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Abstract—This study presents TL-MC-ShuffleNetV2, a 

lightweight and transferable fault diagnosis framework designed 

for elevator guideway vibration analysis. To tackle challenges such 

as limited labeled data and the constraints of real-time 

deployment, the approach integrates Variational Mode 

Decomposition (VMD) for multi-scale signal separation and 

employs a customized 1D ShuffleNetV2 backbone with multi-

channel (MC) inputs. Squeeze-and-Excitation (SE) attention 

modules are embedded throughout the network to enhance 

channel-wise feature sensitivity. A transfer learning (TL) strategy 

is adopted, in which the model is initially trained using the Case 

Western Reserve University (CWRU) bearing dataset and 

subsequently adapted to the elevator domain by freezing early 

convolutional layers while fine-tuning higher-level layers. 

Evaluation results demonstrate that the proposed framework 

achieves a classification accuracy of 96.4%, alongside significantly 

reduced inference time and parameter complexity. Comparative 

and ablation experiments further validate the individual 

contributions of VMD preprocessing, SE modules, and transfer 

learning to model performance. Overall, the method exhibits 

strong adaptability, computational efficiency, and suitability for 

deployment in smart elevator monitoring systems under Industry 

4.0 environments. 
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I. INTRODUCTION 

Elevators play a critical role in urban vertical mobility, 
facilitating public transportation, residential accessibility, and 
commercial operations [1]. With the continuous rise in urban 
density and high-rise development, maintaining the operational 
integrity and functional safety of elevator systems has become a 
pressing concern for building management and urban 
infrastructure planning [2]. However, conventional maintenance 
approaches—typically based on fixed schedules or reactive 
repairs—often struggle to detect early-stage deterioration, 
leading to unforeseen service interruptions, elevated 
maintenance expenses, and potential safety risks [3]. 

The emergence of Internet of Things (IoT)-enabled 
predictive maintenance (PdM) systems, empowered by real-
time sensing and wireless communication technologies, has 
significantly advanced fault detection capabilities in industrial 
applications [4]. In particular, vibration signal analysis has 
proven highly effective for identifying early mechanical 

anomalies in components such as motors, bearings, and guide 
systems [5]. Alongside this development, deep learning has 
shown strong potential for automating the interpretation of 
complex, nonlinear, and nonstationary signal patterns, offering 
superior classification performance over traditional feature 
engineering-based methods [6]. 

Although deep learning has significantly advanced fault 
diagnosis techniques, its real-world application in elevator 
systems remains constrained by multiple unresolved challenges 
[7]: 

Computational Constraints: Deep convolutional models 
require substantial computational power, making them difficult 
to deploy on edge devices and in latency-sensitive IoT 
environments [8]. 

Data Scarcity: Elevator-specific fault data are often scarce, 
particularly for early-stage or rare failures, limiting the 
generalization of deep models [9]. 

Signal Complexity: Elevator vibration signals exhibit 
nonstationary behavior with transient impulses and modulation 
effects, often buried in noise, posing challenges for reliable 
feature extraction [10]. 

To address the above challenges of nonstationary vibration 
signals and limited fault samples in elevator guideway 
diagnosis, this study builds upon our previous work on One-
dimensional Convolutional Neural Network (1D-CNN) based 
methods using elevator vibration data [11] and proposes a 
lightweight and transferable fault diagnosis framework with four 
key processes. First, Variational Mode Decomposition (VMD) 
is employed to extract frequency-specific components and 
suppress noise [12]. Second, a tailored 1D version of 
ShuffleNetV2 is developed to efficiently process temporal 
features while significantly reducing computational complexity 
[13]. Third, Squeeze-and-Excitation (SE) attention modules are 
embedded after each network block to enhance channel-wise 
feature representation [14]. Fourth, a transfer learning (TL) 
strategy is adopted, drawing upon recent progress in TL-driven 
fault diagnosis [15]. Specifically, the model is initially trained 
using the data-rich Case Western Reserve University (CWRU) 
bearing dataset [16], which also with four vibration states, and 
then adapted to the target elevator dataset through partial 
parameter transfer, wherein lower convolutional layers are 
frozen while higher layers are updated. Compared to our earlier 
approach [11], the proposed method reduces the model size 
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while ensuring classification accuracy and model convergence, 
thus enhancing its applicability for deployment in resource-
constrained smart elevator systems. This integrated framework 
is referred to as TL-MC-ShuffleNetV2, denoting the 
combination of Transfer Learning (TL), Multi-Channel (MC) 
VMD-based inputs, and a customized ShuffleNetV2 backbone. 

The structure of this study is as follows: Section II surveys 
the relevant literature on predictive maintenance and vibration-
based diagnostics. Section III details the proposed TL-MC-
ShuffleNetV2 architecture for elevator fault diagnosis. Section 
IV describes the experimental design, comparative baselines, 
and ablation studies. Section V summarizes the key 
contributions and limitations and suggests directions for future 
work. 

II. RELATED WORK 

A. Fault Diagnosis in Elevator Systems 

As vertical transportation becomes increasingly integral to 
modern urban infrastructure, ensuring the operational safety and 
dependability of elevator systems has become a central 
engineering concern [17]. Fueled by Industry 4.0 and the rapid 
expansion of the IoT, predictive maintenance (PdM) has gained 
prominence as an advanced alternative to conventional reactive 
or periodic maintenance strategies [18]. In this context, 
vibration-based fault diagnosis plays a pivotal role in identifying 
anomalies such as misalignment, wear, or guideway 
deformation before catastrophic failures occur [19]. 

Extensive research has investigated the use of data-driven 
methods for elevator fault detection. For instance, Lv et al. 
developed a GAN-based model to synthesize vibration data for 
intelligent fault classification in elevators [20]. Qiu et al. 
introduced a hybrid approach combining the improved Aquila 
optimizer (IAO) and XGBoost to enhance fault pattern 
recognition from vibration signals [21]. Liu et al. proposed a 
framework integrating ensemble empirical mode decomposition 
(EEMD) with support vector machines (SVMs) to identify faults 
in traction systems [22], while Song et al. incorporated EMD 
with neural network architectures to detect anomalies in elevator 
control systems [23]. 

Despite these developments, practical deployment faces 
three core challenges: 1) real-world elevator vibration signals 
are nonstationary and influenced by diverse operating 
conditions, making them difficult to model using conventional 
linear analysis methods [24]. 2) The scarcity of labeled fault 
data—especially for rare or incipient cases—substantially limits 
the effectiveness of supervised learning approaches [25]. 3) 
Standard deep learning models are computationally demanding 
and ill-suited for real-time application in edge-based IoT 
monitoring systems with limited hardware resources [26]. 

These limitations motivate the need for lightweight, adaptive 
models that can operate effectively with limited labeled data and 
computational capacity, while still providing reliable 
performance on noisy, complex vibration signals. 

B. Deep Learning and Lightweight Models for Vibration-

Based Fault Diagnosis 

Deep learning, especially various CNNs, has demonstrated 
strong effectiveness in performing automated fault recognition 

by learning hierarchical features directly from unprocessed 
sensor data. Unlike traditional time- or frequency-domain 
methods such as RMS analysis or Fourier transforms, CNNs can 
derive distinctive patterns without requiring prior domain 
knowledge, thereby enhancing scalability and adaptability 
across diverse fault scenarios [27]. 

However, conventional CNN architectures—despite their 
effectiveness—are often computationally intensive and 
unsuitable for real-time fault monitoring in embedded IoT 
environments. To address this issue, lightweight CNNs such as 
MobileNet, EfficientNet, and ShuffleNet have been developed, 
leveraging techniques like depthwise separable convolutions, 
grouped operations, and channel shuffling to minimize 
parameter overhead and reduce model complexity and inference 
latency [28]. ShuffleNetV2, in particular, offers a compelling 
trade-off between speed and accuracy, making it a promising 
candidate for industrial fault diagnosis applications where low-
resource deployment is essential [29]. 

Beyond efficiency, recent studies emphasize the importance 
of attention mechanisms in improving model interpretability and 
performance. Representative modules, such as Squeeze-and-
Excitation Networks (SE-Net) and the Convolutional Block 
Attention Module (CBAM), enable the model to selectively 
concentrate on diagnostically significant frequency components 
while attenuating irrelevant noise and redundant information. 
For instance, CBAM has been demonstrated to enhance 
classification performance in machinery fault datasets by 
dynamically reweighting spatial and channel-specific features 
[30]. 

Overall, combining lightweight architectures with attention 
mechanisms enhances the feature representation of 
nonstationary signals while ensuring computational feasibility, 
especially in IoT-enabled predictive maintenance systems. 

C. Transfer Learning for Small-Sample Industrial Scenarios 

In many real-world scenarios—particularly in elevator 
guideway diagnostics—acquiring large, labeled datasets is often 
impractical due to cost limitations, safety concerns, or the 
infrequent nature of fault events. Transfer learning (TL) 
provides a powerful solution by allowing a model trained on a 
source domain with ample data to be adapted to a target domain 
with limited samples [31]. This approach has demonstrated 
strong applicability across diverse industrial settings. 

For example, Yang et al. employed a sparse autoencoder-
based TL method to enhance bearing fault classification on 
limited datasets [32], while Azad et al. proposed dynamic 
modeling strategies that simulate data to support domain 
adaptation using convolutional networks [33]. In wind turbine 
maintenance, parameter-based TL combined with autoencoders 
has enabled models trained on one machine to generalize 
effectively to others with similar operating characteristics [34]. 

These studies indicate that effective domain transfer enables 
successful cross-domain adaptation. For elevator systems, 
limited sample learning and fine-tuning of pre-trained models 
offer a promising approach for addressing data scarcity 
challenges. 
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III. METHODOLOGY 

A. Variational Mode Decomposition for Multiscale Fault 

Feature Separation 

Elevator guideway vibration signals are inherently 
nonstationary, exhibiting complex modulation patterns due to 
fluctuating operational loads and external disturbances. To 
effectively capture fault-relevant features across diverse 
frequency bands, this study employs Variational Mode 
Decomposition (VMD). VMD adaptively partitions the signal 
into a set of band-limited intrinsic mode functions (IMFs), each 
aligned with a distinct spectral component, thereby improving 
the interpretability and diagnostic precision of nonstationary 
signal analysis [35]. 

The decomposition process is formulated as a constrained 
variational optimization problem, aiming to reduce the 
aggregated bandwidth of all modes while ensuring that their 
summation reconstructs the original signal [36]. 
Mathematically, the VMD objective is defined as: 
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where, uk(t) denotes the k-th IMF, wk represents its center 

frequency, ∂t is the first-order time derivative, δ(t) is the Dirac 
delta function, and f(t) denotes the original signal. 

In this study, the first five IMFs (as shown in Fig. 1)—
capturing the most representative low- to mid-frequency fault 
features—are selected to construct a five-channel input for the 
subsequent feature extraction network. By leveraging the 
superior mode separation and noise resilience of VMD, this 
strategy enhances the model’s sensitivity to subtle fault-related 
variations, thereby improving its applicability to real-world 
elevator vibration analysis under uncertain operating conditions. 

 
Fig. 1. Variational Mode Decomposition (VMD) processing results. 

B. Modified 1D ShuffleNetV2 Architecture for Feature 

Extraction 

To effectively extract discriminative features from the multi-
channel IMF signals generated by VMD, a customized one-
dimensional version of ShuffleNetV2 is designed. Originally 
developed for efficient image classification, the ShuffleNetV2 
architecture is adapted here to handle sequential vibration 
signals by converting all convolutional operations into their 1D 
forms [37]. This enables the model to process temporal input 
while retaining the core advantages of ShuffleNetV2—namely, 
lightweight design and efficient feature utilization. 

The modified 1D ShuffleNetV2 (as shown in Fig. 2) consists 
of a series of Shuffle Units, each of which employs a dual-
branch design [38]. For units with stride = 1, the input is first 
split into two equal channel groups. One branch directly 
propagates its features without modification, while the other 
branch undergoes a sequence of three operations: 

 
Fig. 2. Modified 1D ShuffleNetV2 architecture: a) Stride = 1 block; b) 

Stride = 2 block. 

1) A 1×1 pointwise convolution followed by batch 

normalization and ReLU activation, 

2) A 3×1 depthwise convolution with subsequent batch 

normalization, and 

3) A concluding 1×1 pointwise convolution, also 

accompanied by batch normalization and ReLU activation. 

After feature extraction, both branches are concatenated and 
passed through a channel shuffle operation, which promotes 
inter-group feature interaction and enhances representation 
diversity. 

For units with stride 2, both branches perform independent 
downsampling. Each branch executes a sequence of depthwise 
separable and pointwise convolutions, followed by 
concatenation and channel shuffling. This design strategy 
reduces spatial resolution while increasing output channel 
capacity. The channel split step is intentionally excluded in this 
configuration to prevent structural fragmentation and enhance 
feature utilization. 
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This modular design enables the network to strike a balance 
between computational cost and expressive power, thereby 
ensuring its applicability to fault diagnosis tasks in IoT 
environments with limited resources. Furthermore, by 
leveraging grouped convolutions and the channel shuffle 
mechanism, the model effectively extracts fine-grained temporal 
features from multiple IMFs while preserving a lightweight 
parameter footprint. 

C. Equations Channel Attention Enhancement with SE 

Module 

To enhance the network’s focus on informative features and 
suppress irrelevant activations, a lightweight channel attention 
mechanism—Squeeze-and-Excitation (SE) module—was 
incorporated into the proposed architecture. This mechanism 
facilitates channel-wise recalibration by explicitly capturing 
inter-channel dependencies, thereby improving the network’s 
representational capacity in a computationally efficient manner. 

The SE module functions through two primary stages [39]: 
squeeze and excitation. In the squeeze stage, global contextual 
information is aggregated from each channel using global 
average pooling. This operation produces a channel-wise 
descriptor that reflects the global distribution of activations. 
During the excitation phase, two fully connected layers with a 
bottleneck structure and nonlinear activations (ReLU and 
Sigmoid) are employed to model channel-wise dependencies 
and generate attention weights. These weights are then applied 
to reweight the original feature maps through channel-wise 
multiplication, enabling the model to highlight informative 
channels while suppressing less relevant ones. 

Mathematically, for an intermediate feature map 𝑋∈𝑅𝐶×𝑇, 
where 𝐶 and 𝑇 represent the number of channels and temporal 
length, respectively, the SE module first derives a channel-wise 
descriptor via global average pooling [40]: 
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The attention weights are then generated through a gating 
mechanism: 

  2 1   s W W z                        (4) 

where, 𝛿(⋅ ) and 𝜎(⋅ ) represent the ReLU and Sigmoid 

functions, respectively, and 𝑊1, 𝑊2 are learnable weight 
matrices. The final recalibrated output is obtained by channel-
wise multiplication: 

c c cX s X                                    (5) 

As illustrated in Fig. 3, the SE module is integrated into each 
Shuffle Block of the Modified 1D ShuffleNetV2 architecture. 
Specifically, it is inserted after the depthwise convolution 
(DWConv1D) and before the final pointwise convolution (1×1 
Conv1D). This placement enables the attention mechanism to 
refine intermediate features that already encode localized spatial 
and inter-channel information. The recalibrated features are 
subsequently propagated through the remaining layers of the 

Shuffle Block, followed by concatenation and channel shuffling 
operations. 

 
Fig. 3. Integration of SE module into modified 1D ShuffleNetV2 

architecture (a), and structure and operation of SE block (b). 

The SE module was inserted in both Stage 1 (stride = 2) and 
Stage 2 (stride = 1) Shuffle Blocks, ensuring that channel 
attention is applied during both the downsampling and feature 
extraction processes. This integration strategy enhances the 
network’s ability to adaptively weight different channels 
according to task-relevant information, leading to improved 
fault diagnosis performance in the subsequent classification 
stage. 

D. Transfer Learning Strategy for Fault Diagnosis 

To address the limited availability of labeled elevator 
guideway fault data, a transfer learning (TL) strategy is 
employed. The training procedure consists of two key stages: 

1) Pre-training stage. The proposed framework, 

incorporating VMD-enhanced multi-channel IMFs, is input 

into the modified 1D ShuffleNetV2 augmented with SE 

modules. Pre-training is conducted on the CWRU bearing 

dataset that also has four states, enabling the model to capture 

generalized vibration features from the rich source domain data 

to compensate for the insufficient data in the target domain. 

2) Fine-tuning stage. The pre-trained model is then adapted 

to the elevator guideway dataset. Lower layers are frozen to 

retain transferable low-level representations, while upper layers 

are selectively fine-tuned based on the target domain data. 

This two-phase learning paradigm enables efficient domain 
adaptation with minimal supervision, ensuring that transferable 
vibration characteristics are preserved while tailoring feature 
representations to the specific requirements of the target dataset. 

E. Overview of the Proposed TL-MC-ShuffleNetV2 

Framework 

The proposed TL-MC-ShuffleNetV2 framework (illustrated 
in Fig. 4) integrates all preceding components into a cohesive 
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fault diagnosis pipeline tailored for elevator guideway vibration 
analysis. The process begins by applying VMD to the raw 
vibration signals, generating multiple IMFs that preserve 
localized frequency information. These IMFs are organized as 
MC inputs and fed into a customized one-dimensional 
ShuffleNetV2 backbone optimized for temporal feature 
extraction with low computational cost. To enhance channel-
wise feature discrimination, SE modules are selectively 
embedded after each ShuffleNetV2 block. To address the 
scarcity of labeled elevator data, a transfer learning strategy is 
employed. The model is initially pre-trained on the CWRU 
bearing dataset to capture transferable mechanical fault 
representations. It is then fine-tuned using the target elevator 
dataset by freezing the initial convolutional layers and updating 
the higher ones. After domain adaptation, the model is evaluated 
on previously unseen elevator vibration data, with minor 
parameter refinements applied to further enhance performance. 
This modular and efficient design promotes robust cross-domain 
generalization while maintaining a lightweight architecture, 
making it well-suited for real-world deployment in smart 
elevator systems. 

 
Fig. 4. Structural diagram of the proposed TL-MC-ShuffleNetV2-based 

fault diagnosis framework. 

IV. EXPERIMENTS AND RESULT ANALYSIS 

A. Description of Data Sets 

In this study, two vibration datasets were utilized to support 
the transfer learning framework—one for source domain pre-
training and the other for target domain fine-tuning. The source 
domain employs a publicly available bearing dataset, while the 
target domain comprises elevator guideway vibration signals 
collected under real-world operational conditions. 

1) Source domain CWRU bearing dataset. As a widely 

recognized benchmark for mechanical fault diagnosis, CWRU 

bearing dataset [16] contains vibration signals acquired from an 

experimental motor testbed equipped with SKF 6205-2RS 

bearings, simulating various fault types. 

For pre-training, four fault categories were selected: normal, 
inner race, outer race, and ball fault. The raw time-series signals, 
sampled at 12 kHz, were segmented using a 1024-point sliding 
window with 50% overlap, yielding 1400 samples per class 
(5600 total). An 80/20 split was adopted for training and testing 
purposes. 

2) Target domain elevator guideway dataset. The target 

dataset was collected via an industrial elevator IoT platform, 

with tri-axial accelerometers mounted at the top-center of 

elevator cars to capture guideway vibration signals. The 

sampling frequency was 50 Hz, and four operating states were 

considered: normal, bending, misalignment, and step fault. 

Using the same segmentation approach as the source 
domain, 300 samples were extracted for each class, resulting in 
a total of 1200 samples. These samples were split into 80/20 
training and testing sets for target domain fine-tuning and 
evaluation. Details of the dataset composition and sample 
allocation are summarized in Table I. The table adapts the 
structure and sample configuration from our prior work [11]. 

TABLE I.  DATASETS USED FOR TRANSFER LEARNING 

 Dataset Category Label 
Train 

sample 

Test 

sample 

Source 

domain 

(pre-train) 

CWRU 

bearing 

Normal 0 1120 280 

Ball fault 1 1120 280 

Inner fault 2 1120 280 

Outer fault 3 1120 280 

Target 

domain 

Elevator 

guideway 

Normal 0 240 60 

Bending 1 240 60 

Misalignment 2 240 60 

Step 3 240 60 

B. Experimental Settings and Model Training 

Model training was carried out on a workstation equipped 
with an Intel i7-12700K processor, 32 GB of memory, and an 
RTX 3080 GPU. Python 3.9 and PyTorch 1.13 were used 
throughout the implementation. 

The proposed MC-ShuffleNetV2 architecture accepts five 
IMFs as MC inputs, obtained through VMD. The network 
integrates a modified 1D ShuffleNetV2 backbone for 
lightweight feature extraction, with SE modules inserted after 
each Shuffle Block to enhance channel attention. 

Table II summarizes the architecture and parameter settings 
of the MC-ShuffleNetV2 with SE model prior to transfer 
learning (TL). The TL pipeline described earlier in the 
methodology is subsequently applied. with pre-training 
conducted on the CWRU bearing dataset and fine-tuning 
performed using the elevator guideway dataset. The training 
strategy parameters are summarized in Table III.
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TABLE II.  ARCHITECTURE DETAILS OF MC-SHUFFLENETV2 WITH SE 

Layer Output Size Kernel Size Stride Repeat Description 

Input 5×1024×1 – – – 5 IMFs 

Conv1 512×32 3×1 2 1 1D convolution 

MaxPooling 256×32 3×1 2 1 Downsampling 

Shuffle Block 1 + SE 128×64 3×1 2 1 Stage 1 

Shuffle Block 2 + SE 128×64 3×1 1 4 Stage 2 

GlobalAvgPool 1×64 – – – Global Average pooling 

FC + Softmax 1×4 – – – Output for 4 categories 

TABLE III.  TRAINING STRATEGY PARAMETERS 

Parameter 

Name 
Optimizer 

Initial Learning 

Rate 

Learning Rate 

Decay 

Loss 

Function 

Batch 

Size 
Epochs 

Cross-Validation 

Strategy 

Value Adam 0.0005 0.5 / 10 epochs CrossEntropy 32 100 
5-fold cross-

validation 
 

C. Evaluation Metrics 

To comprehensively assess the diagnostic capability of the 
proposed TL-MC-ShuffleNetV2 framework, several widely 
used classification metrics were employed to evaluate both 
overall and class-specific performance. 

Accuracy reflects the share of total predictions that match 
the actual class labels: 

Accuracy
TP TN

TP TN FP FN




  
                 (6) 

Precision evaluates the proportion of correct positive 
predictions: 

Precision
TP

TP FP



                            (7) 

Recall indicates the extent to which actual faults are 
successfully flagged: 

Recall
TP

TP FN



                              (8) 

F1-Score offers a balanced measure for classification 
evaluation: 

2 Precision Recall
F1-score

Precision Recall

 



                 (9) 

where, TP, TN, FP, and FN denote true positives, true 
negatives, false positives, and false negatives, respectively. The 
Confusion Matrix offers an intuitive visualization of 
classification outcomes across categories, facilitating the 
identification of misclassification trends. 

D. Results and Analysis 

1) Convergence curves of training. Fig. 5 illustrates the 

training accuracy and loss curves recorded over 100 epochs 

during cross-validation. The network demonstrates rapid 

convergence within the first 20 epochs, with training accuracy 

exceeding 95% and training loss stabilizing thereafter. Despite 

early convergence, the model was trained for 100 epochs to 

maintain consistency in the evaluation process and support fair 

comparison across experiments. 

 

Fig. 5. Training accuracy and loss curves. 

2) Confusion matrix analysis. The confusion matrix for the 

testing set is presented in Fig. 6. The proposed model achieved 

100% accuracy in identifying normal samples. For fault 

categories, minor misclassifications were observed between 

bending and misalignment types, likely due to similar dynamic 

behaviors in their vibration signals. However, step faults 

exhibited distinct characteristics and were more easily 

separated. These results indicate that the model is capable of 

distinguishing subtle differences among fault types with high 

reliability. 

3) Feature visualization. To further assess the feature 

discriminative capacity of the proposed TL-MC-ShuffleNetV2 

model, the t-distributed stochastic neighbor embedding (t-SNE) 

technique was employed to map high-dimensional features—

extracted prior to the classification layer—onto a two-

dimensional space for visualization. The resulting projection is 

illustrated in Fig. 7. 

As illustrated, samples from class 0 (normal) are distinctly 
clustered with clear boundaries, indicating the model’s ability to 
robustly identify normal operational conditions. Class 3 (step 
fault) also forms a relatively compact and isolated cluster, 
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suggesting reliable recognition. In contrast, class 1 (bending) 
and class 2 (misalignment) show a degree of overlap in the 
projected space, reflecting a partial confusion between these two 
types of faults—consistent with the observations from the 
confusion matrix. 

 
Fig. 6. Normalized confusion matrix (test set). 

 

Fig. 7. t−SNE feature visualization. 

E. Comparison with Other Models 

To thoroughly assess the effectiveness of the proposed TL-
MC-ShuffleNetV2 framework, comparative experiments were 
conducted against several representative baseline models, 
including 1D-CNN, ResNet18-1D, MobileNetV2-1D, and 
EfficientNet-B0-1D. The evaluation was carried out using five 
standard classification metrics—Accuracy, Precision, Recall, 
F1-score—and the Number of Parameters (Params). These 
indicators jointly reflect both the predictive performance and 
computational efficiency of each model. Table IV presents a 
detailed comparison of the results on the elevator guideway fault 
dataset. 

The results show that TL-MC-ShuffleNetV2 achieves the 
best balance between accuracy and model compactness, 
outperforming deeper models such as ResNet18-1D and 
EfficientNet-B0-1D, while maintaining significantly fewer 
parameters. 

TABLE IV.  PERFORMANCE COMPARISON OF DIFFERENT MODELS 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

Params 

(M) 

1D-CNN 91.2 90.5 90.7 90.6 0.8 

ResNet18-1D 93.5 92.8 93.0 92.9 11.2 

MobileNetV2-1D 94.3 93.6 93.9 93.7 2.5 

EfficientNet-B0-
1D 

95.1 94.5 94.8 94.6 4.0 

TL-MC-

ShuffleNetV2 
96.4 95.8 96.1 95.9 1.7 

To further illustrate the trade-off between accuracy and 
computational efficiency, Fig. 8 presents a comparative bar 
chart highlighting the Accuracy (%) and Inference Time (ms) of 
each model. 

 
Fig. 8. Comparison of accuracy and inference time across models. 

The comparison results reveal that although ResNet18-1D 
achieves satisfactory accuracy, its inference time is the longest 
due to its high parameter complexity. In contrast, the TL-MC-
ShuffleNetV2 model delivers competitive classification 
performance while significantly reducing inference latency to 
7.8 ms, highlighting its potential for real-time fault diagnosis in 
resource-constrained IoT environments.  

These findings further validate that the proposed TL-MC-
ShuffleNetV2 not only excels in feature learning but also offers 
exceptional efficiency, making it a strong candidate for practical 
elevator guideway fault detection applications. 

F. Ablation Study 

To assess the individual contribution of each major 
component in the proposed TL-MC-ShuffleNetV2 framework, 
three controlled ablation variants are constructed: 

w/o VMD: Removes VMD, raw vibration signals are 
directly input into the network. 
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w/o SE: Removes all SE modules to evaluate the effect of 
channel attention. 

w/o TL: Disables TL, the model is trained solely on the 
target domain without pretraining. 

All configurations are trained under consistent settings with 
5-fold cross-validation. The classification accuracy over epochs 
is illustrated in Fig. 9. 

 
Fig. 9. Ablation study results (accuracy over training epochs). 

The comparative results indicate the following: 

 The w/o TL configuration shows the lowest final 
accuracy and slowest convergence, suggesting that TL 
significantly enhances generalization in limited data 
settings. 

 Excluding VMD also results in reduced performance, 
confirming the effectiveness of multi-scale signal 
decomposition in extracting fault-relevant features. 

 The removal of SE modules leads to a moderate decline, 
indicating that channel-wise recalibration contributes to 
better feature representation. 

These observations validate the importance of all three 
components—VMD, SE, and TL—in achieving the superior 
performance of the proposed model. 

V. CONCLUSION 

This study presents TL-MC-ShuffleNetV2, an efficient and 
lightweight fault diagnosis framework tailored for elevator 
guideway vibration analysis. Addressing the challenges of 
small-sample learning and edge deployment, the proposed 
method integrates VMD for multiscale signal decomposition, a 
modified multi-channel 1D ShuffleNetV2 for feature extraction, 
an SE attention module to enhance channel-wise representation, 
and a transfer learning strategy that learns generic features of 
vibration faults from similar domain datasets to compensate for 
data scarcity in elevator guideway fault diagnosis. 

Extensive experiments validate the framework’s superiority 
in both accuracy and computational efficiency. Achieving 
96.4% classification accuracy, the model significantly reduces 
inference time and parameter overhead, outperforming 
representative baselines such as 1D-CNN, ResNet18-1D, and 
MobileNetV2-1D. Ablation studies further confirm the 
individual contributions of VMD, SE modules, and TL strategy 
to overall performance. The framework demonstrates high 

accuracy and lightweight parameters, making it well-suited for 
resource-constrained IoT deployments in elevator fault 
monitoring. 

Despite demonstrating strong diagnostic accuracy and 
adaptability under typical low-speed operating conditions for a 
specific elevator brand, the proposed method has not yet been 
thoroughly validated across a broader range of elevator models 
or varying operational speeds. Future studies will aim to 
enhance the framework’s generalizability under more diverse 
and dynamic conditions. Additionally, the framework will be 
expanded to address fault diagnosis in other key elevator 
components, contributing to a more holistic condition 
monitoring solution. Further directions may also consider 
integrating few-shot learning techniques to alleviate current 
reliance on both labeled data and transfer learning strategies, 
improving adaptability in real-world deployment scenarios. 
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