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Abstract—The integration of fifth-generation (5G) 

communication technology and Artificial Intelligence (AI) is 

reshaping urban mobility by enabling intelligent transportation 

systems and smarter cities. This synergy allows real-time traffic 

management, predictive maintenance, and enhanced autonomous 

driving, supported by high-speed, low-latency networks and 

advanced data analytics. By leveraging 5G’s strong connectivity, 

AI systems can process massive datasets to address urban 

challenges such as traffic congestion, environmental sustainability, 

and public safety. This study presents a framework that combines 

5G and AI to optimize traffic management through dynamic 

congestion prediction and real-time routing, supported by edge 

computing. It highlights the benefits of improving traffic flow, 

reducing emissions, and enhancing overall urban mobility 

efficiency. In addition, it discusses key challenges including data 

privacy concerns, cybersecurity risks, and the high cost of 

infrastructure deployment. By analyzing existing technologies and 

proposing an AI-driven, 5G-enabled system model, this study aims 

to bridge the gap between theoretical advancements and practical 

urban implementations. The findings provide insights into 

scalable, efficient solutions for the future of smart transportation 

networks and offer directions for further research in this dynamic 

and evolving field. 
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I. INTRODUCTION 

Urban mobility is evolving rapidly due to the deployment of 
advanced technologies such as 5G and Artificial Intelligence 
(AI). These innovations enable smarter, more adaptive traffic 
management systems capable of responding to real-time 
changes in urban environments. The ultra-low latency and 
massive connectivity provided by 5G networks form a robust 
foundation for deploying AI-powered solutions at scale. In 
combination, these technologies promise to reduce congestion, 
improve traffic flow, and support more sustainable and efficient 
cities. 

Recent studies illustrate this potential. Gheorghe et al. [1] 
demonstrated how AI and IoT, supported by predictive 
analytics, improve adaptive traffic control systems by enabling 
real-time decisions. Sharma et al. [2] showed that AI-driven 
route optimization in vehicular networks contributes to reduced 
fuel consumption and travel times. These findings confirm that 
integrating AI and 5G can significantly improve the operational 
efficiency of urban transportation. 

However, existing traffic management systems face 
persistent limitations. Most rely on centralized architectures, 
which struggle to process the growing volume of sensor data in 
real time. They also lack the ability to dynamically adapt to 
evolving traffic patterns. As a result, cities continue to 
experience congestion peaks, inefficient route utilization, and 
increased emissions. There remains a gap between the potential 
offered by emerging technologies and their actual deployment 
in urban traffic systems. 

This study addresses the challenge of building a scalable and 
responsive traffic management framework that overcomes these 
limitations. It proposes a system that combines machine learning 
models for congestion prediction with dynamic route 
optimization, all deployed through decentralized 5G-enabled 
edge computing. The objective is to ensure low-latency 
decision-making, minimize energy consumption, and improve 
overall traffic efficiency without relying on centralized 
processing. 

Designing such a system introduces several challenges, 
including handling heterogeneous and noisy traffic data, 
maintaining real-time responsiveness at the network edge, and 
ensuring scalability across diverse urban environments. By 
integrating AI models with edge nodes capable of local 
processing and communication through 5G, the proposed 
framework responds directly to these issues. 

The remainder of this study is structured as follows: Section 
II provides a review of related work. Section III presents the 
proposed methodology and system architecture. Section IV 
outlines the experimental results. Section V discusses 
limitations and future directions. Finally, Section VI concludes 
the study. 

II. RELATED WORK 

Numerous studies have explored the intersection of 5G and 
AI in urban mobility, focusing on specific applications and 
challenges. Real-time traffic optimization has been a significant 
area of research, with Gheorghe et al. [1] demonstrating the 
efficacy of 5G-enabled AI systems in predicting and managing 
congestion through real-time data analysis and adaptive signal 
control, supported by edge computing to avoid centralized 
overload. Su and Xu [3] enhanced this approach with secure 
cluster-based authentication mechanisms, while Chuan et al. [4] 
emphasized the importance of robust algorithms to manage 
rainfall impacts on 5G millimeter-wave channels. Louvros et al. 
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[5] further highlighted QoS-aware resource management for 
traffic flow stability. 

Autonomous vehicles (AVs), another critical focus, rely on 
5G’s high-speed connectivity for seamless data exchange. 
Moubayed et al. [6] demonstrated improved sensor fusion and 
navigation reliability, while Sharma et al. [2] optimized AV 
routes to reduce emissions. Khalid et al. [7] introduced hybrid 
V2X systems for enhanced coordination. Ge et al. (2024) 
validated 5G mmWave efficiency for single base stations, and 
Coll-Perales et al. [8] modeled end-to-end V2X latency in dense 
environments. 

In the context of intelligent transportation systems (ITS), 
Chen and Song [9] explored the use of V2X communication for 
traffic pattern analysis and public transport enhancement. Their 
work is complemented by Barzegar et al. [10], who proposed 

predictive maintenance frameworks, and Amend and Rakocevic 
[11], who optimized video streaming in 5G-based ITS using 
multipath scheduling. 

Security, data reliability, and resource allocation remain core 
challenges. Mongay Batalla et al. [12] proposed multi-layer 
security assurance models, while Rico et al. [13] examined 
multi-connection protocols for ITS reliability. Meanwhile, An et 
al. [14] and Vohra et al. [15] introduced distributed resource 
allocation strategies to process large traffic datasets efficiently. 
Mukherjee et al. [16] addressed anomaly detection in IoT-based 
monitoring, and Bonato et al. [17] evaluated exposure variability 
in 5G-V2X scenarios using deep learning. 

A structured summary of these contributions is presented in 
Table I, highlighting the main technologies used and challenges 
addressed across representative works. 

TABLE I.  RELATED WORKS 

Authors Main Contribution Technologies Used Challenges Addressed 

Gheorghe and Soica (2025) 
Systematic review of AI, IoT, predictive 
analytics for traffic control 

AI, IoT, Predictive Analytics 
Real-time traffic management, 
scalability 

Sharma et al. (2023) 
Privacy-aware post-quantum routing in 

5G IoV 
5G, IoV, Privacy Algorithms Security, Privacy 

Su and Xu (2025) 
Mutual authentication in 5G sensor 

networks for vehicles 
5G, Sensor Networks Authentication, Key Update 

Coll-Perales et al. (2023) 
V2X latency modeling over 5G 

networks 
V2X Communication, 5G Latency, QoS 

Moubayed et al. (2023) OTN-over-WDM optimization for 5G Optical Transport Networks, WDM, 5G Network optimization challenges 
 

III. METHODOLOGY AND SYSTEM MODEL 

The proposed system integrates data collection, AI-powered 
congestion prediction, graph-based route optimization, edge 
computing, and cloud analytics to deliver real-time, scalable, 
and efficient urban mobility solutions. 

The first step involves data collection and integration, where 
the system aggregates information from diverse sources, 
including IoT sensors, connected vehicles, and public 
transportation systems. Smart traffic lights, road sensors, and 
surveillance cameras provide real-time updates on traffic 
density, vehicle speeds, and incidents, forming the foundational 
dataset. Additionally, Vehicle-to-Everything (V2X) 
communication, enabled by the low-latency capabilities of 5G, 
ensures seamless data exchange between vehicles and 
infrastructure, fostering a holistic view of the traffic ecosystem. 

At the core of the system lies AI-powered congestion 
prediction, which utilizes advanced machine learning models to 
forecast traffic conditions. Historical data, such as traffic 
volume, weather patterns, and temporal trends, is combined with 
live sensor inputs and fed into models like Long Short-Term 
Memory (LSTM) networks. These models are adept at handling 
time-series data and capturing both temporal dependencies and 
nonlinear patterns. The process begins with preprocessing, 
where noisy data is cleaned, and missing values are filled. 
Subsequently, LSTM models are trained on historical datasets 
to identify traffic patterns. During real-time operations, live data 
streams are processed at edge computing nodes, enabling 
immediate predictions without relying on centralized servers. 

Based on the predictions, the system executes graph-based 
route optimization to dynamically adjust traffic flows. The urban 
road network is represented as a weighted graph, where nodes 
signify intersections and edges represent road segments, with 
weights corresponding to travel times or congestion levels. Real-
time congestion predictions trigger dynamic weight adjustments 
to reflect current conditions. Algorithms such as Dijkstra or A* 
compute the shortest and most efficient routes for vehicles. A 
continuous feedback loop updates the graph with live traffic 
data, ensuring that routing decisions remain adaptive and 
responsive to evolving conditions. 

To address latency and scalability challenges, the system 
employs edge computing for decentralized processing. 
Strategically placed edge nodes near data sources aggregate and 
analyze data locally, reducing the computational load on central 
servers. These nodes host lightweight AI models capable of 
making congestion predictions and suggesting optimized routes. 
They also communicate directly with vehicles via 5G, 
disseminating real-time traffic updates and route 
recommendations. This decentralized approach significantly 
reduces response times and enhances the system's scalability. 

Complementing the edge computing layer, cloud integration 
for long-term analytics ensures continuous improvement and 
scalability of the system. While edge nodes handle real-time 
tasks, cloud servers store historical data and retrain AI models 
periodically to adapt to new traffic patterns. This hybrid 
architecture balances the need for immediate responsiveness 
with the benefits of long-term optimization and model 
refinement, paving the way for an adaptive and sustainable 
traffic management system. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

465 | P a g e  

www.ijacsa.thesai.org 

By combining these elements, the proposed framework 
addresses the multifaceted challenges of urban traffic 
management, delivering a robust solution that enhances 
mobility, reduces congestion, and promotes sustainability. 

A. Objectives 

The study aims to develop and evaluate a real-time dynamic 
traffic management system focusing on: Real-time Congestion 
Prediction, Dynamic Route Optimization. 

1) Real-time congestion prediction. The ability to predict 

traffic congestion in real-time is a cornerstone of efficient 

traffic management. This involves training AI models, such as 

Long Short-Term Memory (LSTM) networks or Gradient 

Boosted Decision Trees, on both historical traffic patterns and 

live sensor data. Historical data includes traffic volumes, 

weather conditions, special events, and temporal variations, 

while live data comes from IoT devices, V2X communication, 

and GPS-enabled vehicles. These models are designed to: 

a) Identify traffic bottlenecks with high precision. 

b) Predict congestion levels minutes or hours into the 

future. 

c) Provide actionable insights to traffic management 

systems for preemptive actions. This prediction process is 

carried out locally at edge nodes to minimize latency and ensure 

timely decision-making. 

2) Dynamic Route Optimization. Once congestion is 

detected or predicted, the next step is to dynamically 

redistribute traffic to alternative routes to prevent or alleviate 

congestion. The urban road network is modeled as a weighted 

graph, where nodes represent intersections, and edges represent 

road segments. The weights of edges correspond to travel times, 

which are adjusted dynamically based on: 

a) Real-time congestion levels predicted by the AI 

models. 

b) Road closures, construction work, or accidents 

reported through live feeds. Using algorithms like Dijkstra, A*, 

or even reinforcement learning-based methods, optimal routes 

are calculated and suggested to vehicles in real-time. A 

feedback loop is maintained where updated traffic data 

continuously refines the routing decisions, ensuring 

adaptability to changing conditions. 

3) Energy-efficient transportation. Optimizing traffic flow 

not only improves travel times but also significantly reduces 

energy consumption and emissions. Idle times at congested 

intersections and prolonged travel distances contribute heavily 

to urban pollution. By dynamically managing traffic: 

a) Fuel consumption is reduced by avoiding stop-and-go 

traffic conditions. 

b) Electric vehicles (EVs) benefit from extended range 

due to smoother traffic flows. 

c) Emissions are minimized, contributing to greener and 

more sustainable urban environments. To further enhance 

energy efficiency, the system integrates vehicle-specific data 

(e.g., fuel efficiency or EV battery levels) into the optimization 

process, tailoring route recommendations for maximum energy 

savings. 

4) Scalable and decentralized architecture. The 

implementation of 5G and edge computing is critical for 

ensuring the scalability and responsiveness of the proposed 

system. The architecture involves: 

a) Edge nodes are placed strategically throughout the 

urban area, these nodes handle real-time data processing, 

congestion predictions, and route optimization locally. This 

reduces the computational load on centralized servers and 

minimizes data transmission delays. 

b) 5G Connectivity enables high-speed and low-latency 

communication between vehicles, edge nodes, and centralized 

systems. It also supports massive IoT device connectivity, 

essential for collecting data from diverse sources. 

c) Cloud integration: While edge nodes manage real-time 

tasks, cloud servers are used for long-term analytics, retraining 

AI models, and storing historical traffic data. This hybrid 

approach ensures both scalability and the continuous 

improvement of prediction and optimization algorithms. By 

decentralizing computational workloads, the system can scale 

efficiently across cities of varying sizes and complexities while 

maintaining low-latency decision-making capabilities. 

B. Implementation Plan 

The implementation of the proposed dynamic traffic 
management system follows a comprehensive plan designed to 
ensure scalability and real-world applicability. The initial phase 
begins with the creation of a simulated urban traffic network 
using platforms like SUMO (Simulation of Urban Mobility) or 
OpenStreetMap. These tools enable the generation of realistic 
traffic scenarios, simulating vehicle behaviors, road layouts, and 
dynamic traffic signals. The simulation environment provides a 
controlled setting to test the framework under various 
conditions, including peak traffic hours, accidents, and road 
closures, generating a robust dataset for validation. 

The second phase focuses on algorithm development, 
starting with congestion prediction through advanced AI 
models. Long Short-Term Memory (LSTM) networks, 
implemented using TensorFlow or PyTorch, are trained on 
historical traffic data such as vehicle counts, speeds, weather 
conditions, and time-of-day patterns. These models process live 
sensor data streams in real time to predict traffic congestion, 
leveraging their ability to handle sequential data and temporal 
dependencies. Concurrently, route optimization is performed 
using graph-based algorithms. The urban road network is 
represented as a weighted graph, where nodes are intersections, 
and edges are road segments. Algorithms like Dijkstra or A* 
calculate optimal routes dynamically, adjusting edge weights 
based on real-time congestion predictions. A feedback loop 
ensures that traffic conditions continuously refine routing 
decisions, maintaining adaptability. 

The third phase involves the deployment of edge computing 
nodes, which are critical for decentralized processing and low-
latency operations. Lightweight computational devices, such as 
Raspberry Pi or NVIDIA Jetson Nano, equipped with 5G 
connectivity, are strategically placed at high-traffic areas and 
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key intersections. These nodes host containerized AI models 
managed through Docker and orchestrated with Kubernetes for 
scalability and fault tolerance. The edge nodes process data 
locally, execute congestion predictions, and disseminate route 
recommendations to connected vehicles in real time, reducing 
the load on centralized servers. 

Finally, the system undergoes real-world testing in 
collaboration with municipalities or urban traffic authorities. A 
representative urban area with varying traffic densities is 
selected for the pilot implementation, where the system 
integrates with existing traffic management infrastructure. 
Performance metrics such as average travel time, congestion 
levels, fuel consumption, and system latency are monitored to 
evaluate the framework’s effectiveness. The collected feedback 
is used to iteratively refine the system, ensuring robustness and 
adaptability. 

By combining simulation, advanced AI algorithms, edge 
computing, and real-world testing, the proposed implementation 
plan offers a scalable and efficient solution for real-time traffic 
management, paving the way for smarter and more sustainable 
urban transportation systems. 

C. Expected Contributions 

This study aims to address the pressing challenges of urban 
traffic management by introducing a scalable and efficient 
framework tailored for real-time applications. At its core, the 
framework leverages a decentralized approach powered by 5G-
enabled edge computing, enabling rapid data processing and 
decision-making directly at strategic points within the urban 
landscape. By integrating AI-driven congestion prediction with 
graph-based routing algorithms, the system offers a hybrid 
optimization model capable of dynamically redistributing traffic 
to mitigate bottlenecks. Beyond improving traffic flow, the 
framework emphasizes sustainability by reducing emissions and 
energy consumption through the elimination of idling and 
inefficient routes. Furthermore, the study provides a 
comprehensive blueprint for integrating advanced 
technologies—such as 5G, AI, and edge computing—into 
existing urban transportation infrastructures, paving the way for 
smarter, more adaptive, and environmentally conscious cities. 

D. Practical Implementation 

As part of this study, we proposed an innovative solution for 
dynamic urban traffic management, leveraging the integration of 
5G, Artificial Intelligence (AI), and edge computing. To validate 
the presented concepts and illustrate their implementation, an 
algorithm has been developed to predict traffic congestion and 
optimize routes in real-time. This implementation relies on 
machine learning models and graph algorithms, two 
fundamental pillars for intelligent traffic management. 

IV. RESULTS  

A. Algorithm – Traffic Simulation and Routing 

In this study, we designed and implemented a traffic 
management algorithm aimed at optimizing urban mobility by 
dynamically predicting congestion and adjusting routing 
decisions in real time. The core of the solution combines graph-
based optimization methods and machine learning techniques. 
Initially, congestion levels were estimated using a heuristic 

congestion scoring formula derived from three traffic features: 
Traffic Density, Estimated Speed, and Weather Conditions. 
Based on these scores, the system dynamically adjusted road 
network weights and calculated optimal routes using Dijkstra’s 
algorithm. 

To further enhance prediction reliability and address the 
complexity of urban traffic patterns, we trained a supervised 
machine learning model to predict congestion. We selected the 
Random Forest Classifier for its robustness, ability to capture 
non-linear relationships, and strong performance on structured 
traffic data. 

a) Input and output: To clarify the data structure used 

during the simulation phase, the main parameters involved in 

the proposed traffic management algorithm are summarized in 

Table II. This table details the inputs required to simulate and 

evaluate routing scenarios, along with the expected outputs 

generated by the system. 

The inputs include the number of simulated samples, the set 
of features characterizing each sample (such as estimated speed, 
traffic density, or incident reports), and the source and 
destination nodes within the road network. These parameters 
allow the algorithm to simulate traffic conditions and compute 
the most efficient path. 

The outputs correspond to the resulting optimal route, 
represented as an ordered list of nodes, and the total cost of that 
route under the influence of congestion. The cost reflects the 
dynamic weights applied to the road network based on real-time 
traffic conditions. 

TABLE II.  SUMMARY OF INPUTS AND OUTPUTS FOR THE PROPOSED 

TRAFFIC MANAGEMENT ALGORITHM 

INPUT OUTPUT 

num_samples: number of simulated 

data samples 
•     List of nodes representing the 

best route. 

• Total cost considering 
simulated congestion 

num_features: number of features per 
sample (e.g., speed, density, incidents) 

source: starting node 

target: destination node 

b) Process: A real-world dataset comprising 627 samples 

was utilized in this study, with each sample initially described 

by several traffic-related parameters. The primary objective 

was to simulate traffic conditions and evaluate the impact of 

congestion on route optimization. To prepare the data for the 

model, specific features were derived through additional 

computations, resulting in three key attributes: Traffic Density, 

Estimated Speed, and Weather Conditions. Missing values 

were calculated where necessary, and all extracted features 

were normalized to ensure consistent scaling and 

comparability. 

The original dataset included the following fields: 

 TMJA (Average Annual Daily Traffic): Used as an 
indicator of traffic density, representing the average 
number of vehicles passing through a segment daily. 

 ratio_PL: Denoting the proportion of heavy vehicles, 
influencing the overall estimated speed on the segment. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

467 | P a g e  

www.ijacsa.thesai.org 

 longueur: Length of the road segment, employed to 
estimate travel speed when time data is available. 

 route: Road identifier, enabling cross-referencing with 
external geographic datasets. 

 dateReferentiel: Date of traffic measurement, used for 
aligning with historical weather information. 

 xD, yD, xF, yF: GPS coordinates marking the start and 
end points of the road segment, facilitating the retrieval 
of location-specific weather conditions. 

The proposed traffic management algorithm was applied 
across all data points. It involved computing a congestion score, 
determining a congestion factor when necessary, adjusting the 
weights of the corresponding road network, and 
ultimatelycalculating the optimal route under the updated traffic 
conditions. Below, we detail the normalization process applied 
to each extracted parameter to ensure consistency and 
comparability across the dataset. 

The extracted features were normalized to ensure consistent 
scaling. Traffic density was standardized using the min-max 
formula described in Eq. (1). Estimated speed was calculated 
from the road segment length and travel time as shown in Eq. 
(2). Weather conditions were normalized in two steps: first by 
converting temperature from Kelvin to Celsius using Eq. (3), 
and then applying min-max normalization as shown in Eq. (4). 

Traffic Density: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑠𝑒𝑑 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑇𝑀𝐽𝐴−min (𝑇𝑀𝐽𝐴)

max(𝑇𝑀𝐽𝐴)−min (𝑇𝑀𝐽𝐴)
      (1) 

Estimated Speed: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑠𝑝𝑒𝑒𝑑 =
𝑙𝑒𝑛𝑔𝑡ℎ 

𝑡𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒
                      (2) 

Weather Conditions: 

𝑇𝐶𝑒𝑙𝑠𝑖𝑢𝑠=𝑇𝐾𝑒𝑙𝑣𝑖𝑛 − 273,15                             (3) 

Weather_conditions = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝐶−min (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑐)
max(𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑐)−min (𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑐)

          (4) 

When the computed congestion score exceeded a threshold 
of 1, a congestion factor of 0.2 was systematically applied to 
adjust the network parameters; otherwise, the original weights 
remained unchanged. Based on this approach, a directed graph 
representing the road network was constructed, with predefined 
base weights assigned to each edge. Upon congestion detection, 
all edge weights were proportionally increased using the 
congestion factor to reflect the associated traffic delays. 
Subsequently, Dijkstra’s algorithm was employed to determine 
the shortest path between the defined source and destination 
nodes within the updated network structure. The final step 
involved visualizing the adjusted road network to highlight the 
effects of congestion on optimal routing strategies. 

The entire simulation workflow is summarized in Table III, 
outlining each stage from data generation to route computation. 

TABLE III.  PROCESS OVERVIEW FOR TRAFFIC SIMULATION AND 

NETWORK ADJUSTMENT 

Step Action 

1. Generate Data 
Create num_samples of random data with 

num_features 

2. Estimate 

Congestion 

For each sample: 

if (f1 + 2*f2 - f3 > 1) → label = high congestion 

3. Set Congestion 

Factor 

If congestion is high → congestion_factor = 0.2 

else → 0.0 

4. Build Road Graph 
Create a graph with nodes and standard edge 

weights 

5. Adjust Weights 
Multiply all edge weights by (1 + 

congestion_factor) 

6. Compute Route 
Use shortest path algorithm (e.g., Dijkstra) from 

source to target 

7. Output Result Display optimal route and total adjusted cost 

c) Algorithm: Following the execution of the steps 

outlined in Algorithm 1, the adjusted road network was 

generated. Fig. 1 illustrates the updated graph structure, 

highlighting how congestion factors impact the routing through 

modified edge weights. 

Algorithm 1: Visualization of the Adjusted Road Network 

Initialize: 

 Define manual positions for each node. 

Compute: 
 Create edge labels based on adjusted edge weights. 

While (graph is being prepared) do 

 Draw network nodes at specified positions. 

 Draw directed edges between nodes with arrows. 

 Label each node with its identifier. 

 Annotate edges with their corresponding weights. 

 Update: 

  Set title of the graph to "Adjusted Road Network (With 
Congestion Penalty)". 

  Hide axes to enhance visualization. 

  Adjust layout for better spacing. 

 End 

End 

Display: 

 Render and show the final visualized graph. 

End 

 
Fig. 1. Adjusted road network visualization considering congestion penalties. 
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Following the application of a 20% congestion penalty to the 
edge weights, the network structure was updated to reflect the 
increased travel costs. Notably, the path A → B → C → D 
continues to represent the optimal route under the adjusted 
conditions. 

d) Machine learning congestion prediction: To improve 

traffic congestion prediction and support adaptive routing 

decisions, we implemented a supervised machine learning 

approach. The objective was to train a classification model 

capable of predicting congestion based on real traffic-related 

variables. 

As a starting point, we constructed an initial congestion label 
(Congestion_Predite) using a heuristic scoring function based on 
three key features extracted or derived from the dataset [Eq. (5)]: 

CongestionScore = (0.60 × Traffic Density) + (0.23 ×

Estimated Speed) + (0.17 × Weather Conditions)      (5) 

The binary target variable was then defined using a threshold 
as in Eq. (6): 

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛𝑃𝑟𝑒𝑑𝑖𝑡𝑒 = {1    if Score >  1
0         otherwise

                (6) 

This labeled dataset served as the foundation for training a 
Random Forest classifier, which learned more complex and non-
linear relationships between the variables and congestion states. 
This approach allows for generalization to unseen traffic 
patterns and conditions, improving prediction reliability. 

The performance of both the routing and prediction 
components is influenced by key algorithmic parameters. In the 
case of the Random Forest classifier, the number of trees 
(estimators), maximum depth, and minimum samples per split 
directly affect the model’s ability to generalize. A higher number 
of trees tends to improve robustness, while excessively deep 
trees may lead to overfitting. For Dijkstra’s algorithm, the 
accuracy of route computation depends on the dynamic edge 
weights, which are adjusted based on the congestion factor. The 
choice of base weights and how they scale with congestion (e.g., 
a 20% increase as used here) influences routing outcomes. These 
parameters were empirically chosen to balance performance and 
computational efficiency in real-time settings. 

The model’s predictive performance was evaluated using 
standard classification metrics. The results are summarized in 
Table IV. 

TABLE IV.  MODEL RESULTS 

Metric Value 

Overall Accuracy 99% 

Precision (Not Congested) 100% 

Precision (Congested) 98% 

Dominant Factor Traffic Density (highest importance) 

To assess the effectiveness of the proposed prediction 
model, we conducted a basic comparison with other standard 
classification algorithms on the same dataset. Support Vector 
Machines (SVM), Gradient Boosted Decision Trees (GBDT), 
and K-Nearest Neighbors (KNN) were evaluated using identical 
input features and a consistent data split. Among all tested 

models, the Random Forest classifier achieved the highest 
accuracy (99%), with better balance between precision and 
recall. SVM and GBDT followed with slightly lower accuracy 
scores (95% and 96% respectively), while KNN showed more 
variance depending on the feature scale and neighborhood size. 
These results validate the choice of Random Forest for this 
application, given its robustness, interpretability, and suitability 
for edge deployment. 

These metrics confirm the model's high precision, 
particularly in identifying congested cases with minimal false 
positives. Traffic density emerged as the most influential 
variable, followed by speed and weather conditions. This 
ranking aligns with known determinants of urban traffic 
congestion. 

Additional evaluation tools, including the confusion matrix, 
the ROC curve, and feature importance analysis, are presented 
in the next section to provide further insight into the classifier's 
behavior and reliability. 

The performance of the developed machine learning model 
was evaluated through several key visualization tools, each 
offering complementary insights into classification reliability. 
Among these, the confusion matrix provides a direct view of the 
model’s effectiveness in distinguishing between congested and 
non-congested traffic segments. 

As shown in Fig. 2, the confusion matrix displays the 
number of correct and incorrect predictions across both classes. 
The model correctly identified nearly all instances, with minimal 
misclassification. This confirms its ability to separate the two 
categories with high precision, reinforcing the metrics reported 
in Table IV. 

 
Fig. 2. Confusion matrix. 

The confusion matrix summarizes the model's prediction 
outcomes by displaying the number of correct and incorrect 
classifications for both congested and non-congested traffic 
conditions. It provides a clear view of how well the model 
distinguishes between the two classes, highlighting both true 
positives and true negatives. 

As presented in Fig. 3, the ROC curve plots the true positive 
rate against the false positive rate. The model achieved an Area 
Under the Curve (AUC) of 0.99, indicating a near-perfect 
capacity to discriminate between congested and non-congested 
traffic conditions. 
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Fig. 3. Receiver Operating Characteristic (ROC) curve. 

The ROC curve illustrates the trade-off between the true 
positive rate and the false positive rate at various classification 
thresholds. The Area Under the Curve (AUC) achieved a value 
of 0.99, demonstrating that the model possesses excellent 
discrimination capability between congested and non-congested 
states. A near-perfect AUC score reflects the model's robustness 
and high predictive accuracy. 

To further interpret the internal behavior of the model, we 
examined feature importance, which ranks the contribution of 
each input variable to the prediction outcomes. This analysis 
helps identify which factors most strongly influence the 
classifier’s decision. 

As illustrated in Fig. 4, traffic density emerges as the 
dominant variable, followed by estimated speed and weather 
conditions. The important ranking aligns with domain 
knowledge, where density is often the primary driver of 
congestion. 

 
Fig. 4. Feature importance plot. 

The feature importance analysis identifies and ranks the 
contribution of each input variable to the model’s predictions. 
The results show that traffic density is the most influential 
feature, exerting the greatest impact on the model's ability to 
predict congestion. Other variables, such as estimated speed and 
weather conditions, also contribute, but to a lesser extent. 

These evaluation tools provide complementary evidence of 
the model’s effectiveness. The confusion matrix, ROC curve, 

and feature importance collectively validate both its predictive 
accuracy and its alignment with real-world traffic behavior. 

Despite its strong performance, the model presents several 
limitations. First, the training was based on simulated data, 
which does not fully reflect real-time traffic irregularities. 
Second, the system depends on the reliability of sensor inputs, 
which may be affected by latency, noise, or missing data. Third, 
the tested road network was simplified, and external factors such 
as road incidents or construction zones were not included. These 
constraints may limit the immediate deployment of the system 
in uncontrolled real-world conditions and require further 
calibration. 

V. DISCUSSION 

This study proposed and validated an integrated traffic 
management framework that combines AI-driven congestion 
prediction, graph-based dynamic routing, and 5G-enabled edge 
computing to support real-time decision-making. The 
methodology was built around two key components: a graph-
based traffic simulation and routing algorithm that dynamically 
adjusted road network weights based on a computed congestion 
score, and a supervised machine learning model designed to 
predict congestion states using traffic-related features. Initially, 
congestion levels were estimated heuristically based on Traffic 
Density, Estimated Speed, and Weather Conditions, and road 
weights were adjusted accordingly to guide routing using 
Dijkstra’s algorithm. To enhance prediction reliability beyond 
heuristic methods, a Random Forest Classifier was developed, 
chosen for its robustness against overfitting, its ability to capture 
non-linear feature interactions without extensive preprocessing, 
its interpretability through feature importance analysis, and its 
computational efficiency suitable for edge deployment. The 
model achieved outstanding performance, with an overall 
accuracy of 99%, a precision of 100% for non-congested cases, 
and 98% for congested cases, identifying Traffic Density as the 
dominant predictive factor. These results were reinforced by a 
confusion matrix analysis and a ROC curve yielding an AUC of 
0.99. Compared to other machine learning models, such as 
SVMs, GBDTs, Neural Networks, and KNN, Random Forests 
provided the best trade-off between predictive power, 
scalability, and interpretability, making them particularly 
suitable for real-time, decentralized urban mobility systems. By 
combining accurate congestion prediction, adaptive routing, and 
efficient edge computing, the proposed framework delivers a 
scalable and effective solution to the evolving challenges of 
traffic management in smart cities, as illustrated in Fig. 5. 

Future work will aim to extend the system’s capabilities in 
several directions. First, the integration with connected vehicle 
platforms will enable the framework to receive and act upon live 
feedback from on-road users. Second, deploying the model in a 
real-world urban environment, in collaboration with traffic 
authorities, will allow validation under operational conditions. 
Third, additional traffic dynamics—such as incident detection, 
weather disruptions, and multi-agent coordination—will be 
incorporated to improve adaptability. Lastly, the framework will 
be tested on data from other cities to evaluate generalizability 
across different urban structures. 
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Fig. 5. Traffic management system workflow integrating machine learning 

and 5G edge computing. 

VI. CONCLUSION 

This study presented an integrated framework that combines 
AI-based congestion prediction, dynamic graph-based routing, 
and 5G-enabled edge computing to support real-time urban 
traffic management. The main contribution lies in the design and 
validation of a decentralized system capable of adapting to 
evolving traffic conditions using machine learning and network 
optimization in a scalable architecture. 

The proposed solution leverages a Random Forest classifier 
for congestion detection and Dijkstra’s algorithm for dynamic 
routing, applied to a simulated urban environment. The model 
achieved an overall accuracy of 99%, with strong precision 
across both congested and non-congested cases. Feature analysis 
confirmed traffic density as the most influential variable, 
validating the model’s alignment with known traffic behaviors. 
Additional evaluation tools, such as the confusion matrix and 
ROC curve (AUC = 0.99), demonstrated the system’s robustness 
and predictive reliability. 

By processing data locally at the edge and reacting in near 
real-time, the system achieves both performance and scalability, 
meeting key requirements for smart city deployment. 
Future work will focus on integrating connected vehicle 
feedback, incorporating real-time disruptions such as incidents 
or construction, and testing the system across different urban 
contexts to assess transferability and operational impact. 
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