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Abstract—No-reference image quality assessment (NR-IQA) 

aims to evaluate the perceptual quality of images without access to 

corresponding reference images and has broad applications in 

real-world image processing scenarios. However, existing NR-IQA 

methods often suffer from limited accuracy and generalization, 

especially under complex and diverse distortion types. To address 

this challenge, we propose Inc-LAENet, a novel NR-IQA 

framework that leverages multi-scale deep residual 

representations, integrates feature fusion mechanisms, and 

incorporates a local adaptive perception module to achieve 

improved assessment accuracy and generalization. Specifically, 

ResNet50 is employed to extract hierarchical residual features, an 

enhanced Inception-style module (Inc-s) strengthens sensitivity to 

various distortion patterns, and a lightweight local adaptive 

extraction module efficiently captures fine-grained structural 

information. Extensive experiments demonstrate the effectiveness 

of the proposed method, achieving SROCC values of 0.967 and 

0.935 on the synthetic distortion datasets LIVE and CSIQ, and 

0.852 and 0.898 on the authentic distortion datasets LIVEC and 

KonIQ-10k, respectively. These results confirm that Inc-LAENet 

provides a robust and efficient solution for NR-IQA tasks across 

both synthetic and real-world scenarios. 

Keywords—No-reference image quality assessment; deep 

learning; multi-scale; feature fusion; local adaptation 

I. INTRODUCTION 

Millions of digital images are shared on social media 
platforms every day. Images may be distorted to a certain extent 
during the acquisition and transmission process. In order to 
ensure an acceptable level of visual experience, it is crucial to 
conduct reliable and accurate image quality assessments (IQA) 
that have a good correlation with human perception. IQA can be 
divided into two categories: subjective evaluation and objective 
evaluation [1]. Subjective evaluation is the observer's own 
judgment of the image quality based on his or her visual 
experience. The objective evaluation is to design an algorithm 
to simulate the human visual system to analyze the relevant 
features of the image and give a corresponding quality score. 
Objective evaluation can be divided into three basic types 
according to whether a reference image is used: full-reference 
IQA [2] [3] (FR-IQA), reduced-reference IQA (RR-IQA), and 
no-reference IQA (NR-IQA). NR-IQA [4] does not rely on the 
original reference image, but can predict its quality score based 
on the image's own features. This feature makes it more flexible 
and practical in practical applications, and therefore has broad 

application prospects in visual tasks such as image quality 
assessment [5], [6]. 

Although deep learning has made significant progress in the 
field of no-reference image quality assessment (NR-IQA) in 
recent years. However, this field still faces many challenges. 
First, image quality often depends on the comprehensive 
analysis of multi-scale features, while most existing methods are 
limited to feature extraction at a single scale, making it difficult 
to simultaneously capture local details and global structural 
information of the image. Second, different regions in the image 
have different effects on quality assessment, but existing 
methods usually fail to effectively model this non-uniformity, 
making it difficult for the model to focus on key areas that are 
critical to quality perception. 

In order to solve the problem of insufficient accuracy and 
generalization ability of existing NR-IQA methods in complex 
distortion scenes, this study proposes an efficient NR-IQA 
method “Inc-LAENet” that integrates multiple modules. Its 
main contributions are as follows: 

1) A NR-IQA framework (Inc-LAENet) that integrates 

deep residual features and local adaptive perception is proposed 

to achieve efficient modeling of global and local features. 

2) The feature enhancement expression module (Inc-s) is 

designed, combining the dilated convolution and multi-scale 

convolution structure to improve the perception of local details 

and global semantic information of the image. 

3) Introduce the Lightweight Adaptive Extraction (LAE) 

module, which focuses on the more quality-sensitive areas in 

the image through an adaptive weight mechanism, effectively 

improving the accuracy and robustness of the prediction. 

The remainder of this study is organized as follows: Section 
II reviews related work in the field of NR-IQA. Section III 
introduces the overall architecture of Inc-LAENet, along with 
detailed descriptions of the Semantic Feature Extraction 
Network, the Feature Enhancement Module, and the 
Lightweight Local Adaptive Extraction Module. Section IV 
describes the experimental setup, including datasets, evaluation 
metrics, implementation details, and presents both comparative 
and ablation experiments. Section V summarizes the key 
findings. Section VI provides further discussions on the 
performance advantages, comparisons with state-of-the-art 
methods, generalization capabilities, and potential directions for 
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II. RELATED WORK 

Traditional no-reference image quality assessment relies on 
the statistical characteristics and visual properties of the image 
itself, and requires manual extraction of image features, which 
is difficult and complex to implement, such as natural scene 
statistics (NSS) features, gradient features, texture features, etc. 
Mittal et al. proposed BRISQUE [7], which extracts the local 
normalized brightness coefficient (MSCN) of the image and its 
statistical characteristics, and uses the support vector machine 
(SVM) for quality prediction. Saad et al. proposed a NR-IQA 
method called BLIINDS [8], which uses the statistical 
information of the local discrete cosine transform (DCT) 
coefficients to extract features and then uses a multivariate 
Gaussian model to evaluate image quality. Furthermore, Saad et 
al. proposed BLIINDS-II [9] to evaluate image quality by 
optimizing the statistical characteristics of DCT. Zhang et al. 
proposed a general IQA method ILNIQE [10], which uses the 
mean minus, the contrast normalization coefficient, and the 
gradient statistic to extract features. However, hand-designed 
features often rely on prior knowledge, and have difficulty in 
fully capturing images when faced with complex feature 
distortions, and have limited generalization capabilities when 
faced with some natural distortions. 

In recent years, deep learning has become popular [11] due 
to the powerful feature extraction capabilities of convolutional 
neural networks (CNN) [12]. Convolutional neural networks 
combine feature extraction with the learning process, avoiding 
the limitations of manually extracted features and showing good 
evaluation results. They have also been applied to NR-IQA [13-
16]. For example, Kang et al. [17] proposed an NR-IQA method 
based on convolutional neural networks, which extracts features 
from images and predicts quality scores by training the network. 
Kang et al. [18] proposed a multi-task CNN for simultaneous 
image quality estimation and distortion type identification. Liu 
et al. [19] proposed an NR-IQA method called RankIQA, which 
solves the problem of the Siamese network's limitation on the 
size of the IQA dataset and evaluates quality by ranking image 
quality. 

III. PROPOSED METHOD 

This study proposes a no-reference image quality assessment 
method based on multi-scale feature fusion, as shown in Fig. 1. 
The method consists of four core modules: a backbone network 
(used to extract multi-level semantic information), a feature 
enhancement module, a multi-level semantic feature fusion 
module, and a quality prediction network (used to output the 
final image quality score). 

During the training process, the pre-trained deep residual 
network ResNet50 [20] is first used as the feature extraction 
network to extract semantic features x1, x2, x3, and x4 at 
different levels from the distorted RGB image. Subsequently, 
x1, x2, and x3 are downsampled by the LAE module to enhance 
the local information perception capability. At the same time, 
the features of the four scales are deeply optimized by the Inc-s 
module. Next, the processed features are input into the global 
pooling layer and spliced in the feature dimension to fully 
integrate multi-scale information. Finally, the fused features are 
input into the quality regression network to generate the final 
image quality score. 

A. Semantic Feature Extraction Network 

ResNet50 is a variant of the residual network proposed by 
He et al. to solve the problems of gradient vanishing and gradient 
exploding as the network depth increases. ResNet50 consists of 
50 layers of convolutional networks, and its structure mainly 
includes convolutional layers, batch normalization layers, ReLU 
activation functions, and fully connected layers. The 
performance of each residual block is shown in Formula (1): 

    F x H x x       (1) 

where, ( )H x represents the original mapping function and 

( )F x represents the residual mapping. During the forward 

propagation process, the output of the residual block is Formula 
(2). Its structure diagram is shown in Fig. 2. 

  Y F x x     (2) 

 

Fig. 1. Overall framework. 
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Fig. 2. Residual block structure. 

In order to capture rich contextual information and deep 

semantic features, we use ResNet-50 as the backbone network 

to extract multi-level features of the image. These features come 

from the output of Conv2_x, Conv3_x, Conv4_x, and Conv5_x 

stages. The features of each stage contain information of 

different spatial resolutions and semantic levels. The multi-scale 

features are shown in Formula (3): 

       2,3,4,5lI f I l    (3) 

where, I denotes the input image, and d represents the feature 
map at the l-th layer. 

B. Feature Enhancement Module 

Human vision has a multi-level information processing 
mechanism [21]. In order to improve the network's ability to 
understand the content of distorted images, inspired by the 
inception module [22], this study designed a feature 
enhancement method that integrates a multi-scale attention 
mechanism, as shown in Fig. 3. 

 
Fig. 3. Inc-s module. 

Specifically, the method first extracts hierarchical features 
through the backbone network to obtain feature representations 
at four scales, and then inputs them into a new feature 
enhancement module to optimize feature expression 
capabilities. This module draws on the idea of a spatial pyramid 
structure and deploys multi-scale convolution operations 
(including 1×1, 3×3, and 5×5 convolutions) and pooling 
operations in parallel to achieve collaborative modeling of local 
details and global semantics, thereby enhancing the perception 
of image quality. 

In addition, to further optimize computational efficiency and 
model performance, the feature enhancement module introduces 
two key technical improvements during implementation: 1) 

Atrous convolution replaces traditional large kernel convolution: 
3×3 atrous convolution kernels are used to replace traditional 
5×5 convolutions (the dilation factor is 1 in this experiment), 
which reduces the number of parameters while ensuring 
equivalent receptive fields; 2) Adding an average pooling 
branch. An additional average pooling branch is introduced to 
capture the global statistical information of the image, 
complementing other convolution branches. Average pooling 
can smooth feature distribution and reduce the impact of outliers 
and noise, thereby reducing the interference of local distortion 
on model prediction and improving the generalization ability of 
unknown distortions. In addition, since average pooling does not 
rely on trainable parameters, this branch enriches feature 
expression while increasing model complexity minimally, 
which helps to reduce the risk of overfitting. Formula (4) 
describes the output form of the Inception module: 

 
1 1 3 3F , , , ,out dilated max avgF F F F F 

     (4) 

Among them, 1 1F , 3 3F  ,and dilatedF represent convolution 

branches of different scales, and maxF and
avgF represent 

maximum pooling and flat pooling branches, respectively. 

C. Lightweight Local Adaptive Extraction Module 

In IQA tasks, accurately extracting local and global features 
of an image is the key to evaluating the degree of image 
distortion. In order to effectively preserve the edge and local 
detail information of the image, this method introduces the LAE 
module [23], as shown in Fig. 4. Compared with traditional 
convolution methods, the LAE module has obvious advantages 
in terms of the number of parameters and computational 
complexity, while extracting more semantically rich features. 
IQA is highly sensitive to edges, textures, and local details, 
while traditional convolutions tend to lose this key information 
during downsampling. The LAE module effectively retains and 
enhances this information through parallel feature extraction and 
adaptive information aggregation. 

The LAE module is designed with a dual-branch architecture 
that shares parameters, combining Group Convolution and 
adaptive feature aggregation, which not only reduces the number 
of parameters but also retains key information in the image. By 
dividing the feature map into N groups for convolution 
operations, the number of parameters and the amount of 
calculation are reduced to 1/N compared to traditional 
convolution. 

LAE introduces adaptive feature aggregation to alleviate the 
loss of edge and detail information caused by downsampling. 
Specifically, it changes the dimension of the feature map from 
four dimensions (batch, channel, height, width) to five 
dimensions (batch, channel, height, width, n), where “n” 
represents the sampling factor. The adaptive path aggregates 
four adjacent pixels and calculates their weights through average 
pooling and convolution operations, and uses softmax 
normalization to ensure that pixels with higher information 
entropy are retained in the channel dimension. Formula (5) 
describes the output mode of the LAE module. Given the input

h w cX R   , the output of LAE is 2 2

h w
c

Y R
 

 . 
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Fig. 4. Lightweight Local Adaptive Extraction module (LAE). 

𝑌 = ∑(
𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒(𝐺𝑟𝑜𝑢𝑝𝐶𝑜𝑛𝑣(𝑥))

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑅𝑒𝑎𝑟𝑟𝑎𝑛𝑔𝑒(𝐶𝑜𝑛𝑣(𝐴𝑃(𝑋))))
) (5) 

where, h w cX R   is the input feature map, 2 2

h w
c

Y R
 

 is 

the output feature map, ( )GroupConv X performs group 

convolution on the input feature map, Re ( )arrange 
compresses the spatial dimension to the channel dimension,

( )AP X performs average pooling on the input, and

max( )Soft  generates adaptive weights. 

IV. EXPERIMENTS 

A. Experimental Environment and Dataset 

The model proposed in this study is implemented using 
Python 3.9 programming language and PyTorch 2.5.1 deep 
learning framework, which has strong compatibility and 
scalability. In the training and testing phases, the experiment 
uses NVIDIA GeForce RTX 4090 graphics processor as the 
main computing platform, combined with CUDA 12.1 toolkit to 
achieve efficient parallel computing support. This configuration 
not only effectively improves the running speed of the model, 
but also shortens the training cycle to a certain extent, enhancing 
the controllability of the experimental process and the 
repeatability of the results. 

In this experiment, we tested and evaluated on four public 
IQA datasets (two synthetic distortions and two real distortions). 
For synthetic distortion, we used LIVE [24] and CSIQ [25]. The 
LIVE dataset contains 779 distorted images, covering five 
distortion types and five distortion levels, and the CSIQ dataset 
contains 866 images, covering six distortion types and four to 
five distortion levels. For real distortion datasets, we used 

CLIVE [26] and KonIQ-10k [27]. LIVE-C is a no-reference 
image quality assessment dataset containing 1162 real distorted 
images taken by different multimedia devices, and KonIQ-10k 
is a large-scale no-reference dataset containing 10,073 high-
quality real distorted images. Table I is a summary of the 
databases used in this experiment. 

TABLE I.  IQA DATASET USED FOR COMPARATIVE EXPERIMENTS 

Databases #of Dist. Images #of Dist. Types 
Distortions 

Type 

LIVE 799 5 synthetic 

CSIQ 866 6 synthetic 

LIVEC 1162 - authentic 

KonIQ-10k 10073 - authentic 

B. Evaluation Indicators 

For the performance evaluation of the proposed method, two 
commonly used standards are used. They are Spearman's rank 
order correlation coefficient (SROCC) and Pearson's linear 
correlation coefficient (PLCC). The range of SROCC and PLCC 
is from -1 to 1, and the larger the absolute value, the better the 
performance. SROCC is a non-parametric correlation 
coefficient used to measure the monotonic relationship between 
two variables (i.e., whether one variable increases or decreases 
as the other variable increases). It is based on the rank (sorting) 
of the variables rather than the original values, so it is not 
sensitive to outliers. The calculation formula of SROCC is 
shown in Formula (6): 

 

 

2

2

6
SROCC 1

1

id

n n
 



    (5) 

where, di represents the level difference between the true 
value and the predicted value of the distorted image, and n 
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represents the number of distorted images. The calculation 
formula of PLCC is shown in Formula (7): 

 
 

2 2

1

( )

PLCC=

( ) ( )

i i

n

i i

i

X X Y Y

X X Y Y


 

 



 

  (6) 

where, iX and iY represent the predicted score and true score 

of the distorted image, respectively. X and Y represent the 
mean of the predicted score and the true label score. 

C. Experimental Details 

This experiment follows the training strategy of the existing 
IQA algorithm. During training, 30 224×224 pixel patches are 
randomly selected from each distorted image, and random data 
augmentation is performed, and their quality scores are 
consistent with the source image. The Adam optimizer is used 
for training, with a weight decay coefficient of 5×10-4, a 
maximum number of training rounds (epochs) of 5, and a mini-
batch size of 32. The initial learning rate is set to 2×10-5 and is 
decreased by 10% after each round of training. In the test phase, 
30 patches are randomly selected from each test image, their 
quality scores are predicted, and the average is taken as the final 
score. The experiment uses the same settings and randomly 
divides the dataset into 80% training set and 20% test set using 
10 different seeds. The test data does not participate in the 
training, and the median of the SROCC and PLCC of the 10 
groups of experiments is taken as the result. In order to optimize 
the model, capture subtle changes in image quality, reduce the 
impact of outliers, accelerate convergence and improve stability, 
the SmoothL1Loss loss function is used in training, as shown in 
Formula (8): 

 
 

 

2
0.5 ,

SmoothLoss
0.5 ,

x y if x y

x y otherwise



 

   
 

 

    (7) 

where, x is the prediction score of the model and y is the true 
label value of the distorted image. 

D. Comparative Experiment 

In order to fully verify the effectiveness and robustness of 
the proposed model, we conducted comparative experiments 
with six representative image quality evaluation methods on 
four mainstream NR-IQA datasets, covering traditional methods 
(such as BRISQUE and ILNIQE) and recent deep learning 
methods (such as WaDIQaM, DBCNN, HyperIQA and TReS). 
As shown in Table II and Table III, on the real distortion datasets 
KONIQ-10k and LIVEC, our method achieved good 
performance, reaching SROCC 0.898 and PLCC 0.909 on 
KONIQ-10k, and SROCC 0.852 and PLCC 0.872 on LIVEC, 
respectively, which is better than traditional methods such as 
BRISQUE and ILNIQE, and is comparable to advanced models 
such as HyperIQA and TReS, with only a small gap or close 
performance, reflecting the high generalization ability of the 
model in complex real scenes. On synthetic distortion datasets 
such as LIVE and CSIQ, our method also shows strong 
robustness. On the LIVE dataset, we achieved a high score of 
0.967 for both SROCC and PLCC, which is close to or even 
slightly better than other mainstream methods, indicating that 

the model has accurate perception capabilities when dealing 
with standard synthetic distortion types (such as blur, 
compression, noise, etc.); on the CSIQ dataset, our method's 
SROCC and PLCC are 0.935 and 0.944, respectively, which 
also surpasses most baseline models and is second only to some 
highly optimized models such as DBCNN, but the overall 
performance is still stable and competitive. In order to more 
intuitively show the performance differences between the 
methods, we introduced the bar charts shown in Fig. 5 to Fig. 8, 
which visualize the evaluation results of the LIVEC, KONIQ-
10k, LIVE and CSIQ datasets, respectively. From the figures, 
we can clearly observe the leading trend of the proposed method 
in various indicators, which further enhances the intuitiveness 
and persuasiveness of the experimental results. 

TABLE II.  PERFORMANCE COMPARISON OF EACH EVALUATION METHOD 

ON THE REAL DISTORTION DATASET 

Methods 
LIVEC KONIQ-10k 

SROCC PLCC SROCC PLCC 

BRISQUE 0.608 0.629 0.701 0.705 

ILNIQE 0.432 0.508 0.507 0.527 

WaDIQaM 0.671 0.681 0.806 0.807 

DBCNN[28] 0.851 0.869 0.877 0.884 

HyperIQA[29] 0.855 0.875 0.901 0.910 

TReS[30] 0.846 0.877 0.905 0.908 

Ours 0.852 0.872 0.898 0.909 

TABLE III.  PERFORMANCE COMPARISON OF EACH EVALUATION METHOD 

ON THE SYNTHETIC DISTORTION DATASET 

Methods 
LIVE CSIQ 

SROCC PLCC SROCC PLCC 

BRISQUE 0.929 0.944 0.748 0.812 

ILNIQE 0.898 0.903 0.815 0.854 

WaDIQaM 0.954 0.963 0.844 0.852 

DBCNN 0.968 0.971 0.946 0.959 

HyperIQA 0.962 0.966 0.923 0.942 

TReS 0.968 0.969 0.922 0.942 

Ours 0.967 0.967 0.935 0.944 

 
Fig. 5. Results of the LIVEC. 
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Fig. 6. Results of the KONIQ-10k. 

 
Fig. 7. Results of the LIVE. 

 
Fig. 8. Results of the CSIQ. 

E. Ablation Experiment 

In order to verify the contribution of each module to this 
model in this experiment, an ablation experiment was designed 
and conducted. The ablation experiment also adopted the above 

experimental rules, conducted ten experiments, and took the 
median of SROCC and PLCC as the experimental results for 
testing on the CSIQ and LIVEC databases. Table IV shows the 
statistical results of different modules to help understand the 
impact of each module on the performance of the model. The 
baseline model uses ResNet-50. From Table IV, it is not difficult 
to see that by integrating the feature enhancement module Inc-s 
into the basic model, SROCC and PLCC are improved on the 
CSIQ dataset and LIVE-C dataset. By integrating the 
lightweight local adaptive module LAE into the baseline model, 
all evaluation indicators on the two datasets are also improved. 
Finally, both modules are integrated into the baseline model to 
form our final model. It can be seen that our final model can 
show the best performance. 

TABLE IV.  PERFORMANCE COMPARISON OF EACH MODULE 

Baseline Inc-s LAE 
CSIQ LIVE-C 

SROCC PLCC SROCC PLCC 

√   0.903 0.928 0.817 0.850 

√ √  0.921 0.940 0.838 0.856 

√  √ 0.915 0.933 0.845 0.866 

√ √ √ 0.925 0.944 0.852 0.872 

V. SUMMARIZE 

This study proposes an NR-IQA model Inc-LAENet, that 
combines convolutional neural networks, Inc-s, and a 
lightweight local adaptive extraction (LAE) module. ResNet-50 
extracts global and local features of the image through a residual 
structure, greatly enhancing the model's perception of complex 
distortions. Inc-s strengthens the expression of features by 
combining multi-scale convolution and pooling. LAE efficiently 
extracts local feature information while reducing computational 
overhead, thereby improving local feature sensitivity. 
Experimental results show that the model Inc-LAENet proposed 
in this study performs well on multiple public datasets, with 
SROCCs of 0.967 and 0.935 on two synthetic distortion 
datasets, LIVE and CSIQ, respectively, and SROCCs of 0.852 
and 0.898 on two real distortion datasets, LIVEC and Koniq-
10k, respectively, proving its effectiveness in NR-IQA. Future 
research can further explore deeper feature fusion, loss function 
optimization, and other technologies to further improve the 
performance and application potential of the model. 

VI. DISCUSSION 

This section will conduct an in-depth analysis of the 
experimental results of the proposed method, focusing on its 
design concept, performance advantages, scope of application 
and existing deficiencies, and further highlighting the practical 
value and potential impact of this study. 

A. Analysis of the Causes of Performance Advantages 

The experimental results show that the proposed method has 
achieved excellent performance on multiple public image 
quality assessment datasets. The overall performance is 
comparable to the current mainstream image quality assessment 
model, and even slightly exceeds it in some indicators. Further 
analysis of the reasons for its performance improvement is 
mainly reflected in the following two aspects: on one hand, the 
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Inc-s feature enhancement module designed in this study 
effectively integrates multi-scale contextual information, 
enabling the model to focus on the global structure and local 
details of the image at the same time, thereby improving the 
comprehensiveness of feature expression; on the other hand, the 
introduction of a lightweight local adaptive enhancement 
module (LAE) enhances the model's sensitivity to local areas of 
the image, especially distorted areas such as noise and 
compression artifacts, and shows stronger discrimination 
capabilities in complex distorted scenes. The two modules work 
together in parallel, effectively improving the model's global 
perception and local modeling capabilities in the task of no-
reference image quality assessment, thereby significantly 
enhancing the generalization and stability of the model. 

B. Generalization Ability and Application Prospects 

It is not difficult to find from the experimental results that 
the method proposed in this study shows relatively consistent 
performance in both real distortion and synthetic distortion 
scenarios, indicating that it has good robustness in dealing with 
various types of image distortion. This result not only verifies 
the applicability of the method on multiple mainstream no-
reference image quality assessment (NR-IQA) datasets but also 
further highlights its potential in practical engineering 
applications. This method can be widely used in many typical 
scenarios such as image compression quality assessment, image 
enhancement effect verification, and image transmission 
stability detection, and has good promotion prospects and 
practical value. 

C. Model Limitations and Future Development Directions 

Although the method proposed in this study has achieved 
excellent performance on multiple typical datasets and has 
shown good generalization ability and practical application 
potential, there is still room for further exploration in terms of 
model optimization. At present, this method mainly relies on 
convolutional neural networks for feature extraction and quality 
regression, which can effectively capture the structural 
information and local distortion characteristics in the image. 
However, when faced with image content with complex 
semantic relationships or strong contextual dependencies, the 
prediction results of the model may still have certain deviations 
on individual samples. 

To further enhance the model's ability to understand 
complex image quality degradation scenarios, subsequent 
research may consider introducing structures such as self-
attention mechanisms or Transformers to improve the modeling 
effect of global semantic information. In addition, in more 
challenging cross-database evaluation or zero-shot image 
quality prediction tasks, it is necessary to explore more efficient 
transfer learning strategies or unsupervised optimization 
solutions to further improve the robustness and adaptability of 
the model. These improvement directions not only help to 
improve the theoretical system of the model, but also lay the 
foundation for its application in practical scenarios. 
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