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Abstract—Road traffic accidents are a significant public 

health issue, particularly in developing nations, where 

infrastructure and traffic monitoring systems may be limited. 

Risky situations including sudden stopping, lane switching, and 

near-misses can lead to accidents. In this study, we present an 

original approach for recognizing risky situations in road traffic 

sequences using Video Masked Autoencoder (VideoMAE), a self-

supervised deep learning model built upon Vision Transformer 

architecture. By applying a pre-trained VideoMAE on a large 

dataset of videos and fine-tuning it on labeled traffic sequences 

categorized as risky or non-risky, our model learns 

spatiotemporal features without requiring extensive manual 

labeling. The method achieves high accuracy on testing data, 

demonstrating strong potential for high-risk detection with an 

accuracy of 95%. This study highlights the promise of self-

supervised video representation learning for real-world safety 

applications and paves the way for the development of intelligent 

traffic monitoring and crash prevention tools. 
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I. INTRODUCTION 

Road accidents are a significant public health concern, with 
an estimated 1.24 million lives lost to road traffic accidents 
annually, according to the World Health Organization 
(WHO)[1]. Hazardous road traffic situations, including rapid 
braking, lane changes, and near-misses, can lead to accidents. 
Therefore, it is crucial to develop techniques for detecting and 
preventing such situations. 

Computer vision and artificial intelligence have advanced 
significantly in recent years, particularly in applications 
requiring automated interpretation of visual scenes. Traffic 
scene analysis is one such domain, playing a critical role in 
road safety and intelligent transportation systems. While 
notable progress has been made, detecting and predicting 
hazardous situations—such as sudden braking, lane changes, or 
near-crash events—remains challenging due to the dynamic 
and complex nature of real-world traffic environments. 

Despite modern advances, existing approaches exhibit 
several limitations. Most rely on supervised learning, which 
requires large, labeled datasets that are both costly and time-
consuming to produce. Furthermore, many methods focus 
primarily on object recognition (e.g., identifying pedestrians or 
vehicles) while overlooking the temporal dynamics and 
interactions that are crucial for assessing risk in time-varying 

scenes. As a result, there is a gap in the literature regarding 
models capable of learning meaningful patterns from unlabeled 
video data or operating effectively with limited annotated 
datasets. 

To address these challenges, self-supervised learning 
approaches offer a promising alternative. By reducing or 
eliminating the need for manual labeling, they present a more 
efficient and scalable solution for training models in complex 
traffic scenarios. Video Masked Autoencoder (VideoMAE) is 
one of the self-supervised learning techniques that has proved 
to be useful for many different tasks [2], including motion 
estimation, object detection, and video classification. 
VideoMAE learns video representations by predicting masked 
patches in the input videos. These learned representations 
prove valuable for various downstream tasks, including 
detection, classification, and segmentation. 

In this study, we propose a method based on VideoMAE 
for detecting risky situations in road traffic sequences. By 
leveraging VideoMAE’s ability to learn rich spatiotemporal 
features from video data. We train the model on a set of road 
traffic sequences, which are labeled as risky or non-risky. After 
the model is trained, it can be employed to find risky 
conditions in new road traffic sequences. This method not only 
reduces the reliance on labeled datasets but also improves 
generalization across diverse environments. 

Our contributions are as follows: 

 We propose a novel method to detect risky situations in 
road traffic sequences using VideoMAE. 

 We train a VideoMAE model on a small dataset of road 
traffic sequences (fine-tuning). 

 We evaluate our model on a held-out test set. 

The rest of this study is organized as follows: In Section II 
(Related Work), we review existing approaches used for 
detecting risky situations in road traffic and highlight their 
limitations; Section III (Method) introduces the VideoMAE 
model, detailing its architecture and the preprocessing steps 
applied to the video data; Section IV (Experiment and Results) 
presents the experimental setup as well as the quantitative and 
qualitative results; Section V (Discussion) provides an analysis 
of the results; and Section VI (Conclusion) summarizes the key 
findings of our research and suggests areas for further 
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exploration to enhance the model's performance and 
applicability in real-world traffic safety applications. 

II. RELATED WORK 

There are a number of existing methods for detecting risky 
situations in road traffic [3], [4], [5], as well as others that 
consider road accident classification a pivotal field of study [6], 
while some studies have focused on driving behavior [7], [8]. 
These methods can be broadly divided into two categories: 
traditional methods and machine learning methods. 

The classical approach to detecting hazardous road traffic 
situations relies on handcrafted features, such as vehicle speed, 
position, and acceleration [9]. These features are then used to 
train a classifier model to predict the risk level of a given 
situation. 

Machine learning algorithms for detecting dangerous 
situations on the road often employ deep learning models that 
automatically learn features from the data [5], [10]. These 
models are typically trained on small datasets of traffic 
monitoring videos [11]. The most widely used machine 
learning techniques for this task are Convolutional Neural 
Networks (CNNs)[11] and Recurrent Neural Networks (RNNs) 
[12]. CNNs are deep learning models particularly well suited 
for processing images and videos [13]. They have proven 
effective in various road traffic safety applications, such as 
vehicle detection, road sign recognition, and lane detection[11]. 
RNNs, on the other hand, are better suited for tasks involving 
sequential data, such as traffic flow forecasting and vehicle 
tracking [14]. 

Recently, there has been growing evidence of the success 
of self-supervised learning in a variety of computer vision tasks 
[15], [16], including object detection, motion estimation, and 
video classification. Self-supervised learning techniques 
automatically learn representations from data without the need 
for human-labeled annotations. One of the most widely used 
self-supervised learning techniques is VideoMAE[2]. 
VideoMAE learns to represent videos by predicting masked-
out patches within the video frames. These learned 
representations can then be used for several downstream tasks, 
including classification, detection, and segmentation. 

To the best of our knowledge, VideoMAE has not yet been 
applied to detect unsafe conditions in road traffic sequences. 
However, its demonstrated success in other domains suggests 
that it could be an effective model for identifying hazardous 
situations in traffic scenes. 

In this study, we explore the use of VideoMAE for 
detecting risky situations in road traffic sequences. We fine-
tune the VideoMAE model on a dataset of road traffic 
sequences labeled as either "risky" or "non-risky". Once 
trained, the model can be used to detect hazardous conditions 
in previously unseen traffic sequences. We believe that this 
approach could become a valuable tool for developing 
innovative safety solutions in the domain of road traffic 
management. 

III. METHOD 

In this section, we present our proposed approach, which 
involves fine-tuning the VideoMAE model using a dataset of 
risky road traffic situations. The model achieved an accuracy of 
0.95 on both the validation and testing datasets. Fig. 4 
illustrates the diagram of the proposed technique. First, we 
review VideoMAE[2], which is based on ImageMAE[17]. 

A. Masked Autoencoder (ImageMAE) 

The Masked Autoencoder (MAE) [17] is a neural network 
architecture designed to learn meaningful latent representations 
from data and map them to a high-dimensional space using 
large datasets. It operates on the principle of randomly masking 
portions of the input image and then reconstructing the missing 
regions. The model follows a key design principle: an 
asymmetric encoder–decoder architecture. The encoder 
processes only the visible (unmasked) patches, while the 
lightweight decoder reconstructs the complete image using the 
latent representations along with the mask tokens. 

It randomly masks out 75% of the grid patches for 
reconstruction, creating a challenging and meaningful self-
supervised learning task. Masked autoencoders have proven to 
be scalable self-supervised models for a wide range of 
computer vision applications. This strategy is widely adopted 
because of its simplicity and effectiveness. 

B. Video Masked Autoencoder (VideoMAE) 

Video Masked Autoencoder (VideoMAE) [2] is an efficient 
self-supervised learning framework for video pre-training tasks 
that promotes the extraction of more informative video 
representations. Remarkably, it delivers strong performance 
even when trained on limited datasets, without relying on 
additional external data (i.e., fully self-supervised). The model 
is inspired by ImageMAE [17]. 

VideoMAE performs video self-supervised learning using a 
straightforward Vision Transformer (ViT) [18] backbone 
combined with a basic masked autoencoder. Due to its 
extremely high masking ratio, VideoMAE achieves a 
significant reduction in pre-training time compared to 
contrastive learning techniques, approximately a 3.2× speedup. 

The architecture of VideoMAE includes three key 
components: an encoder network, a decoder network, and a 
masking mechanism. The encoder processes input video 
frames, extracting hierarchical features that capture both spatial 
and temporal dependencies within the sequences. These 
encoded features are then passed to the decoder, which 
reconstructs the original video frames while minimizing 
reconstruction error. Fig. 1 illustrates the model architecture 
based on VideoMAE. This self-supervised approach enables 
VideoMAE to effectively capture nuanced behaviors and subtle 
indicators of risky situations in traffic videos, such as sudden 
braking, lane changes, wrong-direction driving, or accidents. 
Moreover, its ability to learn from unlabeled data reduces the 
dependency on large annotated datasets, making it scalable and 
adaptable to various traffic scenarios. 
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Fig. 1. Used model architecture based on video masked autoencoder. 

Given these advantages, we assert that VideoMAE has 
strong potential as a powerful tool for detecting risky situations 
in road traffic sequences. 

C. Data collection (Datasets) 

To validate the effectiveness of the proposed model, we 
conduct experiments on large-scale datasets. Due to the limited 
availability and quality of publicly available datasets related to 
risky situations in road traffic, we collected and created our 
own data from various sources. This dataset comprises a 
combination of publicly available traffic video datasets. Public 
datasets such as the Car Crash Dataset (CCD), which is 
designed for traffic accident anticipation [14]; XD-
Violence[19], a large-scale audio-visual violence detection 
dataset; and CADP [20], a dataset for accident analysis based 
on CCTV traffic cameras, provide a rich collection of 
annotated video sequences captured from various traffic 
scenarios. These datasets offer diverse examples of road 
conditions, vehicle interactions, and environmental factors. 
Moreover, the cameras continuously record traffic flow, 
capturing various risky situations such as sudden lane changes, 
speeding, and near-miss collisions. Fig. 2 shows some samples 
of risky situations from the dataset used. 

 
Fig. 2. Samples of various risky situations on traffic roads from the used 

dataset. 

D. Preprocessing 

The collected video data undergoes several preprocessing 
steps, including frame extraction, resolution adjustment, and 
noise reduction, to ensure high-quality inputs for the 
VideoMAE model. This combination of diverse and 
comprehensive data sources enables a robust evaluation of the 
model’s capability to detect risky situations in various traffic 
contexts. 

The dataset contains videos with variable input frame sizes. 
Therefore, all videos are resized to a target resolution of 

224×224 pixels. For the VideoMAE model, each input clip 
consists of sixteen frames. We use a frame rate of four, which 
defines the stride or interval between selected frames. From 
each video, we extract a single clip. 

For training data transformations, we apply random 
cropping, pixel normalization, uniform temporal subsampling, 
and random horizontal flipping with a probability of 0.5. For 
the validation and evaluation datasets, we apply the same 
transformation pipeline, excluding random cropping and 
horizontal flipping, to ensure consistency during evaluation. 

All preprocessing and data augmentation transformations 
are implemented using TorchVision’s transforms module. 

E. Training and Validation 

The training process of the model begins with the 
preparation and preprocessing of the dataset, which includes 
frame extraction, resizing, and normalization. Typically, the 
dataset is divided into three subsets: training, validation, and 
test sets. The training set is used to train the VideoMAE model 
and contains a diverse range of traffic sequences, allowing the 
model to learn, reconstruct, and understand the underlying 
patterns in the data. 

The validation set plays a crucial role in adjusting 
hyperparameters and monitoring the model's performance 
during training. The test set, which remains completely 
separate from the training and validation sets, serves as the 
final benchmark to assess the model's generalization ability to 
unseen traffic scenarios and its accuracy in detecting risky 
situations. Fig. 3 shows the distribution of data across each 
class for the three subsets of the dataset. 

 
Fig. 3. Distribution of the used dataset. 
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Fig. 4. Methodology diagram. 

F. Evaluation Metrics 

In this section, we present the metrics used to assess our 
model and analyze the implemented method. 

Accuracy: It is an evaluation metric that measures the ratio 
of correctly classified sequences to the total number of 
sequences. It provides an assessment of how well the model’s 
predictions align with the ground-truth annotations. In the 
context of video classification, accuracy is defined as the 
proportion of video sequences that are correctly classified into 
their actual categories. It reflects the precision with which the 
predicted labels match the true labels across the video dataset. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑚𝑎𝑑𝑒
 (1) 

Precision: It is the ratio of true positive predictions to the 
total number of positive predictions made by the model. It 
indicates how many of the instances predicted as positive are 
actually correct, providing insight into the reliability of the 
model’s positive classifications. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2) 

Recall: It is a measuring metric that is the ratio of the true 
positives that were detected to the total actual number of the 
same class. It shows how good the model is at detecting 
instances of all categories. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3) 

F1-score: It is the harmonic mean of precision and recall. It 
provides a balanced measure of a model's performance. It is 
especially useful when there is an uneven class distribution or 
when both false positives and false negatives need to be 
considered equally important. 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 x 
𝑟𝑒𝑐𝑎𝑙𝑙 x 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

Confusion Matrix: The confusion matrix is an effective tool 
for evaluating classification tasks, as it provides a detailed 
summary of the model's performance. It records the number of 

true positives, true negatives, false positives, and false 
negatives, offering a comprehensive view of how well the 
model performs across different classes. This information 
enables the straightforward calculation of key evaluation 
metrics such as accuracy, precision, recall, and F1-score. 

IV. EXPERIMENT AND RESULTS 

A. Experiment and Results 

The training of MAE models, especially in the context of 
video recognition, presents a substantial computational 
challenge, limiting access for researchers with limited 
resources. For instance, training a standard VideoMAE model 
on Kinetics-400 [21] requires a significant investment of up to 
5.6 days with the support of 64 GPUs [22]. Therefore, we fine-
tune a pre-trained VideoMAE model, which was pre-trained on 
the Kinetics-400 dataset for approximately 1600 epochs 
without any additional data. We add a randomly initialized 
classification head on top of the pre-trained encoder and fine-
tune the model on a labeled dataset of risky situations. 
Additionally, we initialize the feature extractor associated with 
the model. 

As a risk detection network, we aim to detect risky 
situations in road traffic sequences using VideoMAE, which is 
based on Vision Transformer [18]. The performance evaluation 
of the model on the Risky Road Traffic dataset showed the best 
detection performance, achieving an accuracy of 0.9 with the 
masking strategy. 

We train our model using the PyTorch framework with an 
environment of 12GB of RAM and a GPU (Nvidia Tesla T4) 
to expedite computation and handle the complexity of video 
data processing. 

The hyperparameter configuration for the VideoMAE 
model was carefully selected to optimize performance while 
maintaining computational efficiency. The Adam optimizer 
[23] was chosen for its ability to adaptively adjust learning 
rates during training. The learning rate was initially set to 5e-5, 
a value found to provide an optimal balance between fast 
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learning and avoiding overfitting. A weight decay of 0.05 was 
implemented to regularize the model and reduce overfitting 
potential by penalizing large weights and encouraging 
generalization. The batch size was set to two to prevent out-of-
memory errors while maintaining a balance between 
computational resource limitations and gradient quality 
requirements. The model was trained for ten epochs, a duration 
sufficient for learning useful patterns without overfitting risk. 
A summary of these hyperparameters is provided in Table I. 

TABLE I.  THE HYPERPARAMETERS OF THE MODEL 

Hyperparameter Value 

Optimizer Adam 

Weight decay 0.05 

Learning rate 5e-5 

Batch size 2 

Epochs 10 

This configuration enabled effective learning from traffic 
video sequences, achieving high accuracy in risky situation 
detection while maintaining robustness across diverse traffic 
scenarios. 

B. Results 

The experimental results on benchmark datasets 
demonstrate that our approach, which has minimal 
computational cost and efficient data, performs well in the 
unsafe situation identification task. 

 
Fig. 5. Overview of the model’s training process. 

Fig. 5 presents an extensive description of the training of 
the model by tabulating the training loss, validation loss, and 
validation accuracy at each of the ten epochs. The training loss 
column follows the model's performance on the training data, 
showing an overall decline as the model improves at 
reconstructing the frames of the videos and recognizing risky 
situations. The validation loss column reports the model's 
validation set performance, which indicates how the model 
generalizes to new data after each pass through the epochs. The 
validation accuracy column reports the ratio of correct 

identification of risky situations on the validation set and is an 
unambiguous metric of the success of the model. Fig. 5 
provides an overall trend of increasing validation accuracy as 
training advances, which flattens towards the end epochs, 
indicating the model's success at generalization of learned 
features. These metrics, together, provide a complete 
perspective on the learning and performance of the model 
during the training period. 

Table II shows an overall assessment of the model's 
performance through various important metrics: Precision, 
Recall, F1-score, and Accuracy. 

TABLE II.  EVALUATION MODEL 

Metric Value 

Precision 0.960 

F1-score 0.955 

Recall 0.954 

Accuracy 0.95 

Precision at 0.960 shows the model's capacity to accurately 
detect true instances of risky situations and hints at high 
accuracy with few false positives. 

Recall at 0.954 indicates the model's capacity to detect the 
majority of actual risky situations and shows that it is efficient 
enough to capture most of the dangerous events in the traffic 
sequences. 

The F1-score, determined as the harmonic mean of 
Precision and Recall, is at 0.955 and offers a balanced 
evaluation of the model's precision and recall performance. 

Lastly, accuracy at 0.950 is the overall ratio of correctly 
classified instances, whether risky or non-risky. This high 
accuracy is an attestation to the model being consistent 
regardless of different scenarios. 

All these metrics together illustrate the good performance 
of the model in detecting and classifying risky situations on the 
road successfully and verify its usability for real-world traffic 
safety improvement. 

 
Fig. 6. Model evaluation using confusion matrix. 
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Fig. 6 indicates that the confusion matrix offers an 
insightful analysis of the model's performance by classifying 
the test results into true positives, true negatives, false 
positives, and false negatives. 

The matrix shows that: 

 The model successfully identified 44% of risky 
situations as true positives, demonstrating its strong 
capability to detect risky conditions in traffic sequences. 

 The model correctly classified 51% of non-risky 
situations as true negatives, showing its good capability 
to identify safe conditions without false alarms. 

 Notably, the model produced 0% false positives, 
meaning it never incorrectly labeled safe conditions as 

risky - a crucial factor for building confidence in the 
system's alerts. 

 There were 4.44% false negatives, representing 
instances where the model failed to detect actual risky 
situations. 

The trained model was tested on several video sequences to 
evaluate the proposed approach, and the results were collected 
and analyzed. The method demonstrates successful 
identification of dangerous traffic conditions in surveillance 
videos with 95% accuracy. 

Fig. 7 illustrates the detection accuracy across multiple 
video sequences, showing that the model predicts correct 
situations with high probability. 

 

Fig. 7. Illustrations of many detection examples accompanied by the probability. 

V. DISCUSSION 

The results obtained from the model highlight its strong 
potential to enhance traffic safety through the accurate 
detection of risky situations in road traffic sequences. The 
model's high Precision of 0.960 indicates its ability to correctly 
identify hazardous situations with minimal false alarms, which 
is critical in preventing unnecessary interventions. The Recall 
of 0.954 reflects the model's effectiveness in capturing nearly 
all actual risky situations, ensuring that critical events are not 
overlooked. The F1-score of 0.955 demonstrates a well-
balanced performance between Precision and Recall, 
confirming that the model maintains consistency in identifying 
and classifying risks. Additionally, the accuracy of 0.95 
indicates that the model performs reliably across different 
traffic scenarios. The confusion matrix also confirms these 
results with 44% true positives and no false positives. The 
absence of false alarms is essential for real-time traffic 
monitoring applications, since false alarms can cause driver 
desensitization or unjustified intervention. However, the model 

reported 4.44% false negatives, where it did not detect actual 
risky situations. This indicates that although the model is very 
accurate for the situations it does detect, there is further scope 
to improve its sensitivity to detect all potential danger areas. 
These results indicate the model's resilience but also the 
necessity for further improvement, specifically to increase its 
capability to detect all risky situations so that the occurrence of 
false negatives is minimized and overall traffic safety is 
comprehensive. 

When compared to other methodologies for risky situation 
detection in road traffic, the model provides various 
improvements over previous approaches. The conventional 
approach tends to employ Convolutional Neural Networks 
(CNNs) to analyze single frames from traffic videos. Although 
CNNs are good at learning spatial features, they are weak at 
accounting for temporal dependencies between frames, since 
risky situations are often realized through unfolding events 
over time. To address the weakness of CNNs, Recurrent Neural 
Networks such as LSTM[24] networks are sometimes 
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employed together with CNNs to consider the temporal aspect. 
However, these models tend to perform poorly with long-range 
dependencies and are prone to vanishing gradients, thus unable 
to adequately understand intricate, multi-frame traffic 
situations. 

By contrast, VideoMAE is transformer-based and 
specifically designed to model both spatial and temporal 
dependencies simultaneously. This enables the model to 
capture sequences of events in traffic, like an abrupt stop of a 
car or the appearance of a pedestrian on the roadway, which 
may not be detected or well-represented using standard CNN 
or RNN-based approaches. 

In further testing the efficacy of our approach, we 
compared the model's performance with that of a Vision 
Transformer (ViT) model that has also been used for detecting 
risky situations from videos. As evident from Table III, our 
model performs significantly better than the ViT-based 
approach and other deep learning based methods, achieving 
95% accuracy compared to 92% for the ViT model[25]. In 
addition, the work presented in [26], which aimed to predict 
traffic accidents using an RNN network, achieved an accuracy 
of 71%. In [27], the authors used a combination of models, 
including a multi-layer perceptron (MLP), and achieved an 
accuracy of 72%. Moreover, another study focused on road 
accident prediction by combining machine learning and deep 
learning models, specifically the RFCNN model [28], and 
achieved an accuracy of 81%. These values demonstrates 
VideoMAE's superior capability to handle both spatial and 
temporal dependencies in traffic sequences. 

TABLE III.  MODEL COMPARISON 

Model Accuracy 

RNN[26] 71% 

MLP[27] 72% 

RFCNN[28] 81% 

FN-ViT[25] 92% 

Ours 95% 

VI. CONCLUSION 

In summary, the findings of this study demonstrate the 
capability of the VideoMAE-based model to detect risky 
conditions in road traffic streams and its potential contribution 
to enhancing traffic safety through advanced video data 
processing. The strong performance of the model, reflected by 
high Precision, Recall, and F1-score values, highlights its 
ability to accurately identify dangerous situations. 

While the system demonstrates strong potential and high 
accuracy, a few drawbacks or areas for improvement have been 
identified. First, the training process is computationally 
intensive. Second, there is the occurrence of false negatives, 
where some risky situations go undetected, highlighting the 
need for improved sensitivity, particularly in complex traffic 
scenes. Nevertheless, integrating the model into real-time 
traffic monitoring systems holds significant promise for 
improving road safety by enabling early warnings and reducing 
the risk of accidents. 

Overall, this work offers valuable insights into the 
application of deep learning for traffic safety and paves the 
way for future advancements in intelligent transportation 
systems. 
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