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Abstract—Multi-sensor data in medical monitoring includes 

waveform changes in physiological signals and time-series 

characteristics of disease progression. These features typically 

exhibit high-dimensionality, large-scale, and time-varying 

characteristics. Nonlinear relationships exist between these 

features, increasing the difficulty of data processing and feature 

extraction, thereby reducing the classification capabilities of 

related algorithms. This study proposes a multi-sensor data 

classification processing method in medical monitoring based on 

reinforcement learning improved SVM. The algorithm employs 

the DBSCAN algorithm combined with Euclidean distance for 

clustering and data collection of multi-sensor data. Discrete 

wavelet transform is used to remove interference noise from the 

data, followed by convolutional neural networks for signal feature 

extraction from the denoised data. The Q-learning algorithm in 

reinforcement learning is used to improve the traditional SVM, 

with the extracted signal features input into the improved SVM. 

The classification results of medical monitoring multi-sensor data 

are output via a regression function. The experimental results 

show that the denoising results of medical monitoring data of the 

method are high, the signal-to-noise ratio is high, and the Kappa 

coefficient reaches up to 0.98. Therefore, it shows that the method 

can accurately classify medical monitoring multi-sensor data. 

Keywords—Reinforcement learning; improved SVM; medical 

monitoring; multi-sensor; data; classification processing 

I. INTRODUCTION 

Medical monitoring systems [1] are increasingly being used 
to monitor patient health data. These include electrocardiograms 
(ECG), electroencephalograms (EEG), blood pressure, blood 
oxygen saturation, body temperature, and a variety of other 
physiological signals [2]. Through the processing of monitoring 
data, statistics on patient cases and health status [3] can be 
achieved to help doctors make more accurate clinical judgments 
and decisions; the abnormal classification of medical signals can 
also promote the development of medical intelligence, thus 
promoting the progress and innovation of medical technology 
[4]. The continuous improvement and application of medical 
signal processing technology are expected to bring more 
possibilities for clinical medicine and promote the development 
of the healthcare industry toward intelligence, personalization, 
and precision. Accurate classification of medical data can help 
improve the automation level of the medical monitoring system, 
reduce the workload of healthcare workers, and improve the 
efficiency and quality of medical services [5]. In addition, the 

relevant methods can also provide more objective and accurate 
data support for medical research and promote the progress of 
medical research and the innovation of clinical practice. 

With the continuous development of medical monitoring, 
multi-sensor data analysis has become an important part of 
medical diagnosis. Traditional multi-sensor data classifications 
for medical monitoring often have problems such as low 
classification accuracy and slow processing speed [6]. Support 
vector machines (SVMs) are widely used as an effective 
classification algorithm in medical data classification. However, 
traditional SVM methods still face many challenges when 
processing complex and variable data, such as noise interference 
and inaccurate feature extraction. 

Therefore, the research on multi-sensor data classification 
and processing methods for medical monitoring is not only of 
great significance for improving the function and performance 
of medical monitoring systems, but also provides technical 
support and theoretical guidance for improving medical 
services, promoting medical research, and safeguarding patients' 
health [7]. Relevant experts have been continuously exploring 
the field of data classification. 

Singh and Khaiyum [8] proposed a data stream classification 
method based on the concept of drift, introducing an incremental 
semi-supervised learning model to regularize neural networks 
by incorporating auxiliary information such as label merging or 
pairwise constraints. However, due to the algorithm's efficiency 
and sensitivity to parameters, it is challenging to achieve better 
results in highly nonlinear environments with multimedia sensor 
data. Kenger and Ozceylan [9] proposed a data classification 
method based on mathematical modeling and improved online 
learning, using I0L_GFMM to generate initial cluster centers for 
the MILP model to enhance its efficiency, and combining fuzzy 
minimum and maximum neural networks with the MILP model. 
The proposed hybrid model demonstrated its applicability on 
both real and synthetic datasets. However, the aforementioned 
methods do not account for noise interference in medical data 
and are not suitable for high-noise environments in medical 
monitoring data. Zhai et al. [10] proposed a data classification 
method based on generative model diversity oversampling. 
When classifiers are faced with imbalanced multi-sensor-
collected medical monitoring datasets, they typically favor the 
majority category, leading to poor classification performance. 
Liang et al. [11] proposed a data classification method based on 
flow regularization to overcome data quality issues and the high 
labeling cost of extracting data sample labels. However, while 
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this classification algorithm can handle specific types of label 
noise, identifying the type of noise present in each medical data 
point remains a challenge. 

Aiming at the problems of existing methods, this study 
proposes an improved SVM based on reinforcement learning for 
the classification of multi-sensor monitoring data. Compared to 
existing research, the reinforcement learning-enhanced SVM 
method proposed in this study aims to address the issue of 
insufficient classification accuracy in traditional algorithms 
under feature selection and imbalanced dataset scenarios. This 
is achieved through DWT denoising, CNN feature extraction, 
and Q-learning optimization. By combining the Discrete 
Wavelet Transform (DWT) with Multiresolution Analysis 
(MRA), precise denoising of medical monitoring data is 
realized, thereby improving the signal-to-noise ratio of the data. 
Furthermore, this method leverages the advantages of 
reinforcement learning to enhance the classification 
performance of medical data through interaction between the 
agent and the environment. By incorporating the Q-learning 
algorithm to improve the SVM, the method continuously learns 
from interactions with the environment to identify the optimal 
classification strategy, addressing the limitations of traditional 
support vector machines when processing multi-sensor data. 
The introduction of reinforcement learning algorithms enables 
decision automation in exploring optimal feature selection, 
optimizing model parameters, and balancing classification 
boundaries, thereby enhancing the model's performance and 
adaptability. 

The subsequent sections of this study are arranged as 
follows: Section II introduces multi-sensor data acquisition and 
clustering methods. Section III elaborates on the data denoising 
process. Section IV discusses CNN feature extraction 
techniques. Section V provides a detailed explanation of the 
SVM classification model improved by Q-learning. Section VI 
validates the effectiveness of the method through experiments. 
Finally, Section VII summarize the research results and looks 
forward to future directions. 

II. MULTI-SENSOR DATA ACQUISITION AND CLUSTERING 

IN MEDICAL MONITORING 

Multi-sensor data involved in medical monitoring are 
usually characterized by high dimensionality, large scale, and 
time-varying nature, such as waveform changes in physiological 
signals and time-series features of disease progression. The high 
dimensionality and complexity of such data lead to a reduced 
ability to categorize the data. The use of multi-sensors to collect 
data can obtain more dimensional information, which helps to 
improve the accuracy and stability of classification algorithms 
and enhance the effectiveness and reliability of classification. 
Therefore, in this study, multi-sensor data acquisition in medical 
monitoring is used to ensure data integrity and to support the 
accuracy of feature extraction through sufficiently acquired 
data, which can help to assess the patient’s health status and 
process it for exhaustive classification more accurately. 

The DBSCAN algorithm can discover the existence of 
potential clusters based on the density between data points, 
which helps to reveal hidden patterns and structures in the data. 
In medical monitoring, different types of medical surveillance 
sensing data may correspond to different health states or disease 

characteristics, which can be of help to better understand, by 
discovering clusters in the data. The DBSCAN algorithm 
identifies whether a data point is a core object or a boundary 
point, and from this, clusters with different levels of density are 
constructed. By identifying the core objects, the clusters to 
which the data points belong can be better distinguished, thus 
facilitating subsequent data classification tasks. 

The DBSCAN algorithm divides the medical monitoring 
multi-sensor data into classes; those isolated few signal points 
will be considered as outliers to be eliminated, and the remaining 
data clusters as useful data. For the data object p , the 

neighboring object is denoted as ( )N p  and 

( ) { ( , ) }N p q D dist p q    . For a given value 

MinPts , the object q is said to be directly density reachable 

from q if it is a neighboring object of the object  of p . The 

point p is said to be directly density reachable from q . 

For a given and MinPts , if there exists an object o in 

the set of data objects D such that the objects p and q are 

density reachable from o concerning the densities  and

MinPts ,then the objects p and q are said to be density-

connected about   and MinPts . 

For the set of data objects D , the cluster C is a non-empty 

subset of the set D that satisfies the following conditions: 

1) 
,p q

, if
p C

, p and q are density reachable, then

q C
. 

2) 
,p q C 

, p and q are density-connected. 

The DBSCAN algorithm requires two important parameters, 
a point p neighborhood radius, and the minimum number of 

points contained in the neighborhood MinPts . Firstly, the data 

set of a medical sensor monitoring object is specified, from 
which any data object p is selected, and all the objects are 

scanned to find out the density reachable set of p about and

MinPts ; if p is a core object, all the reachable objects of the 

set p form clusters; otherwise, p is not a core object, it is an 

outlier and should be eliminated. 

The medical monitoring sensor data was expanded in the 3D 
numerical axes and the set of points obtained by the expansion 
was set to beG  , and the distances of the points in the space 

were calculated using the Euclidean distances in Eq. (1) [12]: 

 

2

1

( , ) ( )
n

i l ij lj

i

d P Z P Z


 
 (1) 

where, ( , )i ld P Z  represents the Euclidean distance 

between the coordinate value iP  of the i-th feature and the 

coordinate value 
ljZ  of the l-th cluster point, which is the basis 

for measuring the similarity between data points, 
ijP  denotes the 
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j-th dimensional coordinate value of the i-th feature point, and 

ljZ  denotes the j-th dimensional coordinate value of the l-th 

clustering point. 

To cluster these points, the values of the parameters and

MinPts need to be developed first. The parameter values are 

influenced by the number of data points collected by the medical 
monitoring multi-sensory during the time and the positive 
proportionality that exists between them. The number of multi-
sensor measurements, and hence the parameter values, are 
determined based on the needs of medical monitoring. 

The execution flow of the DBSCAN algorithm for the 
medical monitoring sensor data acquisition process is as follows: 

1) Arbitrarily select any point object P  belonging to any 

data cluster in the point set G  and create it as a new data cluster. 

2) For all points P , if  the points’ number of P’s 

neighborhood is no less than a minimum, P  is served as the 

core point of the newly created data cluster and is compared 

with other data points to add the density reachable point to that 

cluster. 

The determination of the density reachable is: 

A point W  is density reachable from a core point P , if 

there is a path from P  to W , and each point on the path is a 

core point, and the distance between each adjacent two points on 
the path is within the neighborhood. 

3) Loop step (2) until no points can be added to the cluster, 

then perform step (1) again. 

4) Ends when all points in the point set belong to a 

particular data cluster. 

The DBSCAN algorithm is shown in Fig. 1. 

start

Check the neighborhood point 

and add points to the cluster

Over

Select the initial point to create a 

new cluster

Repeat until no new points Be 

add to the cluster

Select the next point and repeat 

until all points are assigned

 

Fig. 1. The DBSCAN algorithm flowchart. 

After the DBSCAN algorithm is processed, the medical 
surveillance multi-sensor data will exist in clusters and the 
number of points in the clusters a  and MinPts  need to be 

compared to determine the validity of the clusters: 

1) When a MinPts is present, the cluster will be 

considered as a cluster consisting of anomalies, which are 

anomalous medical monitoring sensor data, and will be 

excluded. 

2) When a MinPts , the cluster is composed of valid 

data, which will be retained to obtain the clustered collected 

medical monitoring multi-sensor data Q . 

III. SENSOR DATA DENOISING FOR MEDICAL MONITORING 

Medical monitoring data are subject to various interference 
during acquisition and transmission, such as electromagnetic 
interference, signal attenuation, and transmission failures. These 
factors can lead to noise in medical monitoring data, which can 
be mixed into the signal, masking or distorting useful 
information and reducing the quality and interpretability of the 
data, and the nonlinear relationships that exist in the noisy data 
can also make feature extraction difficult. Therefore, by 
denoising the acquired medical monitoring data, noise 
interference can be reduced, the accuracy and reliability of the 
data can be improved, it helps to highlight important features in 
the signal, and features related to the patient's condition can be 
extracted and analyzed more accurately, thus enhancing the 
discriminative power of the classification method. 

In this study, after completing the medical monitoring data 
clustering, the Discrete Wavelet Transform (DWT) is used for 
denoising. The main advantages are: firstly, the discrete wavelet 
transform can effectively remove the noise in the signal and 
improve the quality of the data; secondly, by retaining the 
important features of the signal, the method can accurately 
denoise the signal while maintaining the detailed information of 
the signal as much as possible; in addition, the discrete wavelet 
transform can also analyse the signal at multiple scales and 
capture the features at different scales, which can help to 
understand the structure of the signal in a more comprehensive 
way and denoise it efficiently; Finally, the discrete wavelet 
transform has efficient real-time processing capability, which is 
suitable for scenarios that require rapid processing of medical 
monitoring data. The specific denoising process is shown in Fig. 
2. 

DWT IDWT

Noise signal 

Threshold 

adjustment

Denoising signal

20

15
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0
0 2.5 5.0 7.5 10.0

 

Fig. 2. Discrete wavelets transform denoising flowchart. 

The algorithm flow is as follows: 

Step 1. Decompose data ( )U t
 
at t  time into a set of 

wavelets with Eq. (2) [13]: 
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1
( ) (2 )

2

j j

k
j

k j

U t DW t k    
        (2) 

where, and j denote the translation and expansion factors, 

respectively, and
j

kDW denotes the DWT coefficients in the 

wavelet basis. 

Step 2. Use Multi-Resolution Analysis (MRA) data to 
extend analyses that provide different time and frequency 
resolutions at each level. 

Multi-resolution analysis (MRA) provides different time and 
frequency resolutions at each analysis level by using the scale 

function ( )t  and the wavelet function ( )t . ( )t  is the 

foundation of MRA, which describes the overall signal features 
on a coarser scale, similar to the low-frequency in the signal. It 
constructs the low-frequency approximation of the signal 

through its expansion and displacement. ( )t  describes the 

local signal features on a finer scale, similar to the high 
frequency in the signal. It captures the signal details through 
expansion and displacement, that is, the high frequency in the 
signal at different scales. 

The multi-sensor data ( )U t  is calculated by Eq. (3), which 

decomposes the signal into a linear combination of the scale 
function and the wavelet function at different scales [14]. 

0 0

0

( ) ( ) ( )
j j j j

k k k k

k j j k

U t A t D t 


  
        (3) 

where, 0j

kA  and 
j

kD  denote the approximation coefficient 

and detail coefficient, respectively. According to the scale and 
wavelet bases, the equations for both can be expressed as Eq. (4) 
and Eq. (5) [15]: 

0 0 0 1
( ) ( ) ( 2 ) ( )

j j j

k k k k

k n

A t f t h n k A t 
     

    (4) 

0 1( ) ( ) ( 2 ) ( )
jj j

k k k k

k n

D t f t g n k A t      
     (5) 

The wavelet decomposition tree constructed by MAR is 
shown in Fig. 3. 

 
Fig. 3. Schematic diagram of MRA scale decomposition. 

Step.3 Soft Threshold Calculation 

In the process of quantizing the threshold , it is usually 

considered that anything less than  is caused by noise, and 

anything greater than  is caused by signals, and the soft 

threshold algorithm for searching towards zero according to a 
fixed amount is as follows in Eq. (6) [16]: 

, , ,

,

,

sgn( )( ),
ˆ

0,

j k j k j k

j k

j k

w w w
w

w

 



  
 



         (6) 

In Eq. (6),   and sgn(x)  are defined as Eq. (7) and Eq. 

(8), respectively: 

2log( )n 
                            (7) 

1, 0

sgn( ) 0, 0

1, 0

x

x x

x




 
                              (8) 

In the above equation, n  denotes the sampling length of the 

noise signal, denotes the noise variance, and ,j kw
denotes the 

wavelet coefficients at different scales. The noise variance is 
calculated in Eq. (9) [17]: 

,

0.6475

i jmdian


 
 
 
                               (9) 

In Eq. (9), ,i j denotes the first layer of high-frequency 

coefficients of the wavelet transform of the noise-containing 

medical monitoring multisensory data, and
,i jmdian  denotes 

the median. 

Step.4 Positive and Negative Thresholding 

The DWT exhibits low-frequency and high-frequency 
coefficients, respectively, and the data are characterized by two 
types of high-frequency oscillations: high-frequency vibrations 
with small amplitudes and low-frequency oscillations with large 
amplitudes. Both contain peaks and noise signals, respectively 
[18]. Therefore, the positive and negative thresholds are found 
through Eq. (10): 

max( )

min( )

i

i

i

d

d

 


 





 
 

                          (10) 

In Eq. (10), id denotes the high frequency detail coefficient 

of the n layer, and denotes the empirical parameter. 

The post-threshold low-frequency and high-frequency 
signals were reconstructed to obtain denoised medical 

monitoring multi-sensor data ( )X t . 

U(n)
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IV. MULTI-SENSOR DATA FEATURE EXTRACTION FOR 

MEDICAL MONITORING 

Due to the characteristics of high dimensionality and large-
scale data, its direct use for classification processing will 
increase the complexity of the computational algorithm and 
reduce the accuracy of the algorithm. Feature extraction for the 
fused data after the denoising process can map the original data 
to a lower-dimensional feature space, reduce the data dimension, 
simplify the problem, improve the classification efficiency, help 
to extract the key information and features in the data, and 
strengthen the effective patterns and structures in the data. 
Therefore, in this study, CNN is used to extract the main features 
of the data to reduce the interference of unnecessary information 
and improve the classification ability of the data by finding 
meaningful features related to the classification task. 

The convolutional layer is the core of the whole CNN, and it 
can effectively extract the sample features. The convolutional 
kernel traverses the whole sample by sliding to carry out feature 
extraction, and after the local features are extracted, the 
positional relationship between that part of the features and other 
features can be marked. CNN is non-transparent for feature 
extraction, and different from traditional network learning 
methods, the convolutional kernel operation has the feature of 
local perception, when a part of the features are learnt, the 
features will be inputted into the next mapping layer, and the 
mapping layer after that will continue to carry out classification 
learning. The samples after the convolutional layer use the 
spatial distribution characteristics of the surrounding samples, 
and the feature extraction accuracy can be obtained. 

For the input medical monitoring multisensory data ( )X t , a 

matrixW with a convolution kernel size a b and bias B , the 

result after convolution is in Eq. (11) [19]: 

( * )h g X W B 
                          (11) 

In Eq. (11), *  denotes the convolution operation and (.)g  

denotes the activation function. The activation function used in 
this study is the ReLU function shown as Eq. (12): 

( ) max(0, )g x x
                           (12) 

The sparse activation of the ReLU function can make certain 
neurons inactive, reduce the number of redundant connections 
and parameters, and improve the computational efficiency and 
generalization ability. The ReLU function solves the problem of 
gradient vanishing in traditional activation functions and avoids 
the performance degradation caused by the gradient being too 
small. In addition, the computation of the ReLU function is 
simple and efficient, without the need for complex exponential 
operations, which accelerates the training and inference process 
of the model. In addition, the ReLU function integrates linear 
and nonlinear properties, which is convenient to capture the 
nonlinear relationship of the data and enhances the expressive 
ability of the neural network. Finally, the ReLU function has no 
upper limit and can pass positive values to the next layer, further 
expanding the expressive ability of the network. 

The pooling layer can effectively reduce the data dimensions, 
and the input of the pooling layer is the output of the 
convolutional layer. The output of the convolutional layer N
feature maps is passed through the pooling layer to reduce the 
data size. In this research, the maximum pooling layer is 
introduced to sparsity the hidden layer data. The operation of 
maximization is to retain the maximum value of the pooled 
region, that is, to remove the non-extremely large values within 
the matrix, while extracting the extremely large value of the 
region as the representative value after pooling. The output of 
the pooling layer results in a substantial reduction of the network 
parameters, and the kernel size is generally 2×2 when maximum 
pooling is used, and the 2×2 size kernel enables the number of 
parameters to be effectively regulated, which helps to prevent 
the occurrence of overfitting situations and enhances the 
robustness of the convolutional neural network. Average 
pooling performs an averaging operation on the matrices in the 
region and uses the average value to sparse the non-overlapping 
target region. 

The role of the Dropout layer is to drop some neurons at a 
certain rate during the network training process, which is a 
simple and effective regularization technique. However, 
choosing a suitable Dropout rate is critical to optimizing 
network performance. Higher Dropout rate causes the model to 
underfit because too many neurons are dropped, and difficult to 
learn enough information. However, a lower Dropout rate 
cannot effectively prevent overfitting. In addition, due to the 
randomness of Dropout during training, it helps the model learn 
more robust feature representations. Also, the difference 
between training and testing exists because all neurons are 
activated. 

Therefore, it is often necessary to scale the output of all 
neurons to match the average level of activation at training, thus 
improving the generalization ability of the model. Choosing an 
appropriate Dropout rate is crucial to prevent model overfitting 
and improve generalization performance. In general, for larger 
networks or datasets, a lower Dropout rate (e.g. 0.2-0.5) can be 
chosen, as the network already has enough capacity to capture 
complex features, and too high a Dropout rate may limit its 
ability to learn. Conversely, for smaller networks or datasets, a 
higher Dropout rate (such as 0.5-0.8) can be selected to reduce 
the risk of overfitting. 

The structure of the Dropout network is shown in Fig. 4. 

 

Fig. 4. Dropout network structure. 
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In the original network structure, all neurons need parameter 
training, while in the Dropout network structure, some neurons 
are not involved in the training, Dropout is a very effective 
method to suppress overfitting, and its use often brings a great 
improvement to the network generalization performance. The 
computational equation of the network using Dropout as in Eq. 
(13) [20]: 

( ) ( ) ( )

1 ( 1) ( ) ( 1)

( 1) ( 1)

~ ( )

*

( )

l

i

l l l

l l l l

i i i

l l

i i

r Bernoulli p

y r y

z W y B

y f z

  

 




 


  


                     (13) 

In Eq. (13), Bernoulli function to generate the probability r

vector, that is, randomly generate a [0,1] vector,
( 1)l

iy 
is the 

output of the convolutional neural network for medical 
monitoring multi-sensor data feature extraction results. 

V. REINFORCEMENT LEARNING FOR IMPROVED SVM 

CLASSIFICATION MODELS 

Through feature extraction, we have extracted the most 
representative and distinguishing features from the original 
multi-sensor data. The classification algorithm can better 
distinguish different data types by enriching the feature space 
and improving classification accuracy. Many physiological 
signals in medical monitoring data are time-varying, and the 
trend of these time-varying features is very important for 
predicting the direction of disease development. Considering 
these characteristics of sensor monitoring signals, a method 
combining Q-learning with SVM is proposed to improve the 
effectiveness of SVM in multi-sensor data classification of 
medical monitoring. 

Reinforcement learning can reduce the dimensionality of the 
feature space of sensor signals, improve the efficiency of the 
algorithm, can better capture the dynamic change law of time-
varying features, and improve the classification method's ability 
to process time-ordered data. Therefore, in this study, the Q 
learning algorithm in reinforcement learning is used to improve 
SVM, to provide better classification effect of medical 
monitoring data by SVM. 

SVM is a powerful supervised learning algorithm that is 
widely used in classification and regression tasks. In 
classification, the goal of SVM is to find a hyperplane that 
maximizes the spacing between different classes; in regression, 
the goal of SVM is to find a hyperplane that minimizes the 
distance of all data points to the hyperplane, while allowing for 
a certain error boundary. 

In SVM regression, the objective function aims to minimize 
the sum of distances from all data points to the hyperplane while 
taking into account the error boundary. For a given training data 

set   
1

,
n

i i i
x y


, where 

ix  is the input vector and 
iy  is the 

corresponding output value, the goal of SVM regression is to 
minimize Eq. (14) objective function [21]: 

 

2

1

( ( (
1

) ))
2

i

n

i

iy w x bw C L 


   
 (14) 

where, w  and b  are the normal vector and intercept of the 
hyperplane, respectively; ( )ix  

represents the mapping from 

input space to feature space; C represents a regularization 
parameter, which is used to control the balance between the 

complexity of the model and the training error; L is  - 
insensitive loss. 

In SVM, support vectors are those training samples on or 
within the error boundary, which have a decisive effect on the 
hyperplane position for their determination of the constraints on 
interval maximizing. The support vectors are equally important 
in regression because of both the definition of hyperplane 
location and affection of the generalization ability. By keeping 
the key sample points, SVM achieves better generalization 
performance while ensuring training errors. 

Q-learning method is an important machine learning method 
in reinforcement learning. It is similar to other methods in 
reinforcement learning in that it learns the optimal policy for its 
dynamic system by perceiving the state information of the 
environment and interacting with the environment continuously, 
and it improves the behavior of the system by interacting with 
the environment through trial and error methods, and it is a kind 
of on-line learning method that can be applied to real-time 
environments. Therefore, it has been widely researched in the 
fields of intelligent control, machine learning, and so on. 

The Q learning system views learning as a process of trial 
and error, and its basic model is shown in Fig. 5. 

 
Fig. 5. Basic model of Q-learning. 

In the learning process, the Q-learning system selects an 

action a  to act on the environment, the environment receives 
the action and changes, and at the same time produces a 

reinforcement signal r which is fed back to the learning system, 
which then selects the next action according to the reinforcement 
signal and the current state of the environment, the principle of 
selection is to make the probability of receiving a positive 
reward increase. The chosen action affects not only the 
immediate reinforcement value, but also the next state of the 
environment and the final reinforcement value. 

From the Q learning system, it is known that the set of states 
in the Q learning system is discrete and finite in general, but 
often in some practical situations, the set of state variables of the 
environment is large-scale or continuous, resulting in a difficult 
learning process and a slow response speed of the system. To 
solve this problem, this study introduces Q-learning to improve 

Q-learning system

Environment

State s Reward r Action a
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SVM, where Q-learning is used to preprocess and extract 
features, and then SVM is used for classification. It not only 
captures the dynamic variation of time-varying features, but also 
reduces the complexity of SVM when processing high-
dimensional data. 

Q-learning improves the behavior of the system by 
constantly interacting with the environment through trial-and-
error methods to find a strategy that maps the state of the 
environment into the corresponding action. This strategy of 
reinforcement learning inevitably increases the difficulty of 
learning the system, resulting in very much blind learning, and 
leading to longer learning times. 

To overcome these problems, the features optimized by Q-
learning are passed to the SVM as input to make efficient 
classification decisions, thus improving the overall system 
performance. For large-scale systems with reinforcement 
learning , the introduction of SVM not only reduces the 
complexity due to solving quadratic programming problems in 
standard support vector machines, but also for improving the 
convergence speed of large-scale reinforcement learning 
systems, Q-learning improved SVM as shown in Fig. 6. 

 
Fig. 6. Q-learning improved SVM structure. 

The aim of the Q-learning algorithm shown as Eq. (15) and 

Eq. (16) is to find a policy such that the value ( )Q s
of each 

state s reaches the end at the same time, that is, it tries to find a 

policy : s a  that is able to maximize the value of each state 

[22]. 

1

1 2 0 0( , ) { , }i

iQ s a E r r r s s a a         
  (15) 

( , ) max( ( , ))Q s a Q s a 




                     (16) 

where, ir denotes the immediate reward at the moment t ,

( [0,1])   denotes the decay coefficient, and
* ( , )Q s a denotes 

the optimal value function. The corresponding optimal strategy 
as in Eq. (17): 

* *argmax ( , )Q s a 
                        (17) 

One of the simplest forms of Q-learning is single-step Q-
learning with a modified consensus of Q-values as shown in Eq. 
(18) [23]: 

1 1( , ) ( , ) max ( , ) ( , )t t t t t t t t
a

Q s a Q s a r Q s a Q s a  
    
  (18) 

where,   
denotes the learning rate and 

 
denotes the 

discount rate. 

Given a training set ( , )i iS y P , where iy denotes the input 

vector and iP is the output classification objective value. 

Determine an optimal function ( )F x as the objective of the 

regression problem such that ( )F x can correctly regress the 

unknown input vector with the highest possible probability. In 

SVM, the regression function ( )F x has the form as in Eq. (19) 

[24]: 

( ) ( )TF x x b  
                          (19) 

where, (.)
 
denotes the mapping from the input space to the 

feature space,   and b  denote the coefficient vector and the 

deviation term respectively, which are the quantities to be sought. 

The unknown quantity can be determined by Eq. (20) 
optimization problem [25]: 

2 2

, ,

1
min ( , , )

2 2

. . ( )

l

i
b

i l

T

i i i

Q b e e

s t y x b e

 


 

 



 

  



             (20) 

Its Lagrangian function as in Eq. (21): 

1

( , , , ) ( , , ) ( )
l

T

t i i i

i

L b e Q b e x b e y     


      
     (21) 

The KKT condition for the above equation is shown in Eq. 
(22) [26]: 
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       (22) 

Writing Eq. (22) in matrix form and eliminating   and e , 

Eq. (23) is obtained: 

Training 

dataset

Q-valued 

recursive 

function

Learning sample set

Support Vector 

Machine
Action Selector 

New data

Q-learning 

system

Immediate return
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1

0 1 0

1

T b

yI  

     
     

                             (23) 

where, ( , )ij i jk x x  . A regression function completes the 

classification of multi-sensor data for medical monitoring by 
solving Eq. (24): 

1

( ) ( , )
l

i i

i

F x K x x b


 
                      (24) 

VI. EXPERIMENTAL VALIDATION 

Test experiments are conducted to validate the effectiveness 
of the proposed reinforcement learning based improved SVM 
for multi-sensor data classification processing in medical 
monitoring. 

A.  Experimental Data 

A schematic diagram of the medical monitoring multi-sensor 
arrangement is shown in Fig. 7. 

 
Fig. 7. Schematic diagram of multi-sensor arrangement for medical 

monitoring. 

Here, suitable types of sensors, including heart rate sensors 
or blood pressure sensors, are selected based on monitoring 
needs and placed at specific locations on the patient's body to 
accurately collect physiological parameters and health data. 
Subsequently, the data collected by the sensors is transmitted to 
the monitoring device or data system for processing and storage. 

The multi-sensor data included ECG data (heart rate, heart 
rate), blood pressure data (including systolic and diastolic blood 
pressure), oxygen data (e.g., oxygen saturation), temperature 
data, respiratory data (respiratory rate), exercise data (number of 
steps, intensity of activity), including blood glucose data, and 
pulse waveform data. Examples of selected samples are shown 
in Table I. 

TABLE I.  EXAMPLES OF SELECTED SAMPLES 

Data Type Numerical Value 

heart rate 75 bpm 

pulse rate normalcy 

systolic blood pressure 120 mmHg 

diastolic blood pressure 80 mmHg 

oxygen saturation 98 per cent 

(body) temperature 36.5°C 

respiratory rate 16 times/minute 

number of steps 8000 steps 

Activity intensity medium 

blood sugar 5.0 mmol/L 

In this setting, the parameter configurations of Q- learning 
and SVM model are planned in detail, and the specific parameter 
settings are as follows: 

1) The state space of Q-learning algorithm selects 

parameters in multi-sensor data as characteristics, such as heart 

rate and systolic blood pressure. The action space includes the 

selection of different SVM improvement methods. 

2) Setting the learning rate of Q-learning is 0.1 to control 

the updating speed of the Q value; the discount rate is 0.9 to 

balance the importance of current and future rewards; the 

exploration rate gradually decreases from 0.9 to 0.1 to promote 

the algorithm's balance between exploration and utilization. 

3) Setting the initial regularization parameter C of SVM is 

1.0, and the kernel function is RBF (radial basis function). The 

space is reserved for adjusting other parameters through cross-

validation. 

The above parameter configuration aims to improve the 
repeatability of the experiment and the reliability of the results. 

B. Experimental Program 

Based on the above collected data, using the signal-to-noise 
ratio, data feature extraction effect, and Kappa coefficient as 
indicators, the method of this study is compared and validated 
with the data classification method based on the concept of drift, 
and the classification method based on mathematical modelling 
and improved online learning. 

1) Signal-to-noise ratio. The signal-to-noise ratio is the 

ratio of the strength of the useful signal to the strength of the 

noise signal and is used to measure the relative strength of the 

signal in relation to the noise. A high signal-to-noise ratio 

indicates that the useful signal is stronger relative to the noise 

signal, indicating a higher quality signal and clearer 

information. 

2) Data feature extraction effect. Data feature extraction 

effect refers to the meaningful features that can characterize the 

relevant information of the signal extracted from the original 

data by feature extraction methods. 

3) Kappa coefficient. The Kappa coefficient measures the 

accuracy of the classifier while considering the random factor 

in classification. The closer the Kappa coefficient is to 1, the 

better the performance of the classifier. 

C. Analysis of Experimental Results 

1) Signal-to-noise ratio. The signal-to-noise ratio is a 

measure of the relative strength between signal and noise. By 

performing a comparative signal-to-noise ratio test, the quality 

of different data can be assessed, and it can be determined 

which data has a higher signal quality and is more reliable. 

Signal-to-noise ratio is one of the key factors in signal 

classification and processing. Lower signal-to-noise ratios may 

lead to interference and distortion of the signal by noise, 
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reducing the performance and accuracy of the classification 

algorithm. By performing a signal-to-noise ratio comparison 

test, data with lower signal-to-noise ratios can be identified, so 

that methods such as appropriate preprocessing or adjusting 

parameters can be taken to improve classification performance. 

The signal-to-noise ratio results of the three methods are shown 

in Fig. 8. 

 

Fig. 8. Signal-to-noise ratio results. 

Observing the results of the signal-to-noise ratio shown in 
Fig. 8, the signal-to-noise ratio of this study's method is always 
higher and smoother compared to the two literature comparison 
methods, and the signal-to-noise ratio of this study's method is 
always above 40 dB. On the other hand, the signal-to-noise ratio 
of the data classification method based on the concept of drift 
and the classification method based on mathematical modelling 
and improved online learning not only fluctuates more, but also 
has a lower value, with a maximum of only about 25 dB. 
Therefore, it shows that the method in this study can effectively 
remove the noise from medical monitoring multi-sensor data 
and improve the quality of the data. 

The main reason is that the proposed method removes the 
noise in medical monitoring data effectively and improves the 
signal-to-noise ratio by combining a DBSCAN algorithm with 
DWT. 

2) Effectiveness of data feature extraction. Feature 

extraction is a key step in converting raw signals into 

meaningful feature vectors. The performance and effectiveness 

of different feature extraction methods can be evaluated by 

verifying the feature extraction effect. Comparing the 

usefulness and differences of features extracted by different 

methods for signal classification helps to select the most 

suitable feature extraction method to maximize the accuracy 

and robustness of signal classification. The data feature 

extraction results of the three methods are shown in Fig. 9. 

As shown in Fig. 9, the data feature extraction results of this 
study's method are closest to the trend of the original data, 
indicating that the data features extracted by this study's method 
are most capable of describing the original data. And the data 

feature extraction results of the data classification method based 
on the drift concept differ greatly from the original data. 
Therefore, it shows that the method in this study can accurately 
extract the features of medical monitoring multi-sensor data. 

 
Fig. 9. Effect of data feature extraction. 

This is mainly because the convolutional neural network is 
used in this method, which makes it more accurate in feature 
extraction and can capture more useful information. 

3) Kappa coefficient. The accuracy and consistency of the 

classifiers in multi-sensor data classification can be objectively 

assessed by validating the classification results with Kappa 

coefficients. The Kappa coefficients take into account the 

random assignment of the classified objects, and can accurately 

measure the superiority of the classifiers with respect to the 

classification results that are only caused by the random 

selection. The Kappa coefficient test results of the three 

methods are shown in Table II. 

TABLE II.  KAPPA COEFFICIENT 

Test 

serial 

number 

Kappa coefficient 

The method in 

this study 

Data 

classification 

method based on 

the drift concept 

Classification method 

based on mathematical 

modeling and improved 

online learning 

10 0.96 0.71 0.76 

20 0.98 0.68 0.74 

30 0.95 0.69 0.62 

40 0.97 0.72 0.64 

50 0.96 0.73 0.74 

60 0.96 0.67 0.65 

70 0.97 0.71 0.61 

80 0.98 0.70 0.63 

90 0.96 0.69 0.65 

100 0.95 0.66 0.71 
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From the data in the table, it can be observed that the Kappa 
coefficient of this study's method stays at a high level with small 
changes in many tests. On the other hand, the Kappa coefficients 
of the other two methods have large fluctuations and their 
performance is not stable enough. For example, the Kappa 
coefficient of this study's method stays above 0.95 under 
different test numbers, while the Kappa coefficients of the other 
two methods fluctuate in a wide range, from 0.62 to 0.76. The 
Kappa coefficient of this study's method is significantly higher 
than that of the other two methods under most of the test 
sequence numbers, especially the highest Kappa coefficient is 
achieved at many nodes such as test sequence numbers 20, 40 
and 80. This indicates that the method in this study has a 
significant advantage in classification accuracy and can classify 
the data more reliably for judgement. 

This is because the improvement of Q-learning on SVM 
makes the model more adaptable to complex and changeable 
medical data through automatic exploration and optimization of 
parameters, thus improving the accuracy and robustness of the 
classification. 

VII. CONCLUSION 

In this study, a method combining Q-learning and SVM was 
proposed to deal with the problem of multi-sensor data 
classification in medical monitoring. Through experimental 
validation, the new method exhibited better performance 
relative to the traditional approach. Specifically, DBSCAN 
clustering and DWT were used to preprocess data, which 
effectively retained key features and reduced noise interference. 
Then, CNN was used to deeply mine signal features. The Q-
learning algorithm was used to optimize SVM model and realize 
efficient mapping of features to classification output. 

Experimental results show that the proposed method not 
only reaches a high level of 98% on classification accuracy, but 
also observes significant progress in terms of classification 
accuracy, signal-to-noise ratio, and feature extraction 
effectiveness. In addition, this study explores the role of 
reinforcement learning in the process of feature selection and 
model optimization, and it is found that the reinforcement 
learning algorithm can be used to better guide the model for 
tuning and improve the effectiveness of the classification task. 

However, this study still has certain limitations, and the 
robustness of feature extraction in current methods needs to be 
further improved when dealing with sudden noise or multi-
source heterogeneous sensor data. And the convergence speed 
of the Q-learning algorithm in high-dimensional state space is 
slow, which may affect the application efficiency of real-time 
monitoring scenarios. 

In the future, this study will further develop a distributed 
reinforcement learning framework to optimize the parallel 
processing efficiency of multi-sensor data, in order to meet the 
real-time monitoring needs of clinical practice. For example, 
introducing Deep Q-Network (DQN) combined with 
Convolutional Neural Network to process high-dimensional 
sensor data, utilizing experience replay and target network 
mechanisms to enhance algorithm stability. And adopting the 
Actor Critic framework, while optimizing the strategy function 

and value function, to more efficiently handle the temporal 
dynamic characteristics of medical monitoring data. 
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