
extended training time required for DRL. Future research
should optimize DRL algorithms to reduce overhead, explore
hybrid models that integrate RL with other AI techniques, and
validate these approaches in more complex, large-scale, and
real-world RMFS scenarios.

REFERENCES

[1] Tang, J., Haddad, Y., & Salonitis, K. (2022). Reconfigurable
manufacturing system scheduling: a deep reinforcement learning
approach. Procedia CIRP, 107, 1198-1203.

[2] Yang, S., & Xu, Z. (2022). Intelligent scheduling and reconfiguration
via deep reinforcement learning in smart manufacturing. International
Journal of Production Research, 60(16), 4936-4953.

[3] Bezoui, M., Kermali, A., Bounceur, A., Qaisar, S. M., & Almaktoom, A.
T. (2023, November). Deep Reinforcement Learning for Multiobjective
Scheduling in Industry 5.0 Reconfigurable Manufacturing Systems.
In International Conference on Machine Learning for Networking (pp.
90-107). Cham: Springer Nature Switzerland.

[4] Li, H., Zhang, H., He, Z., Jia, Y., Jiang, B., Huang, X., & Ge, D. (2024).
Solving the integrated process planning and scheduling problem via
graph neural network-based deep reinforcement learning. arXiv preprint
arXiv:2409.00968.

[5] Jang, J., Klabjan, D., Liu, H., Patel, N. S., Li, X., Ananthanarayanan, B.,
... & Juang, T. H. (2024). Scalable Multi-agent Reinforcement Learning
for Factory-wide Dynamic Scheduling. arXiv preprint
arXiv:2409.13571.

[6] Hammedi, S., & Chniti, H. Combining Petri Nets and AI Techniques to
Improve Dynamic Production Scheduling Optimization.

[7] Zhou, L., Zhang, L., & Horn, B. K. (2020). Deep reinforcement
learning-based dynamic scheduling in smart manufacturing. Procedia
Cirp, 93, 383-388.

[8] Rossit, D. A., Tohmé, F., & Frutos, M. (2019). A data-driven scheduling
approach to smart manufacturing. Journal of Industrial Information
Integration, 15, 69-79.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

411 | P a g e

www.ijacsa.thesai.org

[9] Pinedo, M. L., & Pinedo, M. L. (2016). Design and implementation of
scheduling systems: More advanced concepts. Scheduling: Theory,
Algorithms, and Systems, 485-508.

[10] Hofer, A., Brandl, F., Bauer, H., Haghi, S., & Reinhart, G. (2020). A
framework for managing innovation cycles in manufacturing systems.
Procedia CIRP, 93, 771-776.

[11] Pulansari, F., & Nugraha, I. (2024). Single machine production
scheduling analysis using fcfs, spt, lpt, and edd methods to increase
work productivity in furniture companies. Nusantara Science and
Technology Proceedings, 15-19.

[12] Hammedi, S., Elmeliani, J., & Nabli, L. (2024). Optimization of
Scheduling in Reconfigurable Production Systems: An Approach Based
on Intelligent Petri Nets. Saudi J Eng Technol, 9(9), 433-441.

[13] Galán, R. (2008). Hybrid heuristic approaches for scheduling in
reconfigurable manufacturing systems. Metaheuristics for scheduling in
industrial and manufacturing applications, 211-253.

[14] Li, L., & Mao, C. (2020). Big data supported PSS evaluation decision in
service-oriented manufacturing, IEEE Access, vol. 8.

[15] Kusiak, A. (2017). Smart manufacturing must embrace big
data. Nature, 544(7648), 23-25.

[16] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., ... & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. nature, 518(7540), 529-533.

[17] Almeida, F. S. D., & Nagano, M. S. (2023). Heuristics to optimize total
completion time subject to makespan in no-wait flow shops with
sequence-dependent setup times. Journal of the Operational Research
Society, 74(1), 362-373.

[18] Cox, I. I. I., & Spencer, M. S. (2024). The constraints management
handbook. CRC Press.

[19] Hammedi, S., Elmeliani, J., & Nabli, L. (2024, November). Embracing
the Future: The Evolution of Flexible Reconfigurable Manufacturing
Systems. In 2024 International Symposium of Systems, Advanced
Technologies and Knowledge (ISSATK) (pp. 1-6). IEEE.

[20] IX, S. (2012). ting S ystem.

[21] Khadivi, M., Charter, T., Yaghoubi, M., Jalayer, M., Ahang, M.,
Shojaeinasab, A., & Najjaran, H. (2025). Deep reinforcement learning
for machine scheduling: Methodology, the state-of-the-art, and future
directions. Computers & Industrial Engineering, 110856.

[22] Kibira, D., Morris, K. C., & Kumaraguru, S. (2016). Methods and tools
for performance assurance of smart manufacturing systems. Journal of
Research of the National Institute of Standards and Technology, 121,
282.

[23] Grumbach, F., Badr, N. E. A., Reusch, P., & Trojahn, S. (2023). A
memetic algorithm with reinforcement learning for sociotechnical
production scheduling. IEEE Access, 11, 68760-68775.

[24] Hammedi, Salah & Jalloul, el méliani & Nabli, Lotfi. (2025).
Optimizing resource allocation in job shop production systems with
seasonal demand patterns. International Journal of Reconfigurable and
Embedded Systems (IJRES). 14. 12. 10.11591/ijres.v14.i1.pp12-25.
http://doi.org/10.11591/ijres.v14.i1.pp12-25

[25] Abd Elaziz, M., Attiya, I., Abualigah, L., Iqbal, M., Ali, A., Al-Fuqaha,
A., & El-Sappagh, S. (2023). Hybrid enhanced optimization-based
intelligent task scheduling for sustainable edge computing. IEEE
Transactions on Consumer Electronics.

[26] Abbas, B., & Shah, M. A. (2023, August). An Empirical Study on
Hybrid Scheduling Algorithms in Cloud Computing. In 2023 28th
International Conference on Automation and Computing (ICAC) (pp. 1-
6). IEEE.

[27] Hammedi, S., Elmelliani, J., Nabli, L., Namoun, A., Alanazi, M. H.,
Aljohani, N., ... & Alshmrany, S. (2024). Optimizing Production in
Reconfigurable Manufacturing Systems with Artificial Intelligence and
Petri Nets. International Journal of Advanced Computer Science &
Applications, 15(10).

[28] Danishvar, M., Danishvar, S., Katsou, E., Mansouri, S. A., & Mousavi,
A. (2021). Energy-aware flowshop scheduling: A case for AI-driven
sustainable manufacturing. IEEE Access, 9, 141678-141692.

[29] Napoleone, A., Andersen, A. L., Brunoe, T. D., & Nielsen, K. (2023).
Towards human-centric reconfigurable manufacturing systems:
Literature review of reconfigurability enablers for reduced
reconfiguration effort and classification frameworks. Journal of
Manufacturing Systems, 67, 23-34.

[30] Serrano-Ruiz, J. C., Mula, J., & Poler, R. (2022). Development of a
multidimensional conceptual model for job shop smart manufacturing
scheduling from the Industry 4.0 perspective. Journal of Manufacturing
Systems, 63, 185-202.

[31] Mateev, V., & Marinova, I. (2023, December). Modified chromosome
pooling genetic algorithm for resource allocation optimization. In AIP
Conference Proceedings (Vol. 2939, No. 1). AIP Publishing.

[32] Xi, S., Chen, Q., MacGregor Smith, J., Mao, N., Yu, A., & Zhang, H.
(2020). A new method for solving buffer allocation problem in large
unbalanced production lines. International Journal of Production
Research, 58(22), 6846-6867.

[33] Bai, J., Fang, S., Xu, X., & Tang, R. (2022). LMPF: A novel method for
bill of standard manufacturing services construction in cloud
manufacturing. Journal of Manufacturing Systems, 62, 402-416.

