
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

508 | P a g e

www.ijacsa.thesai.org

A Novel Approach for Enhancing Advanced

Encryption Standard Performance and Cryptographic

Resilience

Muthu Meenakshi Ganesan, Sabeen Selvaraj

Department of Computer Science-Faculty of Science and Humanities,

SRM Institute of Science and Technology, Kattankulathur, India

Abstract—Advanced Encryption Standard (AES) encrypts

data in blocks of sixteen bytes to secure confidential data stored in

the cloud. For cloud-based systems, enhancements in existing

encryption techniques are necessary as the nature of cyber threats

evolves and computational speed becomes increasingly critical.

This study presents an enhanced design of AES that substitutes

two special operations, Byte Transformation and Bits Permuted

Bytes, with the conventional S-Box operation to improve the speed

and security of the encryption method. The suggested round

structure in the new approach of AES, which preserves the

original data block size, consists of the following operations: Byte

Transformation, Shift Rows, Bits Permuted Bytes, Add Round

Key, and Mix Columns. The analysis of the strict avalanche effect,

correlation coefficient, entropy, execution time, and throughput

outcomes confirms that the developed scheme improves the

security and processing speed.

Keywords—Cryptography; NIST; AES; block cipher; key

expansion; symmetric encryption; galois field; statistical techniques;

cryptanalysis

I. INTRODUCTION

Cloud platforms that utilize symmetric encryption
algorithms, such as AES, ensure that data transmission, storage,
and communication are secure for the government, healthcare,
and financial sectors [1], [2]. AES secures vast volumes of
private information from illegal access and breaches in these
cloud-based systems [3]. In 2000, the National Institute of
Standards and Technology (NIST) in the United States replaced
the Data Encryption Standard with AES due to its superior
performance in both hardware and software [4], [5]. Researchers
often utilize AES to secure wireless networks, data storage, and
communications [6], [7].

Several cryptanalytic studies suggest that improving
diffusion and confusion mechanisms can further reinforce AES
against potential future cryptanalytic attacks. When internal
transformations lack sufficient randomness or complexity, the
encryption process may reveal patterns that can be exploited
through statistical or differential attacks. These vulnerabilities
highlight the importance of strengthening AES, not only to
address current vulnerabilities but also to remain resilient
against evolving and more sophisticated attacks.

This study addresses these limitations by proposing a
modified AES encryption algorithm that enhances both
cryptographic strength and operational efficiency. The proposed
approach introduces structural changes to AES transformations

to improve diffusion, reduce statistical correlation, and
strengthen resistance against cryptanalytic attacks.

The rest of this study is organized as follows: Section II
summarizes related work; Section III recommends the enhanced
AES encryption approach; Section IV outlines the statistical
tests and evaluation criteria applied to assess the resilience of
existing and proposed encryption algorithms. Section V presents
the experimental results obtained from these evaluations, while
Section VI discusses the key findings and their implications.
Finally, Section VII concludes this study by highlighting
potential directions for future research.

II. RELATED WORK

Many studies have been conducted to improve the security
and efficiency of symmetric encryption algorithms. These
studies suggest numerous technical variants of existing
encryption methods to boost security and performance.
Parthasarathy et al. [8] proposed a lightweight symmetric
encryption that combined the Elliptic Curve Diffie-Hellman key
exchange algorithm with a proprietary random number
generator, resulting in a unique S-box and innovative folding
operations for transmitting medical data to the cloud. The
throughput of this method was higher than that of AES;
however, it lacks the statistical evaluation of cryptographic
strength.

Baladhay et al. [9] proposed an enhanced version of the AES
algorithm by replacing the MixColumns function with an
alternate transformation to improve the security and efficiency
of encryption and decryption processes. This method is ideal for
applications requiring high-speed video encryption due to the
performance improvements. On the other hand, entropy and
correlation analysis, which could offer additional information on
cryptographic strength, are excluded from this work. Similarly,
to increase security and performance for systems with low
resources, Hammod et al. [10] introduced a Modified
Lightweight AES (ML-AES).

Sirajuddin et al. [11] designed a modified Rijndael algorithm
for resource-constrained Internet of Things devices. The shift
column phase was changed, the sub-byte step was removed, and
a crossover pre-processing method was added. The research
did not evaluate the ciphertext's randomness or statistical
independence, although these improvements were made to
increase efficiency and security. Wenceslao Jr. et al. [12]
developed a new version of AES encryption that retained the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

509 | P a g e

www.ijacsa.thesai.org

original Rijndael S-Box and introduced a second S-Box using
affine transformations for the Mix-Columns step. This method
is faster but exhibits a slightly reduced avalanche effect, which
may affect the diffusion property of the encryption process.

A DNA-based multi-round encryption approach was
presented by Al-Shargabi et al. [13] to preserve confidential
health data. Improving entropy levels while maintaining an
avalanche effect similar to conventional AES allowed this
technique to outperform AES in data security. By eliminating
the Mix-Columns stage and adding a continuous fraction
function to compress the ciphertext, Mohammad et al. [14]
developed a lightweight AES encryption (LWC-AES) for
devices with limited resources. LWC-AES reduced processing
complexity and enhanced transfer rates without compromising
security. Altigani et al. [15] introduced Polymorphic-AES (P-
AES) for adaptive and flexible encryption using the initial key.
P-AES showed exceptional resilience to attacks by modifying
the Sub Bytes, Shift Rows, and Mix Columns procedures to
improve security with negligible performance impact. Salih et
al. [16] modified a 3D chaotic map and combined two dynamic
XOR tables with a dynamic Mix-Columns transformation to
strengthen the AES encryption method. While this approach
improved security, additional performance evaluation would
enhance its practical relevance.

Assafli et al. [17] modified AES encryption by replacing the
traditional S-box with a dynamic one based on Unix epoch time.
This new method solely preserved and improved the avalanche
effect for single-bit input changes. Abikoye et al. [18] proposed
an enhanced AES technique, with modified S-Box and Shift-
Rows transformations to strengthen security. This method made
the Sub Bytes operation round-key dependent and
randomized the Shift Rows operation exclusively to improve the
avalanche effect. Manoj Kumar et al. [19] presented a new AES
key expansion technique primarily to increase the execution
speed, allowing simultaneous subkey generation by isolating the
operation into two concurrent blocks. This innovative approach
was implemented on an FPGA (Virtex 5 XC5VLX50T) to
secure ECG signal encryption and decryption in real-time
communication.

In summary, many studies prioritize either efficiency or
security without achieving an adequate balance. While several
enhancements to AES exist, most lack rigorous statistical
evaluation. The proposed system addresses these gaps by
achieving a balance between security and efficiency, with its
reliability confirmed through a thorough statistical analysis.

III. METHODOLOGY

AES uses 128-bit data blocks and encrypts in 10, 12, or 14
rounds, based on the key length, which can be 128, 192, or 256
bits [20]. It involves three key processes: Key expansion
generates round keys from the original cipher key, encryption
transforms plaintext into ciphertext through various operations,
and decryption reverses these operations to recover the original
plaintext [21].

A. Key Expansion in AES Algorithm

In AES-128, the key expansion process, depicted in Fig. 1,
begins by dividing the 128-bit initial key into four 32-bit words
(W0, W1, W2, W3), forming the initial part of the key schedule

[19]. A left circular byte shift (RotateWord), a substitution using
the S-Box (SubWord), and an XOR with the appropriate round
constant (RCj) are used to compute the remaining 40 words [22].
The SubWord transformation uses the S-Box depicted in Fig. 2,
a 16 x 16 lookup table for byte substitution. The round constants,
described in Table I, are applied at specific stages during the key
expansion to introduce non-linearity. These transformations are
applied to designated words W3, W7, W11, and every fourth
word thereafter, to generate W3’, W7’, W11’, respectively. The
subsequent words are created by XORing each new word with
previously generated words, iteratively producing all 44 words.
These words are divided into 11 sets, each with 4 words, forming
the round keys used for encryption and decryption.

Fig. 1. AES key scheduling process.

TABLE I. CONSTANTS USED PER ROUND

Round(j) 1 2 3 4 5 6 7 8 9 10

RCj 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80 0x1b 0x36

B. Existing AES Encryption Algorithm

During encryption or decryption, a state matrix (a 4x4 grid
of bytes) represents the 128-bit plaintext block. The matrix
arranges each byte of the 128-bit block into a single cell in
column-major order. This matrix undergoes various operations
during encryption, including SubstituteBytes, ShiftRows,
MixColumns, and AddRoundKey, with the final round omitting
MixColumns [23]. These operations are described below:

1) SubstituteBytes. In this substitution phase, each byte in

the state matrix is replaced with the value of the S-Box

(illustrated in Fig. 2) based on its original value, introducing

non-linearity into the encryption process [24]. Fig. 3 shows the

inverse AES S-Box used during decryption.

2) ShiftRows. This step enhances byte dispersion by

executing a cyclic left shift on each row of the state matrix. First

row remains unaffected, while the second row is shifted one

byte to the left, the third row is shifted two bytes to the left, and

the fourth row is shifted three bytes to the left.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

510 | P a g e

www.ijacsa.thesai.org

Fig. 2. AES S-Box.

Fig. 3. AES inverse S-box.

3) MixColumns. This step applies a linear transformation to

each column of the 4 x 4 state matrix. It mixes the bytes within

each column by multiplying the MixColumns matrix over a

Galois Field (GF(28)). This step enhances diffusion by ensuring

that each input byte influences multiple output bytes, as shown

in Eq. (1):

MixColumns Matrix =

02 03
01 02

01 01
03 01

01 01
03 01

02 03
01 02

 (1)

During decryption, the inverse transformation is applied
using the Inverse MixColumn matrix, which is shown in Eq. (2):

Inverse MixColumns Matrix =

0𝑒 0𝑏
09 0𝑒

0𝑑 09
0𝑏 0𝑑

0𝑑 09
0𝑏 0𝑑

0𝑒 0𝑏
09 0𝑒

 (2)

4) AddRoundKey. This step combines the key with the data

to strengthen the encryption by XORing, the round key with the

state matrix.

During decryption, the process reverses encryption by
applying inverse operations in reverse order. It begins with
InverseShiftRows to restore the original row positions, followed
by InverseSubstituteBytes using the inverse S-box, and
AddRoundKey XORs the state matrix with the corresponding
round key. Finally, InverseMixColumns (except in the final
round) to unmix the columns to recover the plaintext from the
ciphertext.

C. Proposed Enhanced AES Encryption Architecture

In the new design of AES encryption, the input block size
remains 128 bits; however, the Sub Bytes operation has been
eliminated. Instead, two new operations, Byte Transformation
and Bits Permuted Bytes, have been introduced. In each round
of the proposed approach, Bytes Transformation, Shift Rows,
Mix Columns, Bits Permuted Bytes, and Add Round Key
transform the state matrix. These transformations aim to
improve the encryption process's confusion and diffusion
properties. The newly introduced operations are described
below:

1) Byte transformation operation. Let S represent the 4x4

state matrix, where each element (𝑆𝑖𝑗) is an 8-bit byte. AES

transforms this state matrix through various stages as part of its

encryption and decryption mechanisms. In the proposed

method, the Byte Transformation function is applied to each

byte (𝑆𝑖𝑗). This operation introduces non-linearity and enhances

the diffusion properties of the encryption process. This

transformation is defined as follows:

Let 𝑆𝑖𝑗 = 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 ; here 𝑏7 and 𝑏0 are the Most

Significant Bit (MSB) and the Least Significant Bit (LSB),
respectively. The transformation for each bit (𝑡𝑖) of the
transformed byte (𝑇𝑖𝑗) is defined as follows:

𝑡7 = 𝑏7 (MSB remains unchanged), 𝑡6 = 𝑏6 ⨁ 𝑏7 , 𝑡5 =
𝑏5 ⨁ 𝑏6 , 𝑡4 = 𝑏4 ⨁ 𝑏5 , 𝑡3 = 𝑏3 ⨁ 𝑏4 , 𝑡2 = 𝑏2 ⨁ 𝑏3 , 𝑡1 =
𝑏1 ⨁ 𝑏2 , and 𝑡0 = 𝑏0 ⨁ 𝑏1 . Here 𝑡7𝑡6𝑡5𝑡4𝑡3𝑡2𝑡1𝑡0 (𝑇𝑖𝑗) is the

transformed byte and ⊕ denotes the XOR operation. For
example, consider a byte. 𝑆𝑖𝑗 , where 𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 =

11011010. 𝑡7 = 𝑏7 = 1, 𝑡6 = 𝑏6 ⨁ 𝑏7 = 1 ⨁ 1 = 0 , 𝑡5 =
𝑏5 ⨁ 𝑏6 = 0 ⨁ 1 = 1 , 𝑡4 = 𝑏4 ⨁ 𝑏5 = 1 ⨁ 0 = 1 , 𝑡3 =
𝑏3 ⨁ 𝑏4 = 1 ⨁ 1 = 0 , 𝑡2 = 𝑏2 ⨁ 𝑏3 = 0 ⨁ 1 = 1 , 𝑡1 =
𝑏1 ⨁ 𝑏2 = 1 ⨁ 0 = 1 , and 𝑡0 = 𝑏0 ⨁ 𝑏1 = 0 ⨁ 1 =
1. The transformed byte 𝑇𝑖𝑗becomes 10110111. This

transformation is visually represented in Fig. 4.

2) Inverse byte transformation operation. The Inverse Byte

Transformation operation undoes the transformations applied

during the encryption phase. Given the transformed byte , 𝑆𝑖𝑗

can be recovered as follows:

𝑏7 = 𝑡7 (MSB remains unchanged), 𝑏6 = 𝑡6 ⨁ 𝑏7 , 𝑏5 =
𝑡5 ⨁ 𝑏6 , 𝑏4 = 𝑡4 ⨁ 𝑏5 , 𝑏3 = 𝑡3 ⨁ 𝑏4 , 𝑏2 = 𝑡2 ⨁ 𝑏3 , 𝑏1 =
𝑡1 ⨁ 𝑏2, and 𝑏0 = 𝑡0 ⨁ 𝑏1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

511 | P a g e

www.ijacsa.thesai.org

For example, consider a byte, 𝑇𝑖𝑗 = 𝑡7𝑡6𝑡5𝑡4𝑡3𝑡2𝑡1𝑡0 =

10110111. 𝑏7 = 𝑡7 = 1 (MSB remains unchanged), 𝑏6 =
𝑡6 ⨁ 𝑏7 = 0 ⨁ 1 = 1 , 𝑏5 = 𝑡5 ⨁ 𝑏6 = 1 ⨁ 1 = 0 , 𝑏4 =
𝑡4 ⨁ 𝑏5 = 1 ⨁ 0 = 1 , 𝑏3 = 𝑡3 ⨁ 𝑏4 = 0 ⨁ 1 = 1 , 𝑏2 =
𝑡2 ⨁ 𝑏3 = 1 ⨁ 1 = 0 , 𝑏1 = 𝑡1 ⨁ 𝑏2 = 1 ⨁ 0 = 1 , and 𝑏0
= 𝑡0 ⨁ 𝑏1 = 1 ⨁ 1 = 0 . Now, combine all the bits.
𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0 to form the original byte (𝑆𝑖𝑗) as 11011010.

In the encryption process, the Bytes Transformation procedure
modifies each byte, and the Inverse Bytes Transformation
procedure restores each byte in decryption. The step-by-step
process of this inverse transformation is shown in Fig. 5.

Fig. 4. Byte transformation operation.

Fig. 5. Inverse byte transformation operation.

3) Bits permuted bytes operation. In the Bits Permuted

Bytes operation, each byte in the state matrix 𝑆𝑖𝑗 (

𝑏7𝑏6𝑏5𝑏4𝑏3𝑏2𝑏1𝑏0) undergoes a bit permutation based on the

involutory permutation table 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4 during the

encryption phase. The involutory permutation table is self-

inverse. This feature simplifies both encryption and decryption.

It removes the need for a separate inverse table. This

permutation rearranges the bits. The bit at index 3 (𝑏4) moves

to index 0, the bit at index 2 (𝑏5) moves to index 1, the bit at

index 1 (𝑏6) moves to index 2, the bit at index 0 (𝑏7) moves to

index 3, the bit at index 7 (𝑏0) moves to index 4, the bit at index

6 (𝑏1) moves to index 5, the bit at index 5 (𝑏2) moves to index

6, and the bit at index 4 (𝑏3) moves to index 7. In this

transformation, the original bit order of each byte in the state

matrix is rearranged to 𝑇𝑖𝑗 = 𝑏4𝑏5𝑏6𝑏7𝑏0𝑏1𝑏2𝑏3. For example,

consider a byte 𝑆𝑖𝑗= 11011010 in the state matrix. This byte is

transformed by rearranging its bits to obtain 𝑇𝑖𝑗 =10110101.

This bit permutation is applied to each byte in the state matrix,

converting the original byte into a new form.

4) Inverse bits permuted bytes operation. The Inverse Bits

Permuted Bytes operation reverses the bit permutation applied

during encryption. The encryption phase rearranges the bits of

each byte in the state matrix according to the involutory

permutation table 3 | 2 | 1 | 0 | 7 | 6 | 5 | 4, whereas the inverse

operation restores the original bit order. For example, a byte

𝑇𝑖𝑗 =10110101, when passed through the inverse

transformation, it reverts to its original form 𝑆𝑖𝑗 = 11011010.

Fig. 6 and Fig. 7 show the Bits Permuted Bytes and Inverse Bits

Permuted Bytes operations, which rearrange and restore the bit

order within each byte during encryption and decryption,

respectively, in the developed scheme.

Fig. 6. Bits permuted bytes operation.

Fig. 7. Inverse bits permuted bytes operation.

Fig. 8. Standard AES algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

512 | P a g e

www.ijacsa.thesai.org

To enhance efficiency, the final round of the proposed
encryption approach omits the Bits Permuted Bytes operation
and Mix columns, thereby reducing complexity while
maintaining security strength. Furthermore, the number of
rounds has been decreased to accelerate execution speed. The
standard AES functions with ten rounds for a 128-bit key size,
as shown in Fig. 8, while the developed encryption strategy
executes only five rounds with the same key size, as illustrated
in Fig. 9.

Fig. 9. Enhanced AES algorithm.

IV. EVALUATION

A. Strict Avalanche Effect

The Avalanche Effect is determined by flipping each bit in
the n-bit plaintext and observing the percentage of bits that differ
in the resulting ciphertext. Averaging the percentages across all
n-bit flips gives the Strict Avalanche Effect (SAE). This metric
ensures the algorithm's robustness and resistance to
cryptanalysis. The formula used to calculate the SAE [25] is
shown in Eq. (3):

𝑆𝐴𝐸 =
1

𝑛
∑

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑊𝑒𝑖𝑔ℎ𝑡(𝐶⊕𝐶′
𝑖)𝑋100

𝑛
 𝑛

𝑖=1 (3)

Here, C denotes the ciphertext obtained by encrypting the
original plaintext, Ci′ denotes the ciphertext produced by
encrypting the plaintext with the ith bit flipped, and n represents
the total number of bits in the ciphertext. One hundred random
128-bit plaintexts and keys were used to evaluate SAE.

B. Correlation Coefficient

This measure implies the level of a linear association
between the plaintext and encrypted output. For an encryption
algorithm to be considered secure, the ciphertext must have a
minimal linear dependence on the plaintext, as indicated by a
correlation coefficient close to zero [26].

The following steps are used to determine the correlation
coefficient between plaintext and ciphertext:

1) Plaintext and ciphertext are converted into binary

sequences of 0s and 1s.

2) Mean calculation. The mean value of the plaintext bits

(𝜇𝑋) was computed using Eq. (4), and the mean value of the

ciphertext bits (𝜇𝑌) was determined using Eq. (5):

𝜇𝑋 =
1

𝑁
∑ 𝑋𝑖

𝑁
𝑖 = 1 (4)

𝜇𝑌 =
1

𝑁
∑ 𝑌𝑖

𝑁
𝑖 = 1 (5)

Here, N is the number of bits in the plaintext or ciphertext,
and 𝑋𝑖 and 𝑌𝑖 are the individual bits of the plaintext and
ciphertext, respectively.

3) Covariance Calculation (𝐶𝑜𝑣(𝑋, 𝑌)) . Covariance

measures how much the plaintext and ciphertext vary together:

The covariance between the plaintext bits and ciphertext bits

was calculated using Eq. (6):

Cov(X, Y) =
1

𝑁
∑ (𝑋𝑖 − 𝜇𝑋) X (𝑌𝑖 − 𝜇𝑌)𝑁

𝑖 = 1 (6)

Here, 𝜇𝑋 is the mean of plaintext bits, 𝜇𝑌 is the mean of

ciphertext bits, 𝑋𝑖 − 𝜇𝑋 is the deviation of the 𝑖𝑡ℎ plaintext bit

from the mean, and 𝑌𝑖 − 𝜇𝑌is the deviation of the 𝑖𝑡ℎ ciphertext
bit from its mean. The deviations measure how each bit in the
plaintext and ciphertext differs from their respective mean.

4) Standard deviation. The standard deviation of the

plaintext bits (σ𝑋) and the ciphertext bits (σ𝑌) was calculated

using Eq. (7) and Eq. (8), respectively.

σ𝑋 =
1

𝑁
√∑ (𝑋𝑖 − 𝜇𝑋)𝑁

𝑖 = 1
2

 (7)

σ𝑌 =
1

𝑁
√∑ (𝑌𝑖 − 𝜇𝑌)𝑁

𝑖 = 1
2

 (8)

5) Correlation coefficient. The value of the correlation

coefficient (r) was calculated between the plaintext and

ciphertext bits using Eq. (9):

𝑟 =
𝐶𝑜𝑣(𝑋,𝑌)

σ𝑋 X σ𝑌
 (9)

One thousand random 128-bit plaintexts and keys were used
to evaluate this metric.

C. Entropy

The entropy test assesses the degree of unpredictability and
randomness in the ciphertext. A higher entropy indicates greater
randomness in the ciphertext, as it is more difficult to crack the
encryption. To determine the average entropy of encrypted
ciphertexts in their binary representation, convert each

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

513 | P a g e

www.ijacsa.thesai.org

ciphertext Ci to 𝐵𝑖(binary form). The entropy of the ciphertext
𝐻(𝑋) can be expressed for Shannon entropy [27], [28] using Eq.
(10):

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)𝑁
𝑖 = 1 (10)

In this context, 𝑥𝑖 represents the possible outcomes, and N is
the number of unique outcomes. The entropy for each binary
string (B) was calculated using Eq. (11):

𝐻(𝐵) = − [𝑃(0)𝑙𝑜𝑔2𝑃(0) + 𝑃(1)𝑙𝑜𝑔2𝑃(1)] (11)

Here, 𝑃(0) and 𝑃(1) are the probabilities of the binary
outcomes 0s and 1s, respectively, in the binary ciphertext (𝐵).

The average entropy �̅� across all N ciphertexts was calculated

using Eq. (12):

𝐻 =
1

𝑁
∑ 𝐻(𝐵𝑖)𝑁

𝑖 = 1 (12)

This method interprets every bit as a random variable with
two possible outcomes and obtains the average entropy of the
binary representations, where N is the total number of
ciphertexts. One thousand random 128-bit plaintexts and keys
were used to evaluate this randomness property of the produced
ciphertexts.

D. Execution Time

Execution time impacts efficiency, performance, and
resource usage of cryptographic systems. To calculate the
execution time of the modified and standard AES algorithms
implemented in Python, the start and end times were recorded,
and the difference value was calculated. The evaluations were
performed on a 12th Gen Intel Core i7-1255U CPU running at
1.70 GHz. The dataset consists of a 1025 KB text file, a 1028
KB PDF document, a 1126 KB JPEG image, a 1026 KB MP3
audio file, and a 1031 KB MP4 video file used for the evaluation.
The encryption and decryption times were calculated over 10
runs for each algorithm using all file types and averaged to
obtain a reliable result.

E. Throughput

The encryption and decryption throughputs were calculated
separately using Eq. (13) [29]:

Throughput (KB/sec) =
Total File Size (KB)

Total Time (sec)
 (13)

The Total File Size is the sum of all the file sizes used, which
includes text, PDF, JPEG, MP3, and MP4. The amount of time
needed to complete encrypting or decrypting all files is referred
to as Total Time. This method enables a reliable evaluation of
the algorithm's performance on various file types and sizes.

V. RESULTS

A. Strict Avalanche Effect

The test results in Table II and Fig. 10 clearly show that the
suggested new encryption process achieves a higher SAE of
53.46%, compared to 49.55% for the standard AES encryption.
These results highlight that the modified encryption design
achieves improved diffusion and higher security in fewer
rounds.

TABLE II. MEASURED SAE IN STANDARD AND ENHANCED AES

Algorithm SAE

Standard AES 49.55

Enhanced AES 53.46

Fig. 10. SAE Analysis of standard versus enhanced AES.

B. Correlation Coefficient

Table III and Fig. 11, present the correlation analysis
between plaintext and ciphertext. When compared to the
standard AES, which has a correlation coefficient of 0.004409,
the enhanced encryption approach demonstrates a lower
correlation coefficient of -0.000293. The observed negative and
nearly zero value confirms that the proposed technique
effectively diminishes the relationship between plaintext and
ciphertext, thereby enhancing cryptographic strength.

TABLE III. STATISTICAL CORRELATION ASSESSMENT BETWEEN

PLAINTEXT AND CIPHERTEXT

Algorithm Correlation Coefficient

Standard AES 0.004409

Enhanced AES -0.000293

Fig. 11. Comparison of correlation coefficient between plaintext and

ciphertext.

47

48

49

50

51

52

53

54

Standard AES Enhanced AES

S
A

E
 (

%
)

Algorithm

Strict Avalanche Effect

0.004409

-0.000293

-0.001

0

0.001

0.002

0.003

0.004

0.005

Standard AES Enhanced AES

C
o

rr
el

at
io

n
 C

o
ef

fi
ci

en
t

Algorithm

Correlation Between Plaintext and Ciphertext

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

514 | P a g e

www.ijacsa.thesai.org

C. Entropy

The results indicate that the existing and the redesigned AES
encryption achieved high entropy levels in their ciphertexts, as
shown in Table IV. The enhanced encryption process offers a
slightly higher average entropy of 0.994619 bits than the
standard AES's 0.994327 bits. These values, close to the ideal
maximum of one bit per bit, show that both algorithms generate
random ciphertext sequences.

TABLE IV. ENTROPY VALUES OF CIPHERTEXT

Algorithm Average Entropy

Standard AES 0.994327

Enhanced AES 0.994619

D. Execution Time

The method proposed in this study reduces encryption and
decryption times for various file types, as illustrated in Table V

and Fig. 12. It minimizes the encryption time by approximately
8.17% and the decryption time by 13.30% for a text file. A
notable 32.96% reduction in encryption time and an 8.51%
reduction in decryption time are observed for a PDF file. There
is a 19.65% decrease in encryption time and a 16.17% decrease
in decryption time for a JPEG file. An MP3 file shows a 20.44%
reduction in encrypting time and an 11.95% reduction in
decryption time. There is a 27.75% decrease in encryption time
and a 20.16% decrease in decryption time for an MP4 file.

E. Throughput

The suggested encryption method achieves higher
throughput than standard AES. Its encryption throughput is
389.16 KB/sec, approximately 28.9% higher than the standard
AES throughput of 301.85 KB/sec. Similarly, it improves the
decryption throughput by approximately 18%, achieving 311.30
KB/sec, whereas the standard AES achieves 263.79 KB/sec.
These results highlight the efficiency gains provided by the
proposed approach, as shown in Table VI and Fig. 13.

TABLE V. EXECUTION TIME FOR ENCRYPTION AND DECRYPTION OF MULTIPLE FILE TYPES

File Type & Size
Standard AES

Encryption Time (sec)

Enhanced AES

Encryption Time(sec)

Standard AES

Decryption Time(sec)

Enhanced AES

Decryption Time(sec)

Text File(1025KB) 2.010364 1.846177 2.539962 2.202060

PDF File(1028KB) 1.482714 0.994051 2.207906 2.019965

JPEG File(1126KB) 3.441201 2.764880 3.466463 2.905801

MP3 File(1026KB) 4.473375 3.559055 4.905859 4.319511

MP4 File(1031KB) 5.938684 4.290501 6.728915 5.372506

Fig. 12. Comparison of execution time across multiple file formats.

TABLE VI. THROUGHPUT METRICS FOR ENCRYPTION AND DECRYPTION PROCESSES

Algorithm Encryption Throughput (KB/Sec) Decryption Throughput (KB/Sec)

Standard AES 301.85 263.79

Enhanced AES 389.16 311.30

0

1

2

3

4

5

6

7

8

Text File(1025KB) PDF File(1028KB) JPEG File(1126KB) MP3 File(1026KB) MP4 File(1031KB)

E
n

cr
y
p

ti
o

n
 &

 D
ec

ri
p

ti
o

n
 T

im
e

(s
ec

)

File Type

Execution Time

Standard AES-Encryption Time Enhanced AES-Encryption Time

Standard AES-Decryption Time Enhanced AES-Decryption Time

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

515 | P a g e

www.ijacsa.thesai.org

Fig. 13. Efficiency assessment based on throughput.

VI. DISCUSSION

The experimental results confirm that the proposed
encryption approach has notable improvements over the
standard AES across several metrics. The enhanced proposed
scheme offers improved diffusion and security, achieving a
higher SAE of 53.46% compared to 49.55% for the standard
AES. Its correlation coefficient is lower at -0.000293, indicating
reduced predictability between plaintexts and ciphertexts, while
the standard AES records a value of 0.004409. Additionally, its
average entropy increases slightly from 0.994327 to 0.994619,
signifying improved randomness in the ciphertext. It
outperforms standard AES, boosting encryption throughput
from 301.85 KB/s to 389.16 KB/s and decryption from 263.79
KB/s to 311.30 KB/s. These improvements make the proposed
encryption method more suitable for applications that require
stronger security and fast processing.

VII. CONCLUSION

The analysis indicates that the suggested encryption method
provides substantial enhancements compared to the
conventional AES. The proposed encryption method promotes
the diffusion property and minimizes the predictable nature
between plaintext and ciphertext, resulting in increased security.
It also generates more random ciphertext and delivers better
performance in terms of processing time and throughput. The
enhanced design provides a well-balanced increase in efficiency
and security.

Future work will focus on implementing a more secure
hybrid encryption technique within cloud-based blockchain
systems to enhance data protection, prevent tampering, ensure
secure key management, and strengthen user authentication.

REFERENCES

[1] Z. A. Mohammed, H. Q. Gheni, Z. J. Hussein, and A. K. M. Al-Qurabat,
“Advancing cloud image security via AES algorithm enhancement
techniques,” Engineering Technology & Applied Science Research, vol.
14, no. 1, pp. 12694–12701, Feb. 2024, doi: 10.48084/etasr.6601.

[2] S. Kumar and D. Kumar, “Securing of cloud storage data using hybrid
AES-ECC cryptographic approach,” Journal of Mobile Multimedia, Nov.
2022, doi: 10.13052/jmm1550-4646.1921.

[3] Z. A. Mohammed, H. Q. Gheni, Z. J. Hussein, and A. K. M. Al-Qurabat,
“Advancing Cloud Image Security via AES Algorithm Enhancement
Techniques,” Engineering Technology & Applied Science Research, vol.
14, no. 1, pp. 12694–12701, Feb. 2024, doi: 10.48084/etasr.6601.

[4] M. Bedoui, H. Mestiri, B. Bouallegue, B. Hamdi, and M. Machhout, “An
improvement of both security and reliability for AES implementations,”
Journal of King Saud University - Computer and Information Sciences,
vol. 34, no. 10, pp. 9844–9851, Jan. 2022, doi:
10.1016/j.jksuci.2021.12.012.

[5] M. Y. Shakor, M. I. Khaleel, M. Safran, S. Alfarhood, and M. Zhu,
“Dynamic AES Encryption and Blockchain Key Management: a novel
solution for cloud data security,” IEEE Access, vol. 12, pp. 26334–26343,
Jan. 2024, doi: 10.1109/access.2024.3351119.

[6] N. Pronika and S. S. Tyagi, “Secure Data Storage in Cloud using
Encryption Algorithm,” 2021 Third International Conference on
Intelligent Communication Technologies and Virtual Mobile Networks
(ICICV), pp. 136–141, Feb. 2021, doi:
10.1109/icicv50876.2021.9388388.

[7] S. Urooj, S. Lata, S. Ahmad, S. Mehfuz, and S. Kalathil, “Cryptographic
Data Security for Reliable Wireless Sensor Network,” Alexandria
Engineering Journal, vol. 72, pp. 37–50, Apr. 2023, doi:
10.1016/j.aej.2023.03.061.

[8] V. D. Parthasarathy and K. Viswalingam, “Healthcare Data Security in
Cloud Storage Using Lightweight Symmetric Key Algorithm,” The
International Arab Journal of Information Technology, vol. 21, no. 1, Jan.
2024, doi: 10.34028/iajit/21/1/5.

[9] J. S. Baladhay and E. M. De Los Reyes, “AES-128 reduced-round
permutation by replacing the MixColumns function,” Indonesian Journal
of Electrical Engineering and Computer Science, vol. 33, no. 3, p. 1641,
Mar. 2024, doi: 10.11591/ijeecs.v33.i3.pp1641-1652.

[10] D. N. Hammod, "Modified Lightweight AES based on Replacement
Table and Chaotic System," 2022 International Congress on Human-
Computer Interaction, Optimization and Robotic Applications (HORA),
Ankara, Turkey, 2022, pp. 1-5, doi: 10.1109/HORA55278.2022.9799804.

[11] M. Sirajuddin and B. S. Kumar, “Modified Rijndael Algorithm for
Resource-Constrained IoT-Based Wireless Sensor Networks,” ICST
Transactions on Scalable Information Systems, Aug. 2023, doi:
10.4108/eetsis.2748.

[12] F. V. Wenceslao Jr, “Enhancing the Performance of the Advanced
Encryption Standard (AES) Algorithm Using Multiple Substitution
Boxes,” International Journal of Communication Networks and
Information Security (IJCNIS), vol. 10, no. 3, Apr. 2022, doi:
10.17762/ijcnis.v10i3.3589.

[13] B. Al-Shargabi and M. A. F. Al-Husainy, “Multi-round encryption for
COVID-19 data using the DNA key,” International Journal of Electrical
and Computer Engineering, vol. 12, no. 1, p. 478, Feb. 2022, doi:
10.11591/ijece.v12i1.pp478-488.

[14] H. M. Mohammad and A. A. Abdullah, “Enhancement process of AES: a
lightweight cryptography algorithm-AES for constrained devices,”
TELKOMNIKA (Telecommunication Computing Electronics and
Control), vol. 20, no. 3, p. 551, Jun. 2022, doi: 10.12928/telkomnika.
v20i3.23297.

[15] A. Altigani, S. Hasan, B. Barry, S. Naserelden, M. A. Elsadig and H. T.
Elshoush, "A Polymorphic Advanced Encryption Standard – A Novel
Approach," in IEEE Access, vol. 9, pp. 20191-20207, 2021, doi:
10.1109/ACCESS.2021.3051556.

[16] A. I. Salih, A. M. Alabaichi, and A. Y. Tuama, “Enhancing advance
encryption standard security based on dual dynamic XOR table and
MixColumns transformation,” Indonesian Journal of Electrical
Engineering and Computer Science, vol. 19, no. 3, p. 1574, Sep. 2020,
doi: 10.11591/ijeecs.v19.i3.pp1574-1581.

[17] H. T. Assafli and I. A. Hashim, “Generation and Evaluation of a New
Time-Dependent Dynamic S-Box Algorithm for AES Block Cipher
Cryptosystems,” IOP Conference Series Materials Science and
Engineering, vol. 978, p. 012042, Dec. 2020, doi: 10.1088/1757-
899x/978/1/012042.

[18] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O. Akande, and E. O.
Asani, “Modified Advanced Encryption Standard Algorithm for

0

100

200

300

400

500

Standard AES Enhanced AES

T
h

ro
u

g
h

p
u

t
(K

B
/S

ec
)

Algorithm

Data Processing Rate

Encryption Throughput Decryption Throughput

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 6, 2025

516 | P a g e

www.ijacsa.thesai.org

Information Security,” Symmetry, vol. 11, no. 12, p. 1484, Dec. 2019, doi:
10.3390/sym11121484.

[19] T. M. Kumar and P. Karthigaikumar, “FPGA implementation of an
optimized key expansion module of AES algorithm for secure
transmission of personal ECG signals,” Design Automation for
Embedded Systems, vol. 22, no. 1–2, pp. 13–24, Oct. 2017, doi:
10.1007/s10617-017-9189-5.

[20] M. Al-Mashhadani and M. Shujaa, “IoT Security Using AES Encryption
Technology based ESP32 Platform,” The International Arab Journal of
Information Technology, vol. 19, no. 2, Jan. 2022, doi:
10.34028/iajit/19/2/8.

[21] M. Sawka and M. Niemiec, “A Sponge-Based Key Expansion Scheme for
Modern Block Ciphers,” Energies, vol. 15, no. 19, p. 6864, Sep. 2022,
doi: 10.3390/en15196864.

[22] T. M. Kumar, K. R. Balmuri, A. Marchewka, P. B. Divakarachari, and S.
Konda, “Implementation of Speed-Efficient Key-Scheduling Process of
AES for Secure Storage and Transmission of Data,” Sensors, vol. 21, no.
24, p. 8347, Dec. 2021, doi: 10.3390/s21248347.

[23] Y. S. Vaz, J. C. B. Mattos and R. I. Soares, "Improving an Ultra
Lightweight AES for IoT Applications," 2023 IEEE 9th World Forum on
Internet of Things (WF-IoT), Aveiro, Portugal, 2023, pp. 01-06, doi:
10.1109/WF-IoT58464.2023.10539597.

[24] A. J. Hintaw, S. Manickam, S. Karuppayah, M. A. Aladaileh, M. F.
Aboalmaaly and S. U. A. Laghari, "A Robust Security Scheme Based on

Enhanced Symmetric Algorithm for MQTT in the Internet of Things,"
in IEEE Access, vol. 11, pp. 43019-43040, 2023, doi:
10.1109/ACCESS.2023.3267718.

[25] S. Afzal, M. Yousaf, H. Afzal, N. Alharbe, and M. R. Mufti,
“Cryptographic strength evaluation of key schedule algorithms,” Security
and Communication Networks, vol. 2020, pp. 1–9, May 2020, doi:
10.1155/2020/3189601.

[26] V. M. Silva-García, R. Flores-Carapia, and M. A. Cardona-López, “A
Hybrid Cryptosystem Incorporating a New Algorithm for Improved
Entropy,” Entropy, vol. 26, no. 2, p. 154, Feb. 2024, doi:
10.3390/e26020154.

[27] G. Yi and Z. Cao, “An Algorithm of Image Encryption based on AES &
Rossler Hyperchaotic Modeling,” Mobile Networks and Applications,
Sep. 2023, doi: 10.1007/s11036-023-02216-5.

[28] F. Thabit, S. Alhomdy, and S. Jagtap, “Security analysis and performance
evaluation of a new lightweight cryptographic algorithm for cloud
computing,” Global Transitions Proceedings, vol. 2, no. 1, pp. 100–110,
Jun. 2021, doi: 10.1016/j.gltp.2021.01.014.

[29] K. Assa-Agyei and F. Olajide, “A Comparative Study of Twofish,
Blowfish, and Advanced Encryption Standard for Secured Data
Transmission,” International Journal of Advanced Computer Science and
Applications, vol. 14, no. 3, pp. 393–398, 2023. doi:
10.14569/ijacsa.2023.0140344

