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Abstract—Advanced Encryption Standard (AES) encrypts 

data in blocks of sixteen bytes to secure confidential data stored in 

the cloud. For cloud-based systems, enhancements in existing 

encryption techniques are necessary as the nature of cyber threats 

evolves and computational speed becomes increasingly critical. 

This study presents an enhanced design of AES that substitutes 

two special operations, Byte Transformation and Bits Permuted 

Bytes, with the conventional S-Box operation to improve the speed 

and security of the encryption method. The suggested round 

structure in the new approach of AES, which preserves the 

original data block size, consists of the following operations: Byte 

Transformation, Shift Rows, Bits Permuted Bytes, Add Round 

Key, and Mix Columns. The analysis of the strict avalanche effect, 

correlation coefficient, entropy, execution time, and throughput 

outcomes confirms that the developed scheme improves the 

security and processing speed. 
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I. INTRODUCTION 

Cloud platforms that utilize symmetric encryption 
algorithms, such as AES, ensure that data transmission, storage, 
and communication are secure for the government, healthcare, 
and financial sectors [1], [2]. AES secures vast volumes of 
private information from illegal access and breaches in these 
cloud-based systems [3]. In 2000, the National Institute of 
Standards and Technology (NIST) in the United States replaced 
the Data Encryption Standard with AES due to its superior 
performance in both hardware and software [4], [5]. Researchers 
often utilize AES to secure wireless networks, data storage, and 
communications [6], [7]. 

Several cryptanalytic studies suggest that improving 
diffusion and confusion mechanisms can further reinforce AES 
against potential future cryptanalytic attacks. When internal 
transformations lack sufficient randomness or complexity, the 
encryption process may reveal patterns that can be exploited 
through statistical or differential attacks. These vulnerabilities 
highlight the importance of strengthening AES, not only to 
address current vulnerabilities but also to remain resilient 
against evolving and more sophisticated attacks. 

This study addresses these limitations by proposing a 
modified AES encryption algorithm that enhances both 
cryptographic strength and operational efficiency. The proposed 
approach introduces structural changes to AES transformations 

to improve diffusion, reduce statistical correlation, and 
strengthen resistance against cryptanalytic attacks. 

The rest of this study is organized as follows: Section II 
summarizes related work; Section III recommends the enhanced 
AES encryption approach; Section IV outlines the statistical 
tests and evaluation criteria applied to assess the resilience of 
existing and proposed encryption algorithms. Section V presents 
the experimental results obtained from these evaluations, while 
Section VI discusses the key findings and their implications. 
Finally, Section VII concludes this study by highlighting 
potential directions for future research. 

II. RELATED WORK 

Many studies have been conducted to improve the security 
and efficiency of symmetric encryption algorithms. These 
studies suggest numerous technical variants of existing 
encryption methods to boost security and performance. 
Parthasarathy et al. [8] proposed a lightweight symmetric 
encryption that combined the Elliptic Curve Diffie-Hellman key 
exchange algorithm with a proprietary random number 
generator, resulting in a unique S-box and innovative folding 
operations for transmitting medical data to the cloud. The 
throughput of this method was higher than that of AES; 
however, it lacks the statistical evaluation of cryptographic 
strength. 

Baladhay et al. [9] proposed an enhanced version of the AES 
algorithm by replacing the MixColumns function with an 
alternate transformation to improve the security and efficiency 
of encryption and decryption processes. This method is ideal for 
applications requiring high-speed video encryption due to the 
performance improvements. On the other hand, entropy and 
correlation analysis, which could offer additional information on 
cryptographic strength, are excluded from this work.  Similarly, 
to increase security and performance for systems with low 
resources, Hammod et al. [10] introduced a Modified 
Lightweight AES (ML-AES). 

Sirajuddin et al. [11] designed a modified Rijndael algorithm 
for resource-constrained Internet of Things devices. The shift 
column phase was changed, the sub-byte step was removed, and 
a crossover pre-processing method was added. The research 
did not evaluate the ciphertext's randomness or statistical 
independence, although these improvements were made to 
increase efficiency and security. Wenceslao Jr. et al. [12] 
developed a new version of AES encryption that retained the 
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original Rijndael S-Box and introduced a second S-Box using 
affine transformations for the Mix-Columns step. This method 
is faster but exhibits a slightly reduced avalanche effect, which 
may affect the diffusion property of the encryption process. 

A DNA-based multi-round encryption approach was 
presented by Al-Shargabi et al. [13] to preserve confidential 
health data. Improving entropy levels while maintaining an 
avalanche effect similar to conventional AES allowed this 
technique to outperform AES in data security. By eliminating 
the Mix-Columns stage and adding a continuous fraction 
function to compress the ciphertext, Mohammad et al. [14] 
developed a lightweight AES encryption (LWC-AES) for 
devices with limited resources. LWC-AES reduced processing 
complexity and enhanced transfer rates without compromising 
security. Altigani et al. [15] introduced Polymorphic-AES (P-
AES) for adaptive and flexible encryption using the initial key. 
P-AES showed exceptional resilience to attacks by modifying 
the Sub Bytes, Shift Rows, and Mix Columns procedures to 
improve security with negligible performance impact. Salih et 
al. [16] modified a 3D chaotic map and combined two dynamic 
XOR tables with a dynamic Mix-Columns transformation to 
strengthen the AES encryption method. While this approach 
improved security, additional performance evaluation would 
enhance its practical relevance. 

Assafli et al. [17] modified AES encryption by replacing the 
traditional S-box with a dynamic one based on Unix epoch time. 
This new method solely preserved and improved the avalanche 
effect for single-bit input changes. Abikoye et al. [18] proposed 
an enhanced AES technique, with modified S-Box and Shift-
Rows transformations to strengthen security. This method made 
the Sub Bytes operation round-key dependent and 
randomized the Shift Rows operation exclusively to improve the 
avalanche effect. Manoj Kumar et al. [19] presented a new AES 
key expansion technique primarily to increase the execution 
speed, allowing simultaneous subkey generation by isolating the 
operation into two concurrent blocks. This innovative approach 
was implemented on an FPGA (Virtex 5 XC5VLX50T) to 
secure ECG signal encryption and decryption in real-time 
communication. 

In summary, many studies prioritize either efficiency or 
security without achieving an adequate balance. While several 
enhancements to AES exist, most lack rigorous statistical 
evaluation. The proposed system addresses these gaps by 
achieving a balance between security and efficiency, with its 
reliability confirmed through a thorough statistical analysis. 

III. METHODOLOGY 

AES uses 128-bit data blocks and encrypts in 10, 12, or 14 
rounds, based on the key length, which can be 128, 192, or 256 
bits [20]. It involves three key processes: Key expansion 
generates round keys from the original cipher key, encryption 
transforms plaintext into ciphertext through various operations, 
and decryption reverses these operations to recover the original 
plaintext [21]. 

A. Key Expansion in AES Algorithm 

In AES-128, the key expansion process, depicted in Fig. 1, 
begins by dividing the 128-bit initial key into four 32-bit words 
(W0, W1, W2, W3), forming the initial part of the key schedule 

[19]. A left circular byte shift (RotateWord), a substitution using 
the S-Box (SubWord), and an XOR with the appropriate round 
constant (RCj) are used to compute the remaining 40 words [22]. 
The SubWord transformation uses the S-Box depicted in Fig. 2, 
a 16 x 16 lookup table for byte substitution. The round constants, 
described in Table I, are applied at specific stages during the key 
expansion to introduce non-linearity. These transformations are 
applied to designated words W3, W7, W11, and every fourth 
word thereafter, to generate W3’, W7’, W11’, respectively. The 
subsequent words are created by XORing each new word with 
previously generated words, iteratively producing all 44 words. 
These words are divided into 11 sets, each with 4 words, forming 
the round keys used for encryption and decryption. 

 

Fig. 1. AES key scheduling process. 

TABLE I.  CONSTANTS USED PER ROUND 

Round(j) 1 2 3 4 5 6 7 8 9 10 

RCj 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 0x1b 0x36 

B. Existing AES Encryption Algorithm 

During encryption or decryption, a state matrix (a 4x4 grid 
of bytes) represents the 128-bit plaintext block. The matrix 
arranges each byte of the 128-bit block into a single cell in 
column-major order. This matrix undergoes various operations 
during encryption, including SubstituteBytes, ShiftRows, 
MixColumns, and AddRoundKey, with the final round omitting 
MixColumns [23]. These operations are described below: 

1) SubstituteBytes. In this substitution phase, each byte in 

the state matrix is replaced with the value of the S-Box 

(illustrated in Fig. 2) based on its original value, introducing 

non-linearity into the encryption process [24]. Fig. 3 shows the 

inverse AES S-Box used during decryption. 

2) ShiftRows. This step enhances byte dispersion by 

executing a cyclic left shift on each row of the state matrix. First 

row remains unaffected, while the second row is shifted one 

byte to the left, the third row is shifted two bytes to the left, and 

the fourth row is shifted three bytes to the left. 
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Fig. 2. AES S-Box. 

 

Fig. 3. AES inverse S-box. 

3) MixColumns. This step applies a linear transformation to 

each column of the 4 x 4 state matrix. It mixes the bytes within 

each column by multiplying the MixColumns matrix over a 

Galois Field (GF(28)). This step enhances diffusion by ensuring 

that each input byte influences multiple output bytes, as shown 

in Eq. (1): 

MixColumns Matrix =  

02 03
01 02

01 01
03 01

01 01
03 01

02 03
01 02

     (1) 

During decryption, the inverse transformation is applied 
using the Inverse MixColumn matrix, which is shown in Eq. (2): 

Inverse MixColumns Matrix = 

0𝑒 0𝑏
09 0𝑒

0𝑑 09
0𝑏 0𝑑

0𝑑 09
0𝑏 0𝑑

0𝑒 0𝑏
09 0𝑒

        (2) 

4) AddRoundKey. This step combines the key with the data 

to strengthen the encryption by XORing, the round key with the 

state matrix. 

During decryption, the process reverses encryption by 
applying inverse operations in reverse order. It begins with 
InverseShiftRows to restore the original row positions, followed 
by InverseSubstituteBytes using the inverse S-box, and 
AddRoundKey XORs the state matrix with the corresponding 
round key. Finally, InverseMixColumns (except in the final 
round) to unmix the columns to recover the plaintext from the 
ciphertext. 

C. Proposed Enhanced AES Encryption Architecture 

In the new design of AES encryption, the input block size 
remains 128 bits; however, the Sub Bytes operation has been 
eliminated. Instead, two new operations, Byte Transformation 
and Bits Permuted Bytes, have been introduced. In each round 
of the proposed approach, Bytes Transformation, Shift Rows, 
Mix Columns, Bits Permuted Bytes, and Add Round Key 
transform the state matrix. These transformations aim to 
improve the encryption process's confusion and diffusion 
properties. The newly introduced operations are described 
below: 

1) Byte transformation operation. Let S represent the 4x4 

state matrix, where each element (𝑆𝑖𝑗) is an 8-bit byte. AES 

transforms this state matrix through various stages as part of its 

encryption and decryption mechanisms. In the proposed 

method, the Byte Transformation function is applied to each 

byte (𝑆𝑖𝑗). This operation introduces non-linearity and enhances 

the diffusion properties of the encryption process. This 

transformation is defined as follows: 

Let 𝑆𝑖𝑗 =  𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 ; here 𝑏7  and 𝑏0  are the Most 

Significant Bit (MSB) and the Least Significant Bit (LSB), 
respectively. The transformation for each bit ( 𝑡𝑖 ) of the 
transformed byte (𝑇𝑖𝑗) is defined as follows: 

𝑡7  = 𝑏7  (MSB remains unchanged), 𝑡6  = 𝑏6  ⨁ 𝑏7 , 𝑡5  = 
𝑏5  ⨁ 𝑏6 , 𝑡4  = 𝑏4  ⨁ 𝑏5 , 𝑡3  = 𝑏3  ⨁ 𝑏4 , 𝑡2  = 𝑏2  ⨁ 𝑏3 , 𝑡1  = 
𝑏1  ⨁ 𝑏2 , and 𝑡0  = 𝑏0  ⨁ 𝑏1 . Here 𝑡7𝑡6𝑡5𝑡4𝑡3𝑡2𝑡1𝑡0  (𝑇𝑖𝑗 ) is the 

transformed byte and ⊕ denotes the XOR operation. For 
example, consider a byte. 𝑆𝑖𝑗 , where  𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 = 

11011010. 𝑡7  = 𝑏7  = 1, 𝑡6  = 𝑏6  ⨁ 𝑏7 = 1  ⨁  1 = 0 , 𝑡5  = 
𝑏5  ⨁ 𝑏6 = 0  ⨁  1 = 1 , 𝑡4  = 𝑏4  ⨁ 𝑏5 = 1  ⨁  0 = 1 , 𝑡3  = 
𝑏3  ⨁ 𝑏4  = 1  ⨁  1 = 0 , 𝑡2  = 𝑏2  ⨁ 𝑏3  = 0  ⨁  1 = 1 , 𝑡1  = 
𝑏1  ⨁ 𝑏2  = 1  ⨁  0 = 1 , and 𝑡0  = 𝑏0  ⨁ 𝑏1 = 0  ⨁  1 =
1. The transformed byte 𝑇𝑖𝑗becomes 10110111. This 

transformation is visually represented in Fig. 4. 

2) Inverse byte transformation operation. The Inverse Byte 

Transformation operation undoes the transformations applied 

during the encryption phase. Given the transformed byte , 𝑆𝑖𝑗  

can be recovered as follows: 

𝑏7  = 𝑡7  (MSB remains unchanged), 𝑏6  = 𝑡6  ⨁ 𝑏7 , 𝑏5  = 
𝑡5  ⨁ 𝑏6 , 𝑏4  = 𝑡4  ⨁ 𝑏5 , 𝑏3  = 𝑡3  ⨁ 𝑏4 , 𝑏2  = 𝑡2  ⨁ 𝑏3 , 𝑏1  = 
𝑡1  ⨁ 𝑏2, and 𝑏0 = 𝑡0  ⨁ 𝑏1 
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For example, consider a byte, 𝑇𝑖𝑗  = 𝑡7𝑡6𝑡5𝑡4𝑡3𝑡2𝑡1𝑡0 = 

10110111. 𝑏7 = 𝑡7  = 1 (MSB remains unchanged), 𝑏6  = 
𝑡6  ⨁ 𝑏7  = 0  ⨁  1 = 1  , 𝑏5  = 𝑡5  ⨁ 𝑏6  = 1  ⨁  1 = 0 , 𝑏4  = 
𝑡4  ⨁ 𝑏5  = 1  ⨁  0 = 1 , 𝑏3  = 𝑡3  ⨁ 𝑏4  = 0  ⨁  1 = 1 , 𝑏2  = 
𝑡2  ⨁ 𝑏3  = 1  ⨁  1 = 0 , 𝑏1 = 𝑡1  ⨁ 𝑏2  = 1  ⨁  0 = 1 , and 𝑏0 
= 𝑡0  ⨁ 𝑏1  = 1  ⨁  1 = 0 . Now, combine all the bits. 
𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 to form the original byte (𝑆𝑖𝑗) as 11011010. 

In the encryption process, the Bytes Transformation procedure 
modifies each byte, and the Inverse Bytes Transformation 
procedure restores each byte in decryption. The step-by-step 
process of this inverse transformation is shown in Fig. 5. 

 
Fig. 4. Byte transformation operation. 

 
Fig. 5. Inverse byte transformation operation. 

3) Bits permuted bytes operation. In the Bits Permuted 

Bytes operation, each byte in the state matrix 𝑆𝑖𝑗 (

𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0) undergoes a bit permutation based on the 

involutory permutation table 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 during the 

encryption phase. The involutory permutation table is self-

inverse. This feature simplifies both encryption and decryption. 

It removes the need for a separate inverse table. This 

permutation rearranges the bits. The bit at index 3 (𝑏4) moves 

to index 0, the bit at index 2 (𝑏5) moves to index 1, the bit at 

index 1 (𝑏6) moves to index 2, the bit at index 0 (𝑏7) moves to 

index 3, the bit at index 7 (𝑏0) moves to index 4, the bit at index 

6 (𝑏1) moves to index 5, the bit at index 5 (𝑏2) moves to index 

6, and the bit at index 4 ( 𝑏3 ) moves to index 7. In this 

transformation, the original bit order of each byte in the state 

matrix is rearranged to 𝑇𝑖𝑗  = 𝑏4𝑏5𝑏6𝑏7𝑏0𝑏1𝑏2𝑏3. For example, 

consider a byte 𝑆𝑖𝑗= 11011010 in the state matrix. This byte is 

transformed by rearranging its bits to obtain 𝑇𝑖𝑗  =10110101. 

This bit permutation is applied to each byte in the state matrix, 

converting the original byte into a new form. 

4) Inverse bits permuted bytes operation. The Inverse Bits 

Permuted Bytes operation reverses the bit permutation applied 

during encryption. The encryption phase rearranges the bits of 

each byte in the state matrix according to the involutory 

permutation table 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4, whereas the inverse 

operation restores the original bit order. For example, a byte 

𝑇𝑖𝑗  =10110101, when passed through the inverse 

transformation, it reverts to its original form 𝑆𝑖𝑗 = 11011010. 

Fig. 6 and Fig. 7 show the Bits Permuted Bytes and Inverse Bits 

Permuted Bytes operations, which rearrange and restore the bit 

order within each byte during encryption and decryption, 

respectively, in the developed scheme. 

 

Fig. 6. Bits permuted bytes operation. 

 

Fig. 7. Inverse bits permuted bytes operation. 

 
Fig. 8. Standard AES algorithm. 
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To enhance efficiency, the final round of the proposed 
encryption approach omits the Bits Permuted Bytes operation 
and Mix columns, thereby reducing complexity while 
maintaining security strength. Furthermore, the number of 
rounds has been decreased to accelerate execution speed. The 
standard AES functions with ten rounds for a 128-bit key size, 
as shown in Fig. 8, while the developed encryption strategy 
executes only five rounds with the same key size, as illustrated 
in Fig. 9. 

 

Fig. 9. Enhanced AES algorithm. 

IV. EVALUATION 

A. Strict Avalanche Effect 

The Avalanche Effect is determined by flipping each bit in 
the n-bit plaintext and observing the percentage of bits that differ 
in the resulting ciphertext. Averaging the percentages across all 
n-bit flips gives the Strict Avalanche Effect (SAE). This metric 
ensures the algorithm's robustness and resistance to 
cryptanalysis. The formula used to calculate the SAE [25] is 
shown in Eq. (3): 

𝑆𝐴𝐸 =  
1

𝑛
∑

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝐶⊕𝐶′
𝑖)𝑋100

𝑛
 𝑛

𝑖=1   (3) 

Here, C denotes the ciphertext obtained by encrypting the 
original plaintext, Ci′ denotes the ciphertext produced by 
encrypting the plaintext with the ith bit flipped, and n represents 
the total number of bits in the ciphertext. One hundred random 
128-bit plaintexts and keys were used to evaluate SAE. 

B. Correlation Coefficient 

This measure implies the level of a linear association 
between the plaintext and encrypted output. For an encryption 
algorithm to be considered secure, the ciphertext must have a 
minimal linear dependence on the plaintext, as indicated by a 
correlation coefficient close to zero [26]. 

The following steps are used to determine the correlation 
coefficient between plaintext and ciphertext: 

1) Plaintext and ciphertext are converted into binary 

sequences of 0s and 1s. 

2) Mean calculation. The mean value of the plaintext bits 

(𝜇𝑋) was computed using Eq. (4), and the mean value of the 

ciphertext bits (𝜇𝑌) was determined using Eq. (5): 

𝜇𝑋 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖 = 1    (4) 

𝜇𝑌 =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖 = 1    (5) 

Here, N is the number of bits in the plaintext or ciphertext, 
and 𝑋𝑖  and 𝑌𝑖  are the individual bits of the plaintext and 
ciphertext, respectively. 

3) Covariance Calculation ( 𝐶𝑜𝑣(𝑋, 𝑌)) . Covariance 

measures how much the plaintext and ciphertext vary together: 

The covariance between the plaintext bits and ciphertext bits 

was calculated using Eq. (6): 

Cov(X, Y) =
1

𝑁
∑ (𝑋𝑖 − 𝜇𝑋) X (𝑌𝑖 − 𝜇𝑌)𝑁

𝑖 = 1  (6) 

Here, 𝜇𝑋  is the mean of plaintext bits, 𝜇𝑌  is the mean of 

ciphertext bits, 𝑋𝑖 − 𝜇𝑋 is the deviation of the 𝑖𝑡ℎ plaintext bit 

from the mean, and 𝑌𝑖 − 𝜇𝑌is the deviation of the 𝑖𝑡ℎ ciphertext 
bit from its mean. The deviations measure how each bit in the 
plaintext and ciphertext differs from their respective mean.  

4) Standard deviation. The standard deviation of the 

plaintext bits (σ𝑋) and the ciphertext bits (σ𝑌) was calculated 

using Eq. (7) and Eq. (8), respectively. 

σ𝑋 =
1

𝑁
√∑ (𝑋𝑖  −  𝜇𝑋)𝑁

𝑖 = 1
2

   (7) 

σ𝑌 =
1

𝑁
√∑ (𝑌𝑖  −  𝜇𝑌)𝑁

𝑖 = 1
2

   (8) 

5) Correlation coefficient. The value of the correlation 

coefficient (r) was calculated between the plaintext and 

ciphertext bits using Eq. (9): 

𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

σ𝑋 X σ𝑌
    (9) 

One thousand random 128-bit plaintexts and keys were used 
to evaluate this metric. 

C. Entropy 

The entropy test assesses the degree of unpredictability and 
randomness in the ciphertext. A higher entropy indicates greater 
randomness in the ciphertext, as it is more difficult to crack the 
encryption. To determine the average entropy of encrypted 
ciphertexts in their binary representation, convert each 
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ciphertext Ci to 𝐵𝑖(binary form). The entropy of the ciphertext 
𝐻(𝑋) can be expressed for Shannon entropy [27], [28] using Eq. 
(10): 

𝐻(𝑋) =  − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)𝑁
𝑖 = 1   (10) 

In this context, 𝑥𝑖 represents the possible outcomes, and N is 
the number of unique outcomes. The entropy for each binary 
string (B) was calculated using Eq. (11): 

𝐻(𝐵) =  − [𝑃(0)𝑙𝑜𝑔2𝑃(0) +  𝑃(1)𝑙𝑜𝑔2𝑃(1)] (11) 

Here, 𝑃(0)  and 𝑃(1)  are the probabilities of the binary 
outcomes 0s and 1s, respectively, in the binary ciphertext (𝐵). 

The average entropy �̅� across all N ciphertexts was calculated 

using Eq. (12): 

𝐻 =
1

𝑁
∑ 𝐻(𝐵𝑖)𝑁

𝑖 = 1   (12) 

This method interprets every bit as a random variable with 
two possible outcomes and obtains the average entropy of the 
binary representations, where N is the total number of 
ciphertexts. One thousand random 128-bit plaintexts and keys 
were used to evaluate this randomness property of the produced 
ciphertexts. 

D. Execution Time 

Execution time impacts efficiency, performance, and 
resource usage of cryptographic systems. To calculate the 
execution time of the modified and standard AES algorithms 
implemented in Python, the start and end times were recorded, 
and the difference value was calculated. The evaluations were 
performed on a 12th Gen Intel Core i7-1255U CPU running at 
1.70 GHz. The dataset consists of a 1025 KB text file, a 1028 
KB PDF document, a 1126 KB JPEG image, a 1026 KB MP3 
audio file, and a 1031 KB MP4 video file used for the evaluation. 
The encryption and decryption times were calculated over 10 
runs for each algorithm using all file types and averaged to 
obtain a reliable result. 

E. Throughput 

The encryption and decryption throughputs were calculated 
separately using Eq. (13) [29]: 

Throughput (KB/sec)  =   
Total File Size (KB)

Total Time (sec)
 (13) 

The Total File Size is the sum of all the file sizes used, which 
includes text, PDF, JPEG, MP3, and MP4. The amount of time 
needed to complete encrypting or decrypting all files is referred 
to as Total Time. This method enables a reliable evaluation of 
the algorithm's performance on various file types and sizes. 

V. RESULTS 

A. Strict Avalanche Effect 

The test results in Table II and Fig. 10 clearly show that the 
suggested new encryption process achieves a higher SAE of 
53.46%, compared to 49.55% for the standard AES encryption.  
These results highlight that the modified encryption design 
achieves improved diffusion and higher security in fewer 
rounds. 

TABLE II.  MEASURED SAE IN STANDARD AND ENHANCED AES 

Algorithm SAE 

Standard AES 49.55 

Enhanced AES 53.46 

 
Fig. 10. SAE Analysis of standard versus enhanced AES. 

B. Correlation Coefficient 

Table III and Fig. 11, present the correlation analysis 
between plaintext and ciphertext. When compared to the 
standard AES, which has a correlation coefficient of 0.004409, 
the enhanced encryption approach demonstrates a lower 
correlation coefficient of -0.000293. The observed negative and 
nearly zero value confirms that the proposed technique 
effectively diminishes the relationship between plaintext and 
ciphertext, thereby enhancing cryptographic strength. 

TABLE III.  STATISTICAL CORRELATION ASSESSMENT BETWEEN 

PLAINTEXT AND CIPHERTEXT 

Algorithm Correlation Coefficient 

Standard AES 0.004409 

Enhanced AES -0.000293 

 
Fig. 11. Comparison of correlation coefficient between plaintext and 

ciphertext. 
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C. Entropy 

The results indicate that the existing and the redesigned AES 
encryption achieved high entropy levels in their ciphertexts, as 
shown in Table IV. The enhanced encryption process offers a 
slightly higher average entropy of 0.994619 bits than the 
standard AES's 0.994327 bits. These values, close to the ideal 
maximum of one bit per bit, show that both algorithms generate 
random ciphertext sequences. 

TABLE IV.  ENTROPY VALUES OF CIPHERTEXT 

Algorithm Average Entropy 

Standard AES 0.994327 

Enhanced AES 0.994619 

D. Execution Time 

The method proposed in this study reduces encryption and 
decryption times for various file types, as illustrated in Table V 

and Fig. 12. It minimizes the encryption time by approximately 
8.17% and the decryption time by 13.30% for a text file. A 
notable 32.96% reduction in encryption time and an 8.51% 
reduction in decryption time are observed for a PDF file. There 
is a 19.65% decrease in encryption time and a 16.17% decrease 
in decryption time for a JPEG file. An MP3 file shows a 20.44% 
reduction in encrypting time and an 11.95% reduction in 
decryption time. There is a 27.75% decrease in encryption time 
and a 20.16% decrease in decryption time for an MP4 file. 

E. Throughput 

The suggested encryption method achieves higher 
throughput than standard AES. Its encryption throughput is 
389.16 KB/sec, approximately 28.9% higher than the standard 
AES throughput of 301.85 KB/sec. Similarly, it improves the 
decryption throughput by approximately 18%, achieving 311.30 
KB/sec, whereas the standard AES achieves 263.79 KB/sec. 
These results highlight the efficiency gains provided by the 
proposed approach, as shown in Table VI and Fig. 13. 

TABLE V.  EXECUTION TIME FOR ENCRYPTION AND DECRYPTION OF MULTIPLE FILE TYPES 

File Type & Size 
Standard AES 

Encryption Time (sec) 

Enhanced AES 

Encryption Time(sec) 

Standard AES 

Decryption Time(sec) 

Enhanced AES 

Decryption Time(sec) 

Text File(1025KB) 2.010364 1.846177 2.539962 2.202060 

PDF File(1028KB) 1.482714 0.994051 2.207906 2.019965 

JPEG File(1126KB) 3.441201 2.764880 3.466463 2.905801 

MP3 File(1026KB) 4.473375 3.559055 4.905859 4.319511 

MP4 File(1031KB) 5.938684 4.290501 6.728915 5.372506 

 

Fig. 12. Comparison of execution time across multiple file formats. 

TABLE VI.  THROUGHPUT METRICS FOR ENCRYPTION AND DECRYPTION PROCESSES 

Algorithm Encryption Throughput (KB/Sec) Decryption Throughput (KB/Sec) 

Standard AES 301.85 263.79 

Enhanced AES 389.16 311.30 
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Fig. 13. Efficiency assessment based on throughput. 

VI. DISCUSSION 

The experimental results confirm that the proposed 
encryption approach has notable improvements over the 
standard AES across several metrics. The enhanced proposed 
scheme offers improved diffusion and security, achieving a 
higher SAE of 53.46% compared to 49.55% for the standard 
AES. Its correlation coefficient is lower at -0.000293, indicating 
reduced predictability between plaintexts and ciphertexts, while 
the standard AES records a value of 0.004409. Additionally, its 
average entropy increases slightly from 0.994327 to 0.994619, 
signifying improved randomness in the ciphertext. It 
outperforms standard AES, boosting encryption throughput 
from 301.85 KB/s to 389.16 KB/s and decryption from 263.79 
KB/s to 311.30 KB/s. These improvements make the proposed 
encryption method more suitable for applications that require 
stronger security and fast processing. 

VII. CONCLUSION 

The analysis indicates that the suggested encryption method 
provides substantial enhancements compared to the 
conventional AES. The proposed encryption method promotes 
the diffusion property and minimizes the predictable nature 
between plaintext and ciphertext, resulting in increased security. 
It also generates more random ciphertext and delivers better 
performance in terms of processing time and throughput. The 
enhanced design provides a well-balanced increase in efficiency 
and security. 

Future work will focus on implementing a more secure 
hybrid encryption technique within cloud-based blockchain 
systems to enhance data protection, prevent tampering, ensure 
secure key management, and strengthen user authentication. 
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