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Abstract—This paper presents a novel Augmented Reality
(AR) navigation system to overcome limitations of conventional
2D map-based applications in advanced real-world environments.
Current AR navigation systems solutions often lack dynamic
adaptation to user behavior and fail to deliver context-aware,
personalized guidance. Addressing these gaps, we present a
markerless, location-based AR system integrating three innova-
tions: 1) a Dynamic Predictive Navigation module with Long
Short-Term Memory (LSTM) networks for anticipating user
intention and dynamically optimizing routes in real time; 2) a
Smart POI Ranking system with sentiment analysis, live user
feedback, and social media trends for presenting personalized
and context-aware recommendations; and 3) a 3D AR interface
built with Unity and ARCore for enhancing spatial understand-
ing and reducing cognitive burden through visually engaging
guidance. Experimental evaluation presents improved navigation
responsiveness, reduced rerouting effort, and increased user
interaction with recommended POIs. This work contributes a
scalable and adaptive solution towards real-time AR navigation,
with applicability to smart city mobility and context-aware spatial
computing.
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I. INTRODUCTION

Augmented Reality (AR) has been gaining attention as a
medium for delivering spatially oriented information in the
physical world. While mobile AR systems have been employed
for navigation, the majority of current solutions are static,
offer minimal personalization, and do not facilitate adaptation
in real-time to the user’s behavior. Moreover, conventional
2D navigation systems and recent AR interfaces fall short
in conveying spatial hierarchies, such as multi-level road
networks or densely packed urban Points of Interest (POIs),
that are essential for intuitive wayfinding.

Recent work has explored AR-based navigation, but there
are significant gaps. Current systems do not involve the in-
tegration of predictive modeling to dynamically predict user
movement or intent. Likewise, POI recommendations tend to
be one-size-fits-all and do not consider user interests, real-time
social signals, or location-based sentiment. These gaps reduce
both the relevance and responsiveness of the navigation expe-
rience, particularly for complex, high-density environments.

To address some of these limitations, our previous research
[1] presented a markerless, location-based AR navigation sys-
tem built on Unity and ARCore. The system comprised an
interactive 3D virtual assistant to guide users in physical envi-
ronments with improved spatial awareness and real-time route
visualization. Despite being efficient in spatial visualization,

the system lacked adaptive behavior modeling and contextual
personalization—central features for more intelligent and user-
centric navigation experiences.

In this work, we extend that foundation with an end-to-end
AR system combining predictive user modeling and context-
dependent delivery of content. The system employs LSTM net-
works for intent prediction, a social media and user feedback-
driven sentiment-based ranking of POIs, and a Unity–ARCore-
based interface to enable immersive 3D navigation.

This enhanced model is designed to improve adaptability,
path fidelity, and contextuality of mobile AR navigation. Align-
ing route directions and space-based content dynamically with
inferred user behavior from available data, the system aims to
improve more intuitive decision-making and user engagement
in various real-world environments.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of related work in AR navigation
and behavioral modeling. Section III outlines the proposed
system architecture and methodologies. Section IV presents
implementation details and empirical evaluation. Section V
offers a discussion and analysis of the key findings, including
comparative advantages and limitations. Section VI concludes
the paper and outlines directions for future research.

II. RELATED WORK

Indoor navigation and location systems have become in-
creasingly important in offering directions to customers within
large indoor areas such as shopping centers, museums, factory
plants, and art galleries. These systems become particularly
helpful to new consumers who are unaware of the layout
within such buildings. Where GPS signals are weak or lacking,
Augmented Reality (AR)-based indoor location provides a
viable solution.
Several technologies have been employed for indoor localiza-
tion, some of which are Wi-Fi/Bluetooth-based positioning and
Inertial Measurement Units (IMUs). Both also have their pros
and cons. IMUs, for instance, integrate accelerometers, gyro-
scopes, and magnetometers to provide motion-based localiza-
tion, though high accuracy has remained out of reach for many
years in spite of work in advanced robotics.These approaches
have been discussed in works such as [2], [3], which highlight
their limitations in scalability and environmental adaptability.

AR glasses such as Google Glass and Google
Cardboard—sometimes supplemented by common
smartphones—usually lack the hardware support for high-
speed computations. For this, researchers have proposed
client-server based systems wherein computationally intensive
tasks are offloaded to servers remotely. Data exchange
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between the server and client (e.g. Android wearable or
handheld device) is implemented through the User Datagram
Protocol (UDP), which was chosen due to its low latency as
well as ease. The client captures images in real-time of the
environment, and the server, where camera coordinate space
is aligned with inertial sensor axes, processes data and gives
localization and navigation output. Such offloading strategies
are also supported by [4], which demonstrates improved
performance in mobile AR under limited device resources.

New smartphone technology has enabled higher usage
of AR and related technologies in everyday applications.
One example is the Augmented Reality Engine Application
(AREA), which is a software kernel that can be used to execute
location-based mobile AR applications on several platforms
including Android, iOS, and Windows. AREA introduces the
”location view” paradigm at its core, enabling developers to
develop apps capable of detecting and visualizing Points of
Interest (POIs) from the camera stream. AREAv2 is the latest
version and enhances functionality by providing support for
POI category management, tracks, and clusters. This evolution
aligns with previous systems like those described in [5],
which laid the foundation for dynamic POI visualization and
interaction.

AREAv2 employs a composite coordinate system to accu-
rately find POIs in AR space. The three subsystems that make
up the system are: the first one utilizes Global Positioning
System (GPS) data projected through Earth-Centered, Earth-
Fixed (ECEF) and East-North-Up (ENU) coordinates; the
second puts the user at the origin point of a virtual 3D space;
and the third replicates a virtual 3D camera system, which is
also referenced at the origin. There is a series of transformation
algorithms that are used: 1) GPS to ECEF conversion, 2)
transformation from ECEF to ENU, 3) user-to-POI distance
calculation, 4) POI position verification, and 5) POI clustering
and administration. These algorithms ensure that POIs are
properly positioned and visualized in the AR world, irrespec-
tive of their growing quantity.Such coordinate transformation
and clustering methodologies have been explored in prior work
[6], emphasizing accuracy and visual coherence in dynamic
AR environments.

These systems collectively demonstrate the increasing via-
bility of mobile AR for navigation and contextual information
delivery. However, most existing solutions remain reactive
rather than adaptive, lacking the ability to anticipate user intent
or deliver personalized, real-time spatial content. Recent work
on sequence prediction using LSTM networks [7], [8] and
sentiment-driven content ranking shows promise in addressing
these gaps, but such methods are rarely integrated within
mobile AR navigation frameworks. Our proposed system
builds on these advances by combining real-time user intent
prediction with dynamic POI ranking in a markerless AR
environment. This architecture is illustrated in Fig. 1 and
gives an overall understanding of spatial data is transformed
and displayed to the user. These studies establish a strong
foundation, but leave open the opportunity for unified, adaptive
systems—a challenge this paper seeks to address.

Fig. 1. System architecture.

III. PROPOSED WORK

A. Location-Based AR Navigation System

This module forms the core of augmented reality navi-
gation. To create a location-based AR application, the system
initially obtains the user’s location using Bing Maps API. This
provides accurate GPS coordinates (longitude and latitude)
necessary for route calculation.

Following the determination of the user’s location, the
application provides the user with a way to input a destination.
Based on the API, a detailed route from the user’s present
position to the destination is computed, including intermediate
and turn-by-turn maneuvers.

For the AR interface, Unity is integrated with ARCore that
rely on SLAM (Simultaneous Localization and Mapping) for
spatial understanding. A virtual assistant, as shown in Fig. 2
and Fig. 3, is implemented in Unity to guide the user visually
along the path.

Device sensors like the gyroscope, accelerometer, and
magnetometer are used together with SLAM to estimate po-
sition and orientation to deliver correct assistant movement.
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Fig. 2. Ground plane detection to place objects.

Fig. 3. Virtual assistant placed on the ground once plane is detected.

These readings feed into algorithms like the Kalman Filter
to maintain positional precision. The assistant’s movement is
coordinated with maneuver steps retrieved from the Bing Maps
API. Points of Interest (POIs) are augmented in real space by
placing 3D objects at their latitude-longitude locations, relative
to the AR scene.

Compared to conventional AR navigating systems that
statically position guidance on the surroundings, our system
applies live spatial updates and dynamic rerouting in line with
predicted user movement. This reduces confusion among users
at complex intersections and maximizes alignment of visual
markers and actual navigation routes.

B. Predictive Navigation

Predictive navigation anticipates user movement and in-
tention before they even change their destination or path con-
sciously. This predictive system optimizes the user experience
by continuously modifying the AR path in real-time. Existing
AR systems merely respond to predefined paths and react to
user deviations post-factum, which creates lag and confusion.
This system, by contrast, brings about an active, LSTM-based
prediction model that makes predictions of route deviations
in advance, thus enabling seamless corrections of paths and
improved user confidence. The main steps of this component
are as follows:

1) Continuous GPS and interaction data capture: The
user’s latitude, longitude, timestamp, and interaction events
(i.e. tapping on POIs, pause, detour) are collected in real-
time from the AR app. The time-series data stream builds
up the behavioral and spatial sequence that depicts real-time
movement behavior.

2) Preprocessing and feature extraction: The raw data is
preprocessed to make fixed-length feature vectors. The vector
has normalized GPS coordinates, speed, direction, timestamp,
and encoded interaction types. This ensures the model receives
semantically rich and temporally consistent input.

3) Sequence prediction with LSTM: The processed input
sequence is passed into a pre-trained LSTM (on-device or
cloud-hosted TensorFlow Lite) that has been trained to detect
route intent. The LSTM will learn to detect temporal relation-
ships and predict next-step movement or POI visits based on
prior behavior. User’s last 10 location points and tap events
are given as the input and the output would be the probability
distribution over next POIs or road segments.

4) Next location prediction: According to the softmax
prediction, the system selects the most probable next POI
or region. As an example, when the user recently passed by
a coffee shop near a park and slowed down in front of a
restaurant, the system will expect a detouring to the restaurant.

5) Dynamic route adjustment: If this predicted path differs
from the initial path, a best new path is requested using
the Bing Maps API. This best new path with the predicted
waypoint is then routed to the AR interface.

6) User feedback loop: Whenever the user responds to the
suggested path, weights are updated to promote such action.
In disobedience, weights are learned gradually to reflect the
evolving preferences of the user.
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In practice, as soon as a deviation from the intended path is
expected, asynchronous calls to the Bing Maps API are made
to calculate a new optimal path. The new path is superimposed
in real-time on the AR interface to minimize lag. Depending on
whether users follow or disregard these suggestions, the system
updates its model weights correspondingly to better reflect
shifting preferences. The AR assistant adaptively rearranges
navigation hints—arrows and waymarks—according to this
forecasting to create a more seamless and intuitive experience.
This predictive architecture demonstrates clear advantages over
traditional rule-based rerouting, as it minimizes manual cor-
rections, anticipates user decisions, and maintains navigational
continuity.

C. Smart POI Ranking

The Smart POI Ranking feature provides a richer AR
experience by ranking relevant, appealing, and trustworthy
points of interest close to the user. The POIs are defined using
a mix of user-centric and social features like average ratings
from Google or Yelp, user opinions, social sentiment derived
from geo-tagged posts, and live user feedback collected within
the app.

For predicting sentiment, we use a transformer BERT-based
fine-tuned model [9] on large review data to classify each
review into positive, negative, or neutral. POI’s sentiment score
is computed as the mean polarity score:

Sentiment Scorep =
1

N

N∑
i=1

s(ri) (1)

where s(ri) is the polarity of individual reviews.

A per-POI overall score is then calculated as:

Scorep = α ·Rp + β · Sentiment Scorep + γ ·Up + δ · Sp (2)

with weights α, β, γ, δ tuned using grid search and cross-
validation.

The full ranking procedure is detailed in Algorithm 1,
which computes composite scores for all nearby POIs using
aggregated inputs from rating platforms, real-time feedback,
and contextual sentiment analysis.

Algorithm 1 Smart POI Ranking

Require: Set of POIs P near the user
1: for each p ∈ P do
2: Compute average rating Rp

3: Run BERT on {ri} to obtain Sentiment Scorep
4: Collect in-app feedback Up

5: Analyze geo-tagged posts to compute Sp

6: Compute composite score:

Scorep = αRp + β · Sentiment Scorep + γUp + δSp

7: end for
8: Return top-k POIs ranked by Scorep

The ranking algorithm walks over proximate POIs and
computes this collective score to come up with the top-k best-
fitting POIs:

These top-ranked POIs are subsequently visualized on the
AR display using 3D markers that carry labels, ratings, and
review summaries. POIs can also be dynamically suggested
by the assistant based on predicted routes and user pref-
erences. This intelligent ranking system supports personal,
goal-oriented discovery in AR with low decisional fatigue
while maintaining the highest relevance and interest. Unlike
standard POI listing methods that generally rely on static
ratings alone, our system combines multi-source sentiment,
user feedback, and behavioral context to rank POIs popular
as well as contextually relevant in place.

Thus, the proposed system fills major gaps in prior AR
navigation work by simultaneously addressing real-time intent
prediction and context-aware personalization—two core short-
comings in prior methods. This pairing of predictive routing
and adaptive ranking of points of interest creates a smart,
context-aware navigation system that reacts in real-time to
preferences and enhances the augmented reality experience for
seamless exploration.

IV. RESULTS

At the initial phase of the development process, several
Augmented Reality SDKs were analyzed to determine the
most appropriate platform upon which to build a robust AR
navigation experience. The SDKs that were explored were
Vuforia, Wikitude, Kudan, Google ARCore, EasyAR, and
BeyondAR. Each of these offered a unique set of features and
challenges.

When working with Vuforia, the team faced challenges
with scaling 3D objects in proportion to the device camera,
along with unstable ground plane detection. While Vuforia
offered good marker-based tracking, it was not flexible enough
in spatial awareness for outdoor navigation use cases.

In an effort to overcome these shortcomings, Wikitude
was experimented with. It had a virtual plane strategy that
made plane detection easier; however, object scaling based on
user movement and distance continued to be tricky to achieve
consistently.

The optimal solution was obtained with Google ARCore,
which had a very strong ground plane detection and resolved
the object scaling problems. The ARCore integration with
Unity provided the means necessary to create a responsive AR
interface capable of adjusting to the physical environment of
the user, and hence it was selected as the SDK for continued
development.

For route calculation and navigation capabilities, multi-
ple mapping APIs were evaluated, including Mapbox SDK,
Google Maps APIs, Here Maps APIs, Bing Maps APIs, and
MapQuest Developer APIs. After comparing in detail, the Bing
Maps API was selected considering its open availability, ease
of integration, and support for turn-by-turn navigation. The
API provided accurate routing information, maneuver-level
guidance, and waypoint support that could be easily integrated
with the AR assistant module.
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The second critical functionality of the system was de-
termining the distance covered by the user in the direction
of the destination. Two alternatives were considered: Google
Maps Distance Matrix API, which calculates route distance
and ETA from geographic data; and Pedometer APIs, which
determine the distance covered from step count and stride
length of the user. Both were tested and compared, with the
Pedometer API providing smoother real-time distance updating
under conditions of weak or unstable GPS signals.

The incorporation of the Predictive Navigation module
significantly increased route responsiveness and flexibility.
With the integration of an LSTM-based sequence prediction
model trained on real GPS trajectory logs, the system could
anticipate a user’s future destination or likely detour. As an
example, when a user slows down next to a restaurant after
passing a coffee shop and park, the system predicts a detour
to the restaurant and recalculates the route accordingly.

This feature reduced the need for manual re-routing and
made the navigation experience more intelligent and proactive.
Real-world testing showed that manual rerouting events were
reduced by 25 to 30%, especially in dense urban areas where
users are more likely to explore spontaneously.

The Smart POI Ranking system brought the usefulness
and credibility of displayed POIs in the AR view to the next
level. By incorporating rating scores, BERT-powered sentiment
analysis of reviews, in-app feedback, and real-time social
sentiment of geo-tagged posts, the system inferred a compound
score for each POI.

In our experiment, the ranked POIs achieved higher rele-
vance precision (via click-through and dwell time) compared
to conventional ranking methods. The average per-user inter-
action with top-ranked POIs increased by 38% and AR-based
viewing of suggested POIs by 42%, indicating that the intel-
ligent ranking was able to effectively align recommendations
with user interest.

V. DISCUSSION

The proposed system demonstrates significant improve-
ments in responsiveness to users and context sensitivity com-
pared to conventional AR guidance systems. The use of
LSTM-driven intent prediction lowered manually initiated
rerouting activity by 25 to 30%, particularly in complex urban
environments. The Smart POI Ranking module also increased
user interaction with recommended POIs by 38%, as measured,
which confirms effective matching with user interest.

Compared to existing systems that rely on static routing and
generic POI sorting, our approach delivers a more personalized
and responsive navigation experience. These findings confirm
that combining behavioral prediction with sentiment-aware
content enhances decision-making in real-time scenarios. Fu-
ture extensions may include testing in rural or low-connectivity
environments to evaluate scalability and robustness.

Further, replacing the current single-sequence LSTM ar-
chitecture with deeper and more advanced architectures such
as multi-head attention-based LSTMs or hybrid Transformer-
LSTMs can improve the accuracy of intent prediction by
learning long-range dependencies and contextual subtleties in
user behavior. Including temporal context (e.g. time of day

or habitual behavior) could also boost the model’s predictive
ability for more anticipatory navigation.

VI. CONCLUSION

In this paper, we presented an adaptive, smart location-
based Augmented Reality navigation system that combined
predictive navigation with LSTM models and dynamic POI
ranking with sentiment-aware analysis. Building on the funda-
mental AR application of our earlier work, we upgraded the
capability of the system to predict user intent and recommend
contextually appropriate locations in real time.

The Predictive Navigation module enables the system to
pre-emptively optimize paths by deducing temporal patterns
in GPS and behavior data, enabling a seamless navigation
experience synchronized with implicit user intent. The Smart
POI Ranking module leverages user opinions, real-time feed-
back, and social opinion via BERT-based models to suggest
the highest ranked, context-aware venues dynamically. Such
optimizations significantly improve decision-making and user
interaction in the AR world.

Our results provide improved user experience through more
natural navigation routes and higher relevance of suggested
POIs. Bing Maps API usage, visual grounding with ARCore,
and real-time inference with light ML models ensures mobile
platform deployability with minimal latency.

Future work will focus on building on personalization fea-
tures with the integration of user profiles, session-based learn-
ing, and federated learning approaches to privacy-conscious
personalization. Further exploring the combination of voice-
based interaction and more refined semantic understanding of
environments could enhance immersion and usefulness of the
AR assistant even more.

In summary, our work pushes the state of the art in mobile
AR by combining machine learning, real-time geospatial data,
and immersive visualization, towards building human-aware,
intelligence-driven navigation systems.
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