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Abstract—Digital transformation is a key driver of business 

evolution, but it comes with significant challenges, particularly 

employee resistance to change. This resistance can manifest in 

various forms, ranging from explicit opposition to more subtle 

hesitation toward new practices. Its underlying causes are 

diverse, including fear of the unknown, loss of control, and 

dissatisfaction with perceived transformations. Understanding 

employee perceptions is, therefore, crucial to adapting digital 

initiatives and ensuring successful adoption. However, existing 

methods for assessing resistance, which rely on closed-ended 

questionnaires and binary classifications, have limitations. They 

restrict the expression of opinions and fail to provide a nuanced 

segmentation of employees’ stances toward change. In this 

context, this study proposes an innovative and automated 

methodology that combines specialized zero-shot LLMs and 

prompt engineering techniques to analyze resistance to change. It 

is based on the allies strategy, a concept derived from 

sociodynamic theory and widely applied in change management, 

which seeks to more precisely differentiate employee attitudes 

based on their level of synergy or antagonism toward a new 

project or transformation initiative. To evaluate the effectiveness 

of the proposed approach, an experiment was conducted on an 

annotated dataset comprising a hundred employee responses. 

Two prompt engineering strategies were explored and applied to 

six zero-shot models to assess their ability to accurately classify 

expressed attitudes. The findings underscored, on one side, the 

significance of prompt structuring in enhancing classification 

efficacy and, on the other side, the preeminence of DeBERTa-v3-

large-zeroshot, which demonstrated itself as the most exemplary 

model, even exceeding GPT-4, one of the most sophisticated and 

cutting-edge language models currently accessible. 

Keywords—Resistance to change; digital transformation; zero-

shot LLMs; prompt engineering; allies strategy 

I. INTRODUCTION 

Resistance to change is a widely studied phenomenon in 
management and organizational psychology. It is generally 
defined as a cognitive, emotional, or behavioral reaction to a 
modification perceived as a threat to stability, habits, or the 
status quo [1] [2] . M. Asem [3] describes it as opposition to 
new organizational practices, which may be driven by personal 
interests, a lack of understanding, low tolerance for 
uncertainty, or a different assessment of the proposed change. 

In the sphere of digital transformation, resistance to change 
takes on a specialized form. It is often linked to technological 
upheavals that redefine processes, roles, and interactions within 
organizations. Among the primary determinants contributing to 
this resistance encompass job insecurity, as employees may 
possess uncertainties regarding prospective layoffs or 

modifications in their roles; inadequate technological aptitude, 
which can elicit apprehension and negative perceptions 
towards digital technologies; and issues related to identity and 
social relationships, with particular technological innovations 
regarded as threatening one’s social standing or reputation 
within the organization [4][5][6][7][8][9]. These factors 
demonstrate that resistance to change in a digital context is not 
solely based on irrational fears, but on legitimate concerns that 
must be considered in change management strategies [10]. 

Resistance to change has often been conceptualized from 
two main perspectives in literature: a systemic approach, which 
views resistance as an organizational phenomenon influenced 
by corporate culture, processes, and structure, and an 
individual-centered approach, which examines how employees 
perceive and react to change [8][11]. However, these two 
approaches are closely linked. In [12] and [13], the authors 
highlight that organizational-level resistance often leads to 
individual resistance, as employees react to transformations 
perceived as being imposed by the existing system. 

Thus, while research on systemic resistance provides a 
critical framework for understanding structural obstacles to 
digital transformation [5][6][7][9][14][15], it is at the 
individual level that resistance takes a concrete form and 
directly influences the success or failure of a change initiative. 
Therefore, it is essential to focus on methods for measuring this 
resistance on the individual scale. In this context, several 
measurement tools have been developed to assess employee 
resistance to change [16][17][18][19][20]. These instruments, 
often in the form of closed questionnaires or scales, have the 
advantage of enabling quantitative and comparative assessment 
of resistance to change. However, their drawback is that they 
unfortunately limit the richness of responses and do not fully 
capture the diversity of perceptions and emotions employees 
have towards change. They tend to reduce the range of 
responses to a simple dichotomy between resistors and non-
resistors, leading to an imprecise or biased classification that 
does not faithfully reflect the complexity of reactions to 
change. This reduction of nuances hinders the identification of 
intermediate profiles and complicates the development of 
strategies tailored to each stakeholder in the change process. 

In response to the limitations of traditional approaches, we 
propose an alternative method based on the use of the allies 
strategy and zero-shot language models. Instead of relying 
solely on closed-ended questionnaires or rigid classifications, 
our approach focuses on analyzing employees' open-ended 
responses, harnessing the power of zero-shot LLMs combined 
with prompting techniques to perform a deep natural language 
analysis. At the same time, the allies strategy helps to better 
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identify and segment employees based on their potential role in 
the transformation: those actively promote change and those 
who may hinder it. This segmentation will enable 
communications and change management actions to be 
targeted effectively, making it easier to overcome resistance 
and build commitment to the digital initiatives arising from 
digital transformation. 

The following sections in the study are arranged as: Section 
II presents related work. Section III provides essential 
background information on zero-shot LLMs, prompt 
engineering, the allies strategy, and foundational concepts 
crucial for understanding the context of our study. Section IV 
presents the methodology employed in measuring resistance to 
change using the allies strategy, including the design and 
implementation of prompt engineering strategies and the 
selection of zero-shot LLMs. The experimental setup is 
elaborated in Section 5V, while Section VI elucidates the 
results obtained and their subsequent interpretation. In closing, 
Section VII recaps the research and outlines potential routes for 
further examination. 

II.  RELATED WORK 

In the literature, the assessment of resistance to change in 
the context of digital transformation has been approached 
through two primary lenses. From one angle, a holistic 
viewpoint underscores the importance of pinpointing 
organizational aspects that contribute to resistance, their effects 
on business success, and the techniques for identifying and 
reducing that resistance. Conversely, a person-focused 
perspective delves into how employees react to digital shifts by 
exploring their viewpoints, hurdles, and incentives. However, a 
common limitation of many studies lies in their tendency to 
adopt a generalized view that does not always account for the 
richness of expressions and the freedom employees have to 
articulate their own perceptions of change, nor the variability in 
their stance toward it. 

Several studies have taken a systemic approach in 
analyzing resistance to change in the context of digital 
transformation without analyzing in depth how it manifests 
within employees, for instance, both studies [5] and [6] 
highlight common sources of resistance such as fear of job 
loss, lack of digital skills, perceived work overload, and 
concerns about professional identity. However, these studies 
remain at a macro level, failing to segment employees based on 
their specific resistance attitudes or to propose a classification 
of resistance profiles that could support more tailored change 
management strategies. In a related vein, Tetiana Kuzhda [14] 
proposes a diagnostic model of resistance to change based on 
expert surveys to identify and prioritize the major causes of 
resistance and then suggest strategies for reducing it. Still, 
these methods are rather standard and overlook the personal 
differences among workers. Finally, Samia Hattab [15] 
investigates the issue of resistance to change in the public 
sector by analyzing a survey of administrative staff to 
determine the primary overall causes of this resistance during 
digital transformation. However, this survey highlights general 
trends and fails to categorize employees according to their 
degree of resistance, which limits the possibility of conceiving 
targeted change management strategies. 

Consequently, it is necessary to concentrate on 
methodologies for quantifying resistance at the individual 
scale. From this viewpoint, numerous approaches have been 
formulated to evaluate employees' resistance to organizational 
change. One of the most widely used tools is the Resistance to 
Change (RTC) scale developed by Oreg [16], which measures 
individual resistance across four dimensions: routine-seeking, 
emotional attachment, reaction to stress, and reluctance to lose 
control. This approach relies on standardized questionnaires 
that quantify perceived resistance. In the particular context of 
digital transformation, numerous research contributions have 
endeavored to enhance the assessment of resistance to change 
by considering the unique characteristics of digital contexts. 
For example, Sherif  Hamdi [17] examines employee resistance 
within the National Social Insurance Organization in Egypt, 
and analyzes its role as a mediating variable between training 
and performance. However, this study relies on closed-ended 
questionnaires (agree or disagree), which limits a nuanced 
understanding of employees' individual barriers and 
motivations regarding change. 

In a different approach, Stam et al.[18] uses Membership 
Category Analysis (MCA) to analyze employee discourse on 
the introduction of digital technologies. This qualitative 
approach highlights the discursive categories used to express 
their perceptions of change. However, although this method 
offers a detailed analysis of social representations, it relies 
entirely on human interpretation, which limits its large-scale 
application and does not allow for precise segmentation of 
employees according to their degree of resistance. 

Another attempt at classification is proposed in our 
previous work [19]. This study relies on generalized hesitant 
fuzzy sets and Formal Concept Analysis to classify employees 
based on their level of acceptance of change, incorporating 
uncertainty in response formulation. Nevertheless, although 
this methodology affords increased liberties of discourse in 
comparison to closed-ended inquiries, it does not entirely 
exploit the depth of open-ended replies and does not facilitate a 
varied typology of employee profiles. 

Finally, the study [20] explores another variant of fuzzy 
sets by introducing an intuitionistic analysis to capture 
resistance to change in digital contexts. This approach 
enhances the modeling of hesitations and uncertainties in 
employees' responses but remains dependent on a rigid 
mathematical framework that does not adapt to semantic 
variations and the subtleties of natural language. 

The analysis of existing work reveals several limitations. 
Some studies translate the analysis and assessment of 
resistance to change in the context of digital transformation by 
identifying the causes of resistance and thus propose general 
recommendations applied to all employees. Other studies that 
have sought to analyze employee's perceptions of the 
introduction of new digital transformation projects have 
generally adopted a binary classification of employees as 
resistors and non-resistors, neglecting intermediate positions 
such as those who are “torn”, “conciliatory” or “indecisive”, 
which limits the identification of more nuanced categories and 
hinders the implementation of targeted strategies adapted to 
each change actor. What's more, the methodologies employed 
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using closed-ended questionnaires do not fully capture the 
complexity of individual attitudes to transformation, which can 
lead to imprecise or biased classification. 

It is within this perspective that our contribution is situated. 
We propose adopting the allies strategy, derived from the 
sociodynamic approach developed by Jean-Christian Fauvet in 
the 1970s [21], to establish a more granular classification of 
employees in relation to change, based on open-ended 
responses. Indeed, and unlike traditional approaches that often 
rely on binary segmentation and closed questions, preventing a 
more nuanced understanding of employees' positions towards 
digital transformation, our approach enables us to identify 
different stakeholder profiles while promoting employees' 
freedom of expression thanks to open-ended responses. This 
analysis will enable the development of a customized change 
management plan and help organizations to target their 
communication, training and support actions more effectively, 
thereby reinforcing buy-in to the transformation. To automate 
this approach, Large Language Models (LLMs) specialized in 
zero-shot classification, combined with prompting techniques, 
were used to analyze and process open-ended responses. 

III. BACKGROUND 

This section presents fundamental background information 
on the key topics that form the basis of our study, namely the 
sociodynamic approach, the allies strategy, Zero-shot LLMs 
and prompt engineering. 

A. The Sociodynamic Approach 

Developed by Jean-Christian Fauvet in the 1970s, the 
sociodynamic approach is a strategic method for analyzing 
human dynamics and individuals' attitudes towards change 
based on the idea that any transformation generates power 
relationships and interactions between different actors with 
varied interests [21]. Unlike traditional change management 
approaches, which prioritize top-down and prescriptive 
methodologies, this method adopts an interactionist and 
adaptive perspective [22]. It considers that the success of a 
transformation project depends not merely on technical and 
organizational aspects but also on relational dynamics and 
stakeholder engagement strategies. This dynamic is based on 
theoretical foundations such as the theory of commitment [23] 
and the theory of influence networks [24], which explain how 
social interactions and gradual involvement alter attitudes 
towards change. 

As Paul Walley has highlighted [25], applying a 
sociodynamic perspective to stakeholder management 
enhances project outcomes by enabling a more nuanced 
understanding of stakeholder behaviors and by effectively 
addressing resistance to change. Indeed, the sociodynamic 
approach allows for the recognition of complex, and sometimes 
ambivalent, employee responses, where individuals may 
express both support and hesitation simultaneously, offering a 
richer and more realistic assessment of attitudes during 
organizational transformations. 

B. The Allies Strategy 

The allies strategy model is an operational application of 
the sociodynamic approach, specifically designed to classify 

actors based on their attitude towards a transformation project 
into allies, neutrals, undecided, and opponents, thus enabling a 
differentiated strategy depending on their posture. This 
approach is structured around two axes: the synergy axis, 
which aims to mobilize change supporters to positively 
influence the undecided, and the antagonism axis, which 
involves identifying and mitigating the impact of opponents 
[25] [26]. 

The central tool of the model, known as the actor mapping 
or partner map [25] [26] [27] [28], allows for a more detailed 
analysis of individual resistance, facilitating the 
implementation of tailored strategies to foster engagement and 
support the transition. It aids in illustrating the diverse 
perspectives of individuals or groups upon their degree of 
synergy (support) and antagonism (resistance) regarding the 
initiative. This mapping is often represented as a matrix, as 
shown in Fig. 1, consisting of two main axes: The first axis, 
which measures the degree of support or commitment an actor 
has towards the project, is subdivided into four main 
categories: 

 Minimalist: Individuals with little interest or 
commitment to the project, showing minimal 
involvement. 

 Interested: Individuals who show a degree of interest 
but require more evidence or benefits before fully 
committing. 

 Cooperative: Individuals who are actively engaged in 
the project, offering ideas and solutions. 

 Committed: Those who reflect a strong devotion to the 
project, are motivated, and are inclined to assume an 
important position in its operationalization. 

 
Fig. 1. Partner map [26]. 

The second axis, which evaluates the level of opposition or 
resistance an actor has towards the project, is also subdivided 
into four main categories: 

 Conciliatory: Individuals with reservations about the 
change but open to dialogue and compromise. 

 Resistant: Individuals who show stronger opposition 
due to specific concerns or divergent interests. 
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 Opponent: Individuals who actively oppose the project, 
potentially seeking to block it due to personal fears or 
general resistance to change. 

 Irreconcilable: Individuals whose opposition is deep and 
often irrevocable, making constructive involvement 
difficult. 

The intersections between the categories of synergy and 
antagonism give rise to seven more nuanced and meaningful 
categories, reflecting the complexity of organizational and 
human dynamics during change processes. 

One of the main added values of this model resides in its 
capacity to reveal concealed or passive stakeholders, 
individuals who may not be readily apparent or vocal during 
the change process, yet whose perspectives and influence can 
profoundly affect project outcomes. By rendering these latent 
dynamics discernible, the allies strategy prompts project 
managers to expand their stakeholder analysis beyond the most 
conspicuous participants, thereby facilitating more tailored 
engagement strategies and mitigating the risk of neglecting 
silent sources of resistance or support. 

C. Zero-Shot LLMs 

A Large Language Model (LLM) represents an advanced 
manifestation of artificial intelligence, systematically 
engineered to analyze and generate natural language akin to 
human discourse. Based on sophisticated deep learning 
techniques, particularly on an advanced neural network 
architecture known as Transformers [29], these models 
incorporate an attention mechanism that discerns complex 
interrelationships between textual components, regardless of 
their position in the sequence. The effectiveness of this 
attention mechanism gives LLMs the ability to capture the 
nuances of language, syntax, and contextual relevance. Owing 
to their thorough preliminary training on a vast number of 
datasets [30], LLMs are exceptionally effective in numerous 
applications, which include conversational agents, automated 
content production, translation, and what is termed 'zero-shot' 
classification, defined as a technique that permits a model to 
label text without prior familiarity with examples of the 
pertinent category [31] [32]. LLMs fine-tuned to this specific 
task are called zero-shot LLMs, and they use this technique to 
correlate textual data with classifications without prior 
exposure to such data. They rely on natural language inference 
(NLI) models [33], which investigate the semantic 
relationships between an input text and a particular category 
through a logical semantic process that assesses whether a 
certain hypothesis (the category) is entailed (implication), 
neutral (neutrality), or contradicted (contradiction) by a 
provided text [34].  The performance of these models is chiefly 
derived from their foundational training on vast, high-standard 
natural language inference (NLI) datasets [32], incorporating 
SNLI [34], MNLI [35], ANLI [36], and FEVER [37]. These 
datasets contain extensive collections of annotated sentence 
pairs, assessing whether one sentence entails, is neutral to, or 
contradicts another. They have enabled models to develop a 
more refined understanding of semantic relationships and 
enhance their inference capabilities. 

Within the scope of our research, the adoption of zero-shot 
LLMs is notably supported by the open-ended and unstructured 
responses from the feedback gathered from employees related 
to their views on organizational change. Zero-shot models 
enable the immediate classification of such qualitative 
responses without the need for prior task-specific fine-tuning. 
Furthermore, their capacity to perform inference-based 
categorization aligns well with the conceptual framework of 
the allies' strategy, which requires distinguishing nuanced and 
context-dependent postures ranging from strong support to 
strong opposition. This makes them highly appropriate for 
analyzing resistance to change in dynamic and resource-
constrained environments. 

D. Prompt Engineering 

Prompt engineering constitutes a technique for optimizing 
the utilization of large language models (LLMs) by steering 
their outputs via precise directives, all while preserving the 
integrity of the model itself. This technique enables the 
optimization of LLMs' performance in various tasks, such as 
text classification, machine translation, or generating tailored 
responses, simply by adjusting the phrasing of the queries [38]. 
What renders prompt engineering exceptionally potent is its 
capacity to adapt pre-trained models for novel tasks without 
necessitating the retraining of the model parameters. As 
articulated in [39], this methodology significantly augments the 
capacity of models to generalize proficiently to novel tasks, 
especially via mechanisms such as zero-shot prompting and 
few-shot prompting. The effectiveness of this technique 
depends on the precision of prompt formulation, as even small 
adjustments can lead to significant variations in the results 
generated [40]. Several prompting strategies have been 
developed, including, for example: 

 Zero-Shot Prompting: The model is given an instruction 
without any example responses. It relies on the LLM's 
ability to generalize from existing knowledge [38]. 

 Few-Shot Prompting: This strategy includes several 
representative instances within the prompt to improve 
the model's grasp of the task at hand. It enhances model 
accuracy by providing more context [38]. 

 Chain-of-Thought Prompting (CoT): As delineated by J. 
Wei et al [39],  this methodology invites the model's 
elucidation of its reasoning process via intermediary 
steps prior to delivering a conclusive response. It’s 
particularly useful for tasks requiring complex logical 
reasoning, such as math problems or advanced 
inference. 

 Role-Playing Prompting: The model is assigned a 
specific role, such as an expert in a given domain, to 
improve the relevance and coherence of responses in 
specialized contexts [40]. 

 AI-Knowledge Prompting: As articulated by J. Liu et al. 
[41], this methodology entails soliciting the model to 
produce knowledge that is specific to a given task, 
which is subsequently integrated into the prompt to 
enhance both the precision and reliability of the 
generated predictions. 
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IV. METHODOLOGY 

Our methodology relies on the use of zero-shot LLMs 
combined with prompting techniques to analyze and classify 
open-ended responses in the context of measuring resistance to 
change, based on the allies strategy. The choice of these 
models is justified by their ability to infer logical relationships 
between texts and recognize classification patterns without 
requiring supervised learning on a specifically annotated 
dataset [33]. However, their performance is highly dependent 
on the formulation of hypotheses and the provided context [42] 
[43]. In order to enhance classification accuracy, we have 
incorporated a prompt engineering methodology aimed at 
optimizing the models' comprehension [44]. 

In the following, we give a brief description of the zero-
shot LLMs selected for our study, and we also describe the 
prompt formulations used, followed by detailing the workflow 
of our proposed approach to measuring resistance to change 
relying on allies strategy. 

A. Models 

In the context of our research, we chose a selection of 
LLMs specialized in zero-shot classification and recommended 
by the Hugging Face platform [45] due to  their performance in 
natural language inference (NLI), namely: 

1) Facebook/bart-large-mnli. The BART model, known 

as Bidirectional and Auto-Regressive Transformers, represents 

an encoder-decoder transformer that integrates the benefits of 

bidirectional encoder models like BERT alongside auto-

regressive decoder models such as GPT [46]. Its variant, 

facebook/bart-large-mnli, has been pretrained on the MultiNLI 

dataset, enabling it to perform excellently in Natural Language 

Inference (NLI) tasks. Its architecture makes it particularly 

well-suited for zero-shot classification, where it evaluates the 

probability that a given text corresponds to a predefined 

hypothesis, a mechanism directly leveraged in our study to 

assign responses to categories of resistance to change. 

2) MoritzLaurer/deberta-v3-large-zeroshot-v2.0 and 

MoritzLaurer/deberta-v3-base-zeroshot-v2.0mnli. eBERTa 

models (Decoding-enhanced BERT with Disentangled 

Attention) are an improvement over BERT and RoBERTa, 

introducing a disentangled representation mechanism that 

more effectively distinguishes words based on their position 

and context [47]. The variants deberta-v3-large-zeroshot-v2.0 

and deberta-v3-base-zeroshot-v2.0, developed by Moritz 

Laurer, are specifically optimized for zero-shot classification. 

They benefit from enhanced masking and more efficient pre-

training, thereby improving their ability to generalize to new 

tasks without explicit supervision. 

3) MoritzLaurer/roberta-large-zeroshot-v2.0. oBERTa 

(Robustly Optimized BERT Pretraining Approach) is an 

improved variant of BERT that relies on longer pretraining 

and better hyperparameter tuning [48]. The roberta-large-

zeroshot-v2.0 version, fine-tuned for zero-shot classification, 

leverages these optimizations to better handle the variability of 

natural language, an essential advantage in our task, where 

employee responses can vary significantly in wording and 

tone. 

4) MoritzLaurer/bge-m3-zeroshot-v2.0. The bge-m3-

zeroshot-v2.0 model is part of the models optimized for 

semantic similarity tasks and zero-shot classification. It relies 

on a combination of advanced semantic representation 

techniques and specific optimizations to improve robustness 

when dealing with unstructured texts and varied formulations 

[4]. 

5) OpenAI/GPT-4. GPT-4 is a multimodal model and one 

of the most advanced developed by OpenAI, outperforming its 

predecessors in terms of contextual understanding, logical 

reasoning and text generation [49]. Unlike specialized models 

such as BART or DeBERTa, GPT-4 is a generalist model, but 

it excels in zero-shot classification tasks thanks to its ability to 

analyze global context and interpret complex formulations. Its 

integration into our study enables us to assess the extent to 

which an ultra-polyvalent model can compete with specialized 

models on a specific task, such as the analysis of resistance to 

change. 

B. Prompt Engineering 

To enhance the zero-shot classification of employees' 
responses while relying on the allies strategy, we have 
developed and tested two types of prompts, namely a 
minimalist prompt and an explicit prompt: 

1) A minimalist prompt. This prompt is limited to essential 

information, represented solely by numeric labels and class 

names corresponding to the synergy and antagonism axes as 

defined in the allies strategy. In this scenario, two sets of 

classes were defined according to this strategy: 

 Synergy (synergy class): "1 Minimal", "2 Interested", "3 
Cooperative", "4 Committed" 

 Antagonism (antagonism class): "1 Conciliatory", "2 
Resistant", "3 Opponent", "4 Irreconcilable" 

This type of prompt aims to evaluate the zero-shot models' 
ability to generalize from minimal class descriptions, without 
providing explicit context about their meaning. In this case, we 
rely entirely on LLM’s internal representation and its pre-
existing knowledge gained from vast textual datasets to 
generalize new classification tasks. This approach is aligned 
with the Zero-Shot Prompting strategy. 

2) An explicit prompt. This approach is based on AI-

Knowledge Prompting [41], where each class (synergy and 

antagonism classes) is enriched with an explicit definition of 

the behaviors associated with each level of synergy or 

antagonism. These descriptions provide the model with a more 

precise contextual framework, thereby facilitating the 

distinction between different classes. To design these AI-

Knowledge Prompts, we used GPT-4 to generate detailed 

class descriptions. Specifically, we formulated an initial zero-

shot prompt containing only the classification labels, and then 

we leveraged GPT-4 to generate definitions specific to each 

category, based on the principles of the allies strategy. These 
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descriptions were subsequently integrated into the final 

explicit prompt to provide a richer contextual framework. 

 Synergy (synergy class): 

o "Follows assigned directives without active 
initiatives", 

o "Follows assigned directives and expresses verbal 
interest in the project, but without active initiatives", 

o "Takes active initiatives", 

o "Takes active initiatives with a high level of 
responsibility". 

 Antagonism (antagonism class): 

o "Supports the project’s decisions and approaches", 

o "Opposes the project or certain decisions/approaches 
but is open to discussion", 

o "Opposes the project or certain decisions/approaches 
and is less flexible in discussions", 

o "Opposes the project or certain decisions/approaches 
and is inflexible in discussions". 

This type of prompt aims to examine how the detail of class 
descriptions affects the efficiency of zero-shot models. 

C. Proposed Approach for Measuring Resistance to Change 

In this section, we provide an overview of the methodology 
employed in our study, illustrated in Fig. 2, detailing the steps 
taken to investigate the effectiveness of zero-shot LLMs 
combined with prompting techniques in measuring resistance 
to change using the allies strategy. We adopted a multi-task 
classification approach, with each task focusing on a different 
aspect of employees' dynamics regarding digital transformation 
projects: 

 Classification based on Synergy Level: The objective of 
this task is to categorize employees by their degree of 
engagement and collaboration within the project. The 
labels range from "Minimalist" to "Committed". This 
classification helps identify the most motivated team 
members and those who may require additional 
motivation or incentives. 

 Classification based on Antagonism Level: focuses on 
analyzing the degree of resistance or opposition 
exhibited by employees regarding project initiatives. 
The classifications range from 'Conciliatory' to 
'Irreconcilable', thus enabling the recognition of 
resistance levels that could affect group dynamics and 
hinder project progress. 

 Final classification: This task synthesizes results 
derived from the initial two classifications to construct a 
holistic appraisal of each employee. It amalgamates 
both synergistic and antagonistic dimensions to yield a 
comprehensive evaluation of employees' attitudes 
towards digital transformation initiatives. 

Based on a dataset containing open-ended employee 
responses, previously annotated with synergy and antagonism 
classes, we proceed as follows: 

The first two tasks, namely classification by Synergy Level 
and Classification by Antagonism Level, referred to both 
simultaneously in Fig. 2 as task 1 and task 2, follow the same 
process, detailed below: 

1) Preprocessing of open-ended responses. Each open-

ended response provided by an employee is standardized to 

ensure better understanding by the language models. This step 

includes text cleaning (removal of special characters, 

unnecessary stopwords if necessary) and conversion into a 

standardized format suitable for input into zero-shot 

classification models. 

2) Prompt engineering. Two variants of prompts are used 

to guide the zero-shot classification models: 

a) Minimalist prompt. Contains only the classification 

labels. 

b) Explicit prompt. Adds detailed descriptions of the 

classes to improve the model's interpretation. 

3) Zero-shot classification with LLMs. Each open-ended 

response is submitted to a large language model (LLM) 

specialized in zero-shot classification, accompanied by the 

selected prompt (either minimalist or explicit). The model 

reformulates the task as a natural language inference (NLI), 

where the open-ended response is considered the "premise" 

and each possible class is treated as a "hypothesis". It then 

evaluates the probability that the response implies each 

hypothesis, assigning a confidence score to each class. Finally, 

the class with the highest probability is selected as the final 

label assigned to the open-ended response. 

4) Performance evaluation of classification. The 

classification performance is evaluated by comparing the 

predicted classes to the actual classes annotated in the dataset. 

The metrics calculated are: 

 Confusion Matrix 

 F1-score 

 Recall 

 Accuracy 

 ROC-AUC Curve 

Regarding the third classification task (task 3 in Fig. 2), 
which aims to assign the final class of resistance to change, the 
process is as follows: Once the synergy and antagonism classes 
have been determined according to the steps of the first two 
tasks, they are combined based on a pre-established matrix 
derived from the allies’ map. This combination allows for the 
assignment of a final class representing the overall level of 
resistance to change. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

552 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 2. Overview of the approach for measuring resistance to change.

As with the previous tasks, the predicted final class is 
compared to the actual class annotated in the dataset. 
Performance evaluation is carried out using the same metrics as 
the previous tasks. 

V. EXPERIMENTS 

To validate the proposed methodology, we executed a 
thorough array of experiments intended to measure the 
effectiveness of the selected zero-shot Large Language Models 
(LLMs) in precisely classifying employee opinions regarding 
the context of digital transformation, derived from their open-
ended text replies. This section elucidates the experimental 
framework, encompassing the dataset utilized, the evaluative 
methodology employed to benchmark the models, and the 
metrics implemented to evaluate their efficacy. The design of 
these experiments aimed to investigate both the efficacy of the 
prompting strategies and the pertinence of the allies strategy 
framework in effectively capturing the intricate expressions of 
resistance to change. 

A. Dataset 

As part of our study aimed at classifying employees based 
on their synergy and antagonism towards a digital 
transformation project, we built a database by collecting 
approximately one hundred open-ended responses directly 
from a company that recently introduced digital initiatives. 
This data collection allowed us to gather a hundred employee 
testimonies expressing their perceptions, concerns, and levels 
of adherence to these changes. Each open-ended response was 
then carefully annotated by change management experts in 
accordance with the classes defined in the allies strategy. 
Specifically, three labels were assigned to each response: 

 A synergy level, indicating the degree of alignment and 
positive engagement of the employee towards the 
digital initiative. 

 An antagonism level, reflecting the resistance 
expressed, whether passive or active, towards the 
change. 

 A global resistance to change level, resulting from the 
combination of the first two classifications as defined in 
the Allies Strategy Matrix. 

These manual annotations are an essential benchmark for 
evaluating the performance of the models used, enabling us to 
measure their ability to reproduce expert judgments in the 
analysis of resistance to change. 

The distribution of employee responses by level of synergy 
and antagonism is described in Fig. 3: 

 
Fig. 3. Distribution of employee responses by level. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

553 | P a g e  

www.ijacsa.thesai.org 

B. Evaluation Process 

Our evaluation process, as described in the methodological 
section, will be applied to six models specialized in zero-shot 
classification, using two distinct prompt variants for each 
tested model: a minimalist prompt containing only the 
classification labels and an explicit prompt providing detailed 
descriptions of the classes to enhance the model’s 
interpretation. In other words, each model is required to 
classify the open responses of the dataset according to the level 
of synergy corresponding to task 1 and then according to the 
level of antagonism corresponding to task 2, in line with the 
workflow described in the methodology section. These 
classifications, predicted by the models, will be generated first 
using the minimalist prompt and then the explicit prompt. 
Finally, once the synergy and antagonism classes have been 
determined according to the steps of the first two tasks. Task 3 
is started by combining the results of the first two tasks based 
on a pre-established matrix derived from the allies strategy. 
This combination makes it possible to assign a final class 
representing the overall level of resistance to change for each 
open response. 

C. Evaluation Metrics 

To validate the performance of the models, we use a 
method structured in two main steps: 

1) Evaluation by task. Evaluation by task consists of 

comparing the classifications predicted by the model with the 

actual classifications annotated in the dataset for each of the 

tasks and prompts defined in our classification workflow. For 

this, we use confusion matrices to visualize the distribution of 

errors made by the model, and we also use standard 

classification metrics, notably: 

a) Precision: This metric is crucial for measuring the 

reliability of the model’s positive classifications. In our 

context, a high precision score indicates that when the model 

identifies a specific stance toward change, it is unlikely to be 

incorrect. This is particularly important to avoid 

misclassifications that could distort the analysis of resistance 

and support for digital initiatives. 

b) Recall: This metric evaluates the model's proficiency 

in detecting all affirmative instances present within the 

dataset. A high recall score is essential in our study to ensure 

that minority, but potentially critical, stances are not 

overlooked. This helps to provide a more comprehensive 

understanding of the dynamics of resistance and synergy 

among employees. 

c) F1-score: By combining precision and recall, the F1-

score balances these two aspects, particularly in cases where 

class distribution is imbalanced. In our analysis, this metric is 

particularly relevant, as some stance categories may be 

underrepresented, making it necessary to use a measure that 

penalizes both false positives and false negatives. 

d) Accuracy: This metric assesses the ratio of correctly 

predicted classifications relative to the total predictions 

generated by the model. While it offers a general measure of 

reliability, it may not fully reflect performance in cases of 

class imbalance. 

2) Comparative evaluation of models. Beyond analyzing 

individual classification tasks, we conduct a comprehensive 

comparison of the models using two key performance 

indicators: 

a) The F1 score for the final classification task: This 

indicator summarizes the model's overall ability to balance 

precision and recall in assigning final classes. 

b) Receiver Operating Characteristic (ROC) curve and 

Area Under the Curve (AUC): Through the examination of the 

equilibrium between true positives and false positives, the 

AUC score serves to ascertain the model's ability to 

consistently differentiate among various levels of resistance, 

which is imperative within our framework, where a nuanced 

classification is essential for informed decision-making in 

developing a change management plan tailored to each 

category. 

By combining these different metrics, we are able to 
identify the best-performing model best suited to our problem, 
thus guaranteeing accurate and exploitable results for the 
analysis of resistance to change. 

VI. RESULTS AND DISCUSSION 

In this section, we evaluate the ability of the models to 
correctly classify responses according to the defined tasks 
(synergy, antagonism). For each task and each type of prompt, 
we have calculated the standard classification metrics: 
precision, recall, F1 score and accuracy, along with confusion 
matrices for fine-grained error analysis. 

The performance of the models using both types of prompts 
is presented in Table I. Metrics are calculated using the 
“macro” method, which means that we calculate precision, 
recall, accuracy and F1 score for each class independently, then 
average them. This approach better reflects the overall 
performance of the model across all classes. 

The preliminary analysis of the results highlights the 
following points: 

  Minimalist prompt: Overall, the model’s performance 
is moderate to low on both tasks when using a 
minimalist prompt (see Table I). This trend suggests 
that overly basic formulations do not provide enough 
context or information to the models, limiting their 
ability to correctly distinguish between classes. 

 Explicit prompt: Adding more detailed descriptions 
significantly improves performance, particularly in 
terms of the F1 score, as illustrated in Fig. 4 and Fig. 5 
for nearly all models. This improvement is particularly 
notable for the DeBERTa-v3-large-zeroshot model, 
which achieves the highest F1 scores on both tasks, 
demonstrating the importance of a well-structured 
prompt to optimize classification. 

The results also show that the explicit prompt yields the 
best overall performance, with a notable increase in both 
precision and recall as shown in Table I. 
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TABLE I.  PERFORMANCE METRICS 

Model Prompt 
Task 1: Synergy Classification Task 2: Antagonism Classification 

Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy 

OpenAI/GPT4 

Minimalist 0.52 0.43 0.40 0.46 0.64 0.50 0.45 0.56 

Explicit 0.70 0.62 0.60 0.65 0.72 0.60 0.60 0.65 

Facebook/bart-large-

mnli 

Minimalist 0.35 0.32 0.22 0.32 0.26 0.43 0.31 0.43 

Explicit 0.53 0.46 0.44 0.47 0.60 0.49 0.42 0.56 

MoritzLaurer/deberta-

v3-large-zeroshot-v2.0 

Minimalist 0.46 0.46 0.40 0.50 0.41 0.45 0.38 0.44 

Explicit 0.76 0.76 0.76 0.77 0.84 0.79 0.80 0.81 

MoritzLaurer/roberta-

large-zeroshot-v2.0 

Minimalist 0.45 0.44 0.42 0.47 0.56 0.45 0.45 0.47 

Explicit 0.67 0.64 0.64 0.66 0.66 0.67 0.65 0.69 

MoritzLaurer/deberta-

v3-base-zeroshot-v2.0 

Minimalist 0.42 0.33 0.28 0.31 0.55 0.47 0.41 0.45 

Explicit 0.51 0.47 0.44 0.50 0.66 0.54 0.53 0.53 

MoritzLaurer/bge-m3-

zeroshot-v2.0 

Minimalist 0.38 0.37 0.29 0.38 0.39 0.35 0.35 0.33 

Explicit 0.41 0.47 0.41 0.48 0.59 0.47 0.45 0.48 
 

 
Fig. 4. F1 Score Results for Task 1 according to both prompts. 

 
Fig. 5. F1 Score Results for Task 2 according to both prompts. 

Based on the results shown in Fig. 4 and Fig. 5, it is clear 
that the explicit prompt (referred to in Fig. 4 and 5 as Prompt2) 
provides better performance than the minimalist prompt 
(referred to in Fig. 4 and 5 as Prompt1). To further analyze 
this, we will focus solely on the explicit prompt and examine 
the errors made by the models on tasks 1 and 2 using confusion 
matrices. These matrices allow us to visualize the 
correspondence between the model predictions and the actual 
classes, highlighting classification errors. The goal is to 
identify the models that achieve the best results and those that 
exhibit recurring errors. 

To do this, we will display and analyze the confusion 
matrices of the different models on these two tasks in order to 
visualize the distribution of errors and better understand the 
respective performance of each model. 

For task 1 related to classification according to the synergy 
axis, we selected the confusion matrices of the six models 
analyzed, as shown in Fig. 6. 

The analysis of the confusion matrices reveals several types 
of recurring errors. Firstly, some models tend to confuse 
intermediate classes, particularly "Cooperative" and 
"Interested", suggesting difficulty in capturing the nuances 
between these categories. For instance, BART-large-mnli and 
RoBERTa-large-zeroshot frequently confuse these two classes, 
while DeBERTa-v3-base-zeroshot shows notable errors by 
incorrectly assigning "Cooperative" responses to "Committed". 

Additionally, the BGE-m3-zeroshot model appears to 
struggle with correctly identifying the "Minimalist" class, 
redistributing its predictions toward other categories. In 
contrast, DeBERTa-v3-large-zeroshot and GPT-4 stand out 
with better classification performance, with DeBERTa-v3-
large-zeroshot displaying slightly higher accuracy. However, 
errors persist in the intermediate classes, indicating a challenge 
in clearly differentiating these categories. 

For task 2, related to classification according to the axis of 
antagonism, we adopt the same approach by generating the 
confusion matrices of the six models, as illustrated in Fig. 7. 

Based on the analysis of the confusion matrices in Fig. 7, it 
is observed that DeBERTa-v3-large and GPT-4 stand out for 
their ability to accurately classify the extreme classes, with 
high precision for the categories "Conciliatory" and 
"Resistant". DeBERTa-v3-large demonstrates a more stable 
classification across all intermediate classes compared to the 
other models, while GPT-4 shows some confusion in the 
categories "Opponent" and "Irreconcilable". BART-large-mnli 
and RoBERTa-large-zeroshot also manage to correctly identify 
the majority classes but exhibit more pronounced confusion in 
differentiating the intermediate categories. DeBERTa-base and 
BGE-m3-zeroshot, on the other hand, seem to struggle more 
with distinguishing the "Opponent" and "Irreconcilable" 
classes, with a more scattered distribution of errors. 
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Fig. 6. Confusion matrices for LLM classification results of Task 1. 

 
Fig. 7. Confusion matrices for LLM classification results of Task 2. 
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The results show that the DeBERTa-v3-large-zeroshot 
model stands out as the best model in terms of F1-score and 
precision for both synergy classification and antagonism 
classification tasks, particularly under the explicit prompt. This 
reflects a good balance between precision and recall. In 
comparison with modern language models like OpenAI/GPT-
4, DeBERTa-v3-large-zeroshot achieves more robust results on 
these tasks, suggesting that models specifically designed for 
zero-shot tasks can surpass models like OpenAI/GPT-4 in 
certain classification contexts without requiring additional fine-
tuning. GPT-4, on the other hand, although slightly behind in 
terms of F1-score, boasts significantly higher precision. This 
means it generates fewer false positives, demonstrating its 
ability to minimize false predictions and better handle errors. In 
addition, RoBERTa-large-zeroshot has a slightly higher F1-
score than GPT-4, but lower precision. GPT-4 therefore, 
remains more accurate, illustrating a difference in the way 
these models optimize their classification decisions. 

In contrast, the Facebook/bart-large-mnli and bge-m3-
zeroshot-v2.0 models show significantly lower performance in 
F1-score and precision, indicating greater difficulty in correctly 
capturing the right classes and reducing classification errors. 

 
Fig. 8.  ROC curves for LLMs. 

These discussed findings are confirmed via a review of the 
Receiver Operating Characteristic Area Under the Curve (ROC 
AUC) measurements, which gauge the ability of the models to 
separate positive from negative classifications successfully (see 
Fig. 8). This analysis reveals that GPT-4 (AUC = 0.80) offers a 
better discrimination capacity than RoBERTa-large-zeroshot 
(AUC = 0.76). In fact, although its F1-score is lower, its high 
precision enables it to achieve a higher AUC, testifying to 
greater robustness in class distinction. However, DeBERTa- 
v3-large-zeroshot (AUC = 0.88) outperforms all other models, 
confirming that it simultaneously maximizes both sensitivity 
and specificity, making it the top-performing model in 
classification. In contrast, models like Facebook/bart-large-
mnli (AUC = 0.66) and MoritzLaurer/bge-m3-zeroshot-v2.0 
(AUC = 0.59) show weaker performance, with behavior closer 

to a random model in their ability to differentiate classes 
correctly. This is also reflected in their lower F1-scores and 
precision, indicating difficulties in accurately classifying 
positive classes. 

VII. CONCLUSION AND PERSPECTIVES 

This study proposes a new approach for analyzing 
resistance to change in the context of digital transformation, 
relying on zero-shot language models (LLMs) and prompting 
techniques. Unlike traditional methods, which mainly use 
closed-ended questionnaires and binary classifications, limiting 
the expression and diversity of employee perspectives, our 
approach leverages the allies strategy to provide a more 
granular segmentation of employees' stances towards change. It 
does so by using open-ended responses for a more detailed and 
nuanced analysis. The use of specialized zero-shot LLMs in 
natural language inference, combined with specific prompts, 
allows for the automatic classification of these open-ended 
responses without the need for prior training on specific data. 

To evaluate the performance of our methodology, we 
conducted an experiment on an annotated dataset consisting of 
a hundred employee responses to analyze the models' ability to 
accurately distinguish the expressed attitudes. Experimental 
results highlighted the importance of prompt formulation in 
improving classification accuracy. Specifically, we 
demonstrated that using explicit prompts optimizes model 
performance, particularly DeBERTa-v3-large-zeroshot, which 
emerged as the best-performing model in terms of F1-score and 
discriminatory power (AUC), surpassing GPT-4. These results 
also emphasize that, while generalist models like 
OpenAI/GPT-4 remain competitive, models specifically 
designed for zero-shot tasks can better meet the requirements 
of fine classification without requiring additional fine-tuning. 

These findings open up several avenues for improvement. 
One avenue would be to refine the prompting instructions to 
better capture the nuances of employee responses, thereby 
optimizing model performance. Additionally, exploring hybrid 
approaches that combine zero-shot learning with supervised 
learning could further enhance the classification of stances 
toward change. Beyond textual analysis, one major research 
hurdle is blending in various assessment methods, like 
responses that rely on spoken language. By allowing 
employees to provide spoken feedback, it is possible to 
improve the richness of the input data while making the 
assessment process more inclusive for people with limited 
writing skills. Finally, applying this methodology to larger and 
more diverse datasets would allow for evaluating its 
generalization to different organizational contexts. 

Thus, this study demonstrates that zero-shot LLMs, 
coupled with prompting techniques and the allies strategy, 
represent a step forward in automating the assessment of 
resistance to change, providing businesses with a more 
effective decision-making tool in supporting their digital 
transformations. 
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