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Abstract—Autonomous urban planning, facility layout design, 

and interior design are critical and meticulous tasks that require 

the optimization of space arrangement. One of the main purposes 

of space arrangement is to achieve high space utilization with a 

non-complex arrangement for emergency assistance, particularly 

to enhance pedestrian safety in panic situations. This study 

explores the optimization of spatial layouts by employing Genetic 

Algorithms (GA) due to their robust search capabilities. 

However, spatial layout size limitations may affect the search 

capability and significantly impact space arrangement and 

utilization. Hence, this study presents a comparative study of two 

GA selection operator methods: Rank Selection (RS) and 

Roulette Wheel Selection (RWS) for determining the 

effectiveness in optimizing spatial layout arrangements and space 

utilization. The results demonstrated significant improvements in 

crowd flow management, with the RWS method showing the 

highest fitness value despite slower convergence compared to RS. 

The study highlighted the impact of different methods on the 

convergence of the multi-objective fitness value based on space 

elements such as overlapping and standard walkway distances. 

While both selection methods proved to be effective in optimizing 

space utilization, the RWS method demonstrated greater 

computational efficiency while still adhering to standard layout 

designs. This efficiency helps to ensure smoother evacuation and 

ease of movement during emergency situations. 

Keywords—Genetic algorithm; optimization; spatial layout 

arrangement; space utilization; urban planning; facility layout 
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I. INTRODUCTION 

Pedestrian safety is a critical aspect of urban planning, 
especially in emergency scenarios. A surging pattern of 
fatalities due to entrapment incidents in recent years has led to 
the increased demand for safer building designs and effective 
emergency protocols. In response, numerous studies have been 
carried out to uncover the impactful spatial features that 
significantly influence the pedestrians’ movement during the 
evacuation process. The previous studies have proposed an 
enhanced spatial layout design that aimed at reducing 
casualties and improving overall safety [1-6]. 

Spatial layout arrangement involves the organization and 
positioning of elements within a given space, serving as a 
crucial aspect of spatial layout design. This design practice is 

essential in the planning and construction phases of housing 
development, ensuring efficient use of space and optimal 
functionality. The design will outline the blueprint of the layout 
by assisting in the arrangement of the assigned elements for 
reaching the suitable order, sorting, grouping, alignment, 
function, and scale to the layout size. In later times, the spatial 
layout was designed by employing the manual design method 
and focusing on the standard design procedure and being 
influenced by the local demographic structure’s culture and 
current trend [7][8]. However, with the advancement of 
computer intelligence systems, spatial layout design 
application tools have been introduced for autonomous spatial 
layout design [9-11]. 

The demand for autonomous space arrangements has 
surged significantly, driven by the need for multi-objective 
functions in design. However, due to some limitations on the 
complex computation of the various parameters, the 
autonomous spatial layout arrangement generated a non-fitness 
design and constructed a less scalable and less functional floor 
plan [12]. Traditional autonomous layout designs often fall 
short in managing crowd movements during panic situations. 
Ineffective layouts have resulted in numerous entrapment 
incidents during emergencies [13]. Research by [13] has 
highlighted the significant impact of optimizing interior 
resources’ allocation and occupancy within the layout. Hence, 
arrangement and allocation optimality are the new approaches 
to ensure the traffic flow and the safety of the pedestrians in the 
layout. This approach can improve the overall quality of life 
and the environment rather than focusing solely on the layout 
structure, and functionality. 

However, previous research has shown that optimizing 
layout utilization can lead to several issues, including 
overlapping objects, low space occupancy, and non-standard 
layout design [14-23]. Hence, it is necessary for the computer-
aided layout design to exploit a suitable optimization method 
for constructing the high occupancy elements’ layout while 
adapting the architecture building design policy in constructing 
the space arrangement. This study addresses this gap by 
proposing an optimized spatial layout that leverages advanced 
algorithms to enhance safety and efficiency. 

The study begins by introducing the optimization method, 
Genetic Algorithm (GA) as a suitable approach for computing 
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multi-objective functions, and followed by a methodology 
section, discussing the GA framework, the selection process, 
and the rank selection techniques adopted in this study. Next, 
the results section presents the findings, and the conclusion 
summarizes the key outcomes and suggests directions for 
future research. 

II. GENETIC ALGORITHM 

In [24], the authors show that the optimization with multi-
objective functions can be inspired by the principles and 
inspiration of biological evolution. Numerous studies have 
been proposed in layout design optimization using bio-inspired 
algorithms for applications such as optimal job scheduling, 
structural design, cost minimization, flow control, and space 
occupancy. For example, research by [25] explored the use of 
Genetic Algorithm (GA), Differential Evolution (DE), 
Artificial Bee Colony (ABC), Charge Search System (CSS), 
and Particle Swarm Optimization (PSO) algorithms to optimize 
robot workcell layout in manufacturing systems, focusing on 
optimizing layout area and robot operation time. Meanwhile, 
research by [26] proposed optimal design solutions for planar 
trusses in structural roof articulations using Elitism-Based 
Genetic Algorithm (EBGA), Ant Colony Optimization (ACO), 
Artificial Honey Bee Optimization (AHBO), and PSO, with an 
emphasis on minimizing truss weight. Research by [27] 
explored the optimization of construction layout arrangements 
to reduce transportation costs, comparing the performance of 
PSO, ABC, and Symbiotic Organisms Search (SOS) 
algorithms. Additionally, research by [28] applied a GA to 
garden landscape design, aiming to adhere to the fundamental 
principles of landscape and urban design while meeting 
people's needs, showing improvements over traditional 
methods. Research by [13] utilized GA for resource allocation 
to enhance spatial layout design, and research by [29] 
employed GA to optimize land use for sustainable land 
resource management. These studies highlight that only a small 
number of works focus on indoor design and spatial element 
arrangement, despite the growing use of bio-inspired 
algorithms in layout optimization. Building on this foundation, 
the focus of this study is to evaluate and compare the 
effectiveness of GA, PSO, ACO, and ABC specifically for 
optimizing spatial layout arrangements in the context of urban 
planning and design. 

One of the suitable bio-inspired algorithms is Genetic 
Algorithm (GA). GA is the adaptation of the natural evolution 
process inspired by Charles Darwin’s theory of genetic 
evolution for the survival of the fittest genes. Genetic evolution 
is based on the genetic structure, and the natural selection 
operation carried out for the genes’ transformation and 
modification for the next generation [30] [31]. The principles 
of Darwinian natural selection are based on heredity, variation, 
and selection. In selecting a GA for optimizing spatial layout 
arrangements, its flexibility and adaptability make it a 
compelling choice. GA is particularly effective for complex 
problems with large solution spaces. The ability to perform 
global searches and avoid local optima makes GA well-suited 
for layout optimization, where multiple variables and 
constraints must be balanced. Additionally, GA can be easily 
modified and combined with other techniques to enhance its 

performance and tailor it to specific problem domains, such as 
spatial layout optimization. This adaptability, combined with 
their proven success in various domains, makes GA a suitable 
and powerful method for optimizing spatial layout 
arrangements, ensuring efficient use of space while meeting 
design criteria. 

GA has three operators: 1) Selection, 2) Crossover, and 3) 
Mutation. These operators will converge the genes to find the 
best fitness function to generate the fittest final offspring. The 
GA process will begin with the initialization of the random 
production of N number of chromosomes, with each 
chromosome containing an array of gene bits. The objective 
function will be assigned for determining the fitness values of 
the chromosomes. There are many types of selection schemes 
that can be used for discriminating the fittest values and the 
lowest values of the spatial layout design solutions; 1) Rank 
Selection (RS), 2) Roulette Wheel Selection (RWS), 3) 
Tournament Selection (TS), 4) Stochastic Universal Sampling 
(SUS), and many more. 

The RWS is the proportionate fitness selection that 
represents the circular wheel that is divided based on the 
probability of the fitness value from the whole values and 
represented in the circle’s degree value (the ratio of individual 
fitness value and the total fitness of overall individuals in the 
population). The fittest individual will have a bigger degree 
region in the circle and have a greater chance of being selected 
during the spinning process. Hence, the probability of being the 
fittest individual is high. A fixed point will be generated 
randomly to represent the real roulette wheel spinning. The 
fitness values selected by the fixed point will be selected as the 
parents. The RWS is also implemented in SUS. However, in 
SUS selection, there are multiple fixed points marked as the 
random stochastic selection, and the parents can be obtained in 
a single spin. This setup will be able to encourage the highly fit 
parents to be selected at once. 

RS ranks individuals based on fitness values and applies a 
roulette-wheel-like method for parent selection, where each 
individual has an equal share (same probability) of being 
selected as the parents. The selection sometimes will make 
poor selections of parents who have a possibility of selecting 
the least fit solutions for reconstructing the fitter individuals. 
TS is the selection strategy that selects the k-number of 
solutions from the whole available solutions and comparing the 
fitness values among them. The fittest candidates among the k-
individuals will be passed on to the next-gen. The probability 
of the selection is based on the candidate’s likelihood in the 
tournament group. The tournament size will be able to affect 
the selection process as the less fit solution will have a low 
possibility of being selected in the large tournament group as it 
must compete with the stronger candidate with a high fitness 
solution. Based on the type of selection schemes, RS and RWS 
have been selected to be compared as one of the selected 
selection methods in comparing the spatial layout designs to 
find the higher fitness parents for the recombination and 
diversification of the offspring. This selection scheme has been 
selected due to its ability to contribute to the high convergence 
rate, as the fittest parents are able to construct better offspring 
with fitter fitness values. 
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TS and SUS selection methods are also able to give a high 
possibility of convergence rate. However, the random selection 
for the first step of the methods will contribute towards the 
divergence of the parents and will have a high possibility of not 
being able to construct the offspring that have the best 
inheritance from the parents. Whereas both RS and RWS are 
able to create a great balance between convergency and 
divergence of the offspring construction as there will be a high 
possibility of the selection approach to select the fittest parents, 
and there are also chances of selecting less fit parents but with 
low possibility. Therefore, this research focuses on utilizing RS 
and RWS for the parent selection phase in GA. 

In light of the research problem, the goal is to transform 
spatial layouts into safer, more navigable spaces during 
emergencies. In contrast to existing studies that focus solely on 
layout efficiency or cost-based metrics, this study offers a 
novel comparative analysis of GA selection strategies using RS 
and RWS for managing the integration of multi-objective 
functions that include crowd flow safety and layout efficiency. 
The aim is to achieve autonomous high occupancy space 
arrangements that comply with spatial design standards and 
improve pedestrian movement flow, particularly during 
evacuation processes. 

III. METHODOLOGY 

Genetic Algorithms (GA) are powerful optimization tools 
inspired by the process of natural selection. In the context of 
constructing a spatial layout, GA facilitates the generation of 
optimized solutions through iterative processes. This research 
study focuses on comparing two selection methods; Roulette 
Wheel Selection (RWS) and Rank Selection (RS). Both 
methods are evaluated using a consistent approach involving 
uniform crossover and bit flip mutation to ensure a fair 
comparison. 

A. Genetic Algorithm (GA) Framework 

The three fundamental phases need to be highlighted for 
constructing a spatial layout based on GA’s design; 1) the 
selection phase, 2) the crossover phase, and 3) the mutation 
phase. Fig. 1 shows the fundamentals of genetic evolution 
processing for optimizing genetic fitness. 

 
Fig. 1. Fundamental genetic evolution process 

The optimized spatial layout arrangement is constructed 
based on the adaptation of the binary GA as shown in Fig. 2. 

 
Fig. 2. Adaptation framework on GA in constructing an optimal spatial 

layout. 
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Pseudocode 1 GA Based Spatial Layout Construction 

Optimization 

1: Load training samples 

2: begin 

3: Step 1: 

4: Generate the initial layout population zi, i = 1 ... SN 

5: Evaluate the fitness (fi) of the population 

6: Initialize iteration cycle = 1 ... SN 

7: Step 2: 

8: set cycle to 1 

9: repeat 

10: //Selection Phase 

Apply greedy selection for fi of i, i(h1) and i(h2) 

11: //Crossover Phase 

Exchange the chromosome genes of i(h1) and i(h2) 

12: //Mutation Phase 

Change the chromosome genes of i(h1) and i(h2) 

13: Calculate the offspring’s fitness fi, h1(fi) and h2(fi) 

14: Search for least fit individuals, i(g1) and i(g2) 

15: //New generations 

Replace spatial layout g1 and g2 with h1 and h2 

16: cycle = cycle + 1 

17: until cycle = SN 

18: Step 3: 

19: Memorize the best solutions zi  

20: Output the best spatial layout found 

21: end 

Based on the framework in Fig. 2, Pseudocode 1 is 
developed to show the fundamentals for spatial layout design 
optimization based on GA, adapted from the algorithms 
overview by McCall [32]. Based on Pseudocode 1, the GA 
parameters must be initialized by setting the population size, 
SN to 50. Each individual in the population, zi is generated with 
a unique spatial layout design, which includes 300 obstacles. 
The six obstacles are combined into one large obstacle 
representing the furniture. Each of the population fitness values 
fi will be calculated based on the objective function: 1) 
overlapping of the elements generated as static obstacles, and 
2) distance 1.2 m from doors and walls to meet the standard of 
interior design. 

The number of furniture elements left in the layout after the 
overlapping process and exist within the layout that has a 1.2 m 
distance range from doors and walls has been calculated as the 
total fitness value of the layout. The iteration cycle has been 
initialized, and in this research, the iteration is set to 100. When 
entering the iteration cycle, the process will be entering into 
three phases: 1) selection phase, 2) crossover phase, and 3) 
mutation phase. A solution acceptance rule is implemented to 
ensure that the elements do not exceed the allocated space 

within the layout. Based on this rule, the number of furniture 
elements must not exceed the initial 300 loaded obstacles, even 
after 100 iteration cycles. This constraint ensures that the 
layout remains within the grid limits and complies with interior 
design standards, particularly by preserving sufficient walking 
space for pedestrians to access exit points. 

B. Selection Process 

The selection process in GA determines which individuals 
from the current population will be the parents to the next 
generation. This process mimics natural selection in choosing 
the fittest individuals based on performance or fitness scores. 
The primary goal is to ensure that high-quality traits are 
preserved and propagated, thereby improving the overall 
solution quality over successive generations. Every method 
available for selection operation has a unique approach to 
balancing exploration and exploitation within the search space. 

1) Roulette Wheel Selection (RWS). The RS method is 

implemented to find the parents for the further recombination 

and restoration process of the offspring. This discrimination 

phase offers selective pressure that applies greedy selection 

based on the fitness proportionate selection approach as a 

method in guiding the evolution of spatial layout design. The 

fitness value fi has been determined from each of the solutions 

zi of population i. The roulette slot size probability will be 

computed based on Eq. (1): 

𝑝𝑖 =  
𝑓𝑖

∑ 𝑓𝑖
𝑆𝑁
𝑖=1

                                         (1) 

where, the pi is the probability of each of the fitness values 
fi from the whole fitness values in the population i and SN is 
the maximum number of populations, i. The cumulative 
probability, qi, for each chromosome is calculated based on Eq. 
(2): 

𝑞𝑖 =  ∑ 𝑝𝑖
𝑆𝑁
𝑖=1                                       (2) 

here, pi is the probability of each of the fitness values, and 
the cumulative probability has been calculated for each of the 
population i until reaching the maximum number of the 
population, SN. The fixed point of the roulette wheel can be 
constructed based on the random number generation r, where 
r∈ (0, 1). The parents are selected based on the condition; if r < 
q1, then the first solution, z1 is chosen as the parent. Otherwise, 
if r > q1, the algorithm searches for another solution zi such that 
qi-1 < r ≤ qi and selects it as the parent. The steps have been 
repeated for two times for each iteration cycle to find the two 
parents’ spatial layout to be recombined and explored for the 
fittest offspring. 

2) Rank Selection (RS). RS method is implemented to 

identify parents for further recombination and restoration 

processes in generating offspring. Unlike the RWS method, 

which relies on fitness proportionate selection, RS imposes 

selective pressure by ranking individuals based on their fitness 

and then selecting parents according to their rank, rather than 

their absolute fitness values. This approach ensures that even 

individuals with lower fitness have a chance of being selected, 

thus maintaining diversity within the population. 
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In RS, each individual solution zi in the population is 
assigned a rank ri, with the fittest individual receiving the 
highest rank. The selection probability for each individual is 
then determined based on its rank, not its fitness value. The 
probability of selecting an individual is calculated using a rank-
based probability distribution, where higher-ranked individuals 
have a greater chance of being selected as parents. This can be 
represented by Eq. (3): 

𝑝𝑖 =  
2𝑥(𝑆𝑁− 𝑟𝑖+1)

𝑆𝑁×(𝑆𝑁+1)
                                 (3) 

where, pi is the probability of selecting the individual with 
rank ri, and SN is the maximum number of individuals in the 
population. This rank-based probability distribution ensures a 
more uniform selection pressure compared to fitness-
proportionate methods to avoid cases where a single individual 
with a much higher fitness dominates the selection process. 
The cumulative probability qi for each individual is calculated 
based on Eq. (2), as the formula is similar. However, compared 
to RWS, the pi is the probability of each of the ranks, and the 
cumulative probability has been calculated for each of the 
populations i until reaching the maximum number of the 
population, SN. 

Similar to RWS, the fixed point of the roulette wheel can 
be constructed based on the random number generation r, 
where r ∈  (0, 1). The parents can be selected by the condition; 
if r < q1, then the first solution, z1 has been selected as the 
parent. However, if r > q1, then the other search has been made 
on the other individual solution z1 such that qi-1 < r ≤ qi. The 
steps have been repeated for two times for each iteration cycle 
to find the two parents’ spatial layout to be recombined and 
explored for the fittest offspring. 

RS offers a more stable selection process by mitigating the 
effects of disproportionately high fitness values that can 
dominate the selection in methods like RWS. This method 
ensures a balance between exploration and exploitation by 
allowing less fit individuals a chance to contribute to the next 
generation, thus enhancing the evolutionary search for optimal 
spatial layout arrangements. 

C. Uniform Crossover 

In this research, the uniform crossover has been selected, 
and the selected parents have been recombined with the 
crossover phase. Both parents’ allele genes have been 
recombined to construct better spatial layout offspring that are 
able to produce fit fitness values. The uniform recombination 
process has examined the genes in the parents separately and 
recombines each of the genes based on the coin flip method. 
The flip coin method has randomly made the decision based on 
50-50 probabilities [0,1]. If the toss is “0”, the gene for both 
parents has been maintained, whereas if the toss resulted in 
“1”, the gene has been exchanged between the parents. The 
offspring constructed from the recombination method has been 
explored to prevent premature convergence to the local optimal 
solution and diversify the genetic population via the mutation 
phase approach. 

D. Bit Flip Mutation 

The mutation phase has amended the offspring solutions to 
construct new solutions. In this research, the random resetting 
mutation has been used by selecting each of the obstacles 
based on the bit flip mutation function, in which the probability 
of the obstacles’ gene selection has been set to a 0.01 mutation 
rate. Each of the genes of the offspring has been examined, and 
a random number has been generated to check the mutation 
rate condition. Based on the rules set, when the random 
number < 0.01, the mutation has occurred, and the gene bit has 
been flipped, whereas when the random number >= 0.01, the 
bit of the offspring has remained the same. The obstacles that 
are assigned with the random number < 0.01 have been 
assigned to a randomly chosen gene in the spatial layout grid. 

This method is suitable for spatial layout arrangement as 
the solutions will still provide the 50 large orders of obstacles. 
The fitness value of the offspring has been determined, and the 
value has been compared with the fitness values of the current 
population, fi. The offspring constructed has been passed to the 
next iteration cycle as a member of the population and replaces 
the least fit solutions. The final population i with spatial layout 
solution zi after 100 iterations have been compared, and the 
fittest solution will be selected to represent the selected result 
for the GA approach in designing an optimal spatial layout. 

IV. RESULTS 

This research compared the Rank Selection (RS) and 
Roulette Wheel Selection (RWS) methods for constructing 
GA-based spatial layout arrangements. To ensure unbiased 
results, ten experiments were conducted, each with 100 
iterations. Fig. 3 presents the graphical results of these 
experiments, illustrating the fitness value for every iteration of 
each selection method. 

Based on the overall result in Fig. 3, both RS and RWS 
show the characteristic of GA algorithm results with premature 
convergence. These results align with the study's focus on 
optimizing spatial layout arrangements and space utilization, 
which are critical for applications like autonomous urban 
planning, facility layout design, and interior design. Given the 
emphasis on high space utilization and non-complex 
arrangements for emergency assistance, the selection of GA 
operators is crucial, especially in scenarios with limited spatial 
layout size. 

Based on the observation, the highest fitness value for both 
selection methods shows different values throughout the ten 
experiments. Based on the graphs in Fig. 3, RS outperformed 
RWS in 20% of the experiments by optimizing the population 
fitness value, especially in Experiment 6 and 10. In Experiment 
6, RS achieved a fitness value of 230.0 by iteration 40, whereas 
RWS plateaued at a maximum fitness value of 226.0, 
beginning as early as iteration 10. Similarly, in Experiment 10, 
RS reached a fitness value of 236.0 by iteration 40, while RWS 
plateaued at 232.0 from iteration 50 onwards. These results 
highlight the potential of RS for achieving faster convergence 
in certain scenarios. 
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(a) Experiment 1     (b) Experiment 2 

   
(c) Experiment 3     (d) Experiment 4 

   
(e) Experiment 5     (f) Experiment 6 

   
(g) Experiment 7    (h) Experiment 8 

   
(i) Experiment 9    (j) Experiment 10. 

Fig. 3. Graph comparison of Rank Selection (RS) and Roulette Wheel Selection (RWS) fitness value of over 100 iterations. 
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In 30% of the experiments, both RS and RWS exhibited 
comparable performance, achieving similar fitness values at 
different iterations. Based on the observations, the maximum 
fitness value for Experiment 3 reached 231.0 at iteration 80 
using RS but was achieved earlier by RWS at iteration 20. The 
maximum fitness for Experiment 4 reached 249.0 at iteration 
30 by RS but achieved earlier by RWS at iteration 10. In 
addition, the maximum fitness value for Experiment 8 reached 
235.0 at iteration 50 by RS while RWS reached it earlier at 
iteration 10. These results indicate an overlapping convergence 
behavior, likely due to the limitation of layout size in 
accommodating all layout elements. 

Furthermore, in 50% of the experiments, the RWS selection 
method outperformed the RS in terms of final fitness value. 
RWS shows better optimization compared to RS due to the 
offspring selection strategy that is based on the relative fitness 
of individuals. This proportional selection approach groups 
individuals by fitness level, increasing the likelihood that 
higher-fitness individuals are selected as parents, thereby 
generating stronger offspring. Compared to RWS, the selection 
in RS is also able to generate higher fitness values. However, 
due to the selection of the top 2 highest-fitness parents in RS 
caused the offspring generated to be too fit and unable to 
replace the lowest value of population members. Hence, 
resulting in the slow convergence speed compared to RWS. 
Although RWS is generally associated with slower 
convergence, its use of a solution acceptance rule (i.e., 
constraints related to layout capacity) allows it to increase 
fitness values earlier in the experiment, often resulting in the 
highest fitness value by iteration 100. Additionally, the RS 
selection method is computationally expensive due to the 
population sorting based on the fitness value compared to the 
RWS selection method. Fig. 4 shows the graph comparison 
between the processing time (milliseconds) in every 
experiment for the RS and RWS-based GA approach spatial 
layout design arrangement. 

 
Fig. 4. Graph comparison between the processing time of Rank Selection 

(RS) and Roulette Wheel Selection (RWS) for 10 experiments. 

Based on Fig. 4, the graph of processing time shows that 
RS consistently takes extra processing time compared to RWS 
in most experiments, with the exception of Experiment 5 as the 
10% outlier, where RS recorded 13752 ms compared to 14369 
ms for RWS. This result indicates that RS is generally slower 
in this context. In Experiments 1, 2, 3, 4, 6, 7, 8, 9, and 10, 
RWS shows significantly faster processing time, with 90% of 
the experiments showing the improvement of processing time 
percentage. Table I summarizes the percentage improvement of 
RWS over RS. 

TABLE I.  PROCESSING TIME COMPARISON WITH PERCENTAGE OF RWS 

IMPROVEMENT COMPARED TO RS 

Experiment 
RS Time 

(ms) 

RWS Time 

(ms) 

Faster 

Method 

RWS over RS 

(%) 

1 17991 11747 RWS 34.69 

2 17708 10974 RWS 38.02 

3 13681 11168 RWS 18.37 

4 15209 12088 RWS 20.54 

5 13752 14369 RS -4.49 

6 11320 11236 RWS 0.74 

7 11359 10986 RWS 3.28 

8 15292 11178 RWS 26.89 

9 12130 10941 RWS 9.80 

10 14110 12047 RWS 14.62 

Based on Table I, among the 90% of experiments where 
RWS demonstrated superior performance, the results show the 
improvement ranging from modest gains, such as 0.74% in 
Experiment 6, to substantial differences exceeding 38% in 
Experiment 2. The most significant time reductions were 
observed in Experiments 1 and 2, where RWS reduced 
computation time by 34.69% and 38.02%, respectively, 
compared to RS. This substantial difference in the efficiency of 
these two methods is potentially due to the computation cost in 
population sorting based on fitness value that is required in the 
RS algorithm, which increases the computation complexity. 
RWS, by contrast, is more computationally efficient and 
enables faster spatial layout optimization. 

Compared to the other experiments, in Experiment 5, RS 
was slightly faster by 4.49%, which is an exception to the trend 
observed from the whole experiment. This anomaly suggests 
that under certain conditions, particularly where early 
convergence occurs or solution acceptance thresholds align 
more favorably, RS may offer computational advantages. 
However, this case appears to be an outlier rather than a 
consistent pattern. The outlier also reflects the unbiased nature 
of the experimental setup, which was intentionally designed to 
allow either method to succeed under appropriate conditions. 

Based on Fig. 4 the solution acceptance rule acts as a 
limiting factor for space utilization optimization, and RWS 
demonstrates a better balance between the fitness value 
optimization and processing time that making it a more 
practical choice for the selection process in the future GA 
approach for optimizing the autonomous spatial layout 
arrangement design and space utilization in autonomous urban 
planning. 
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V. CONCLUSION 

This study aimed to evaluate the effectiveness of two 
Genetic Algorithm (GA) selection methods: Rank Selection 
(RS) and Roulette Wheel Selection (RWS) in optimizing 
spatial layout arrangements to improve space utilization and 
emergency responsiveness. Through this research, it was 
shown that RWS was able to outperform RS by consistently 
achieving higher fitness values and demonstrating greater 
computational efficiency. This was due to its proportional 
selection mechanism, which enhances the likelihood of 
selecting fitter individuals and accelerates convergence while 
maintaining layout standards for emergency situations. While 
RS occasionally showed better performance in specific 
instances, its approach often led to slower convergence and 
increased computational demands. The requirement for 
population sorting based on fitness in RS contributed to its 
higher computational cost. Overall, RWS proved to be the 
more effective method for optimizing spatial designs, meeting 
the study’s objective of identifying the most efficient GA 
operator for enhancing spatial layout arrangements and space 
utilization in autonomous urban planning. The future research 
direction of this study is to explore hybrid selection methods in 
GA that combine the selection mechanisms and features of RS 
and RWS to further enhance the optimization of spatial layout 
arrangements in urban planning. Additional studies can be 
carried out to investigate the application of RWS in different 
urban planning scenarios to validate its effectiveness in 
improving space utilization and emergency responsiveness 
across diverse environments. 

ACKNOWLEDGMENT 

This research was supported by Universiti Malaysia 
Terengganu (UMT) through the Talent and Publications 
Enhancement Research Grant (TAPE-RG) [UMT/TAPE-
RG/2024/55535] under the project titled “Multi-Objective 
Optimization Algorithm for Autonomous Spatial Layout 
Design”. 

REFERENCES 

[1] J. Huixian and Z. Shaoping, “Navigation system design of fire disaster 
evacuation path in buildings based on mobile terminals,” in 2016 11th 
International Conference on Computer Science & Education (ICCSE), 
2016, pp. 327–331. doi: 10.1109/ICCSE.2016.7581602. 

[2] X. Lu, P. B. Luh, A. Tucker, T. Gifford, R. S. Astur, and N. Olderman, 
“Impacts of Anxiety in Building Fire and Smoke Evacuation: Modeling 
and Validation,” IEEE Robot Autom Lett, vol. 2, no. 1, pp. 255–260, 
2017, doi: 10.1109/LRA.2016.2579744. 

[3] K. Xie, Y. Song, J. Liu, B. Liang, and X. Liu, “Stampede prevention 
design of primary school buildings in china: a sustainable built 
environment perspective,” Int J Environ Res Public Health, vol. 15, no. 
7, p. 1517, 2018. 

[4] M. Hayat, S. H. Khan, M. Bennamoun, and S. An, “A Spatial Layout 
and Scale Invariant Feature Representation for Indoor Scene 
Classification,” IEEE Transactions on Image Processing, vol. 25, no. 10, 
pp. 4829–4841, 2016, doi: 10.1109/TIP.2016.2599292. 

[5] F. H. Hassan and A. Tucker, “Using Uniform Crossover to Refine 
Simulated Annealing Solutions for Automatic Design of Spatial 
Layouts,” in IJCCI (ICEC), 2010, pp. 373–379. 

[6] P. K. Shukla, K. Korb, M. Randall, and T. Hendtlass, “Genetically 
Optimized Architectural Designs for Control of Pedestrian Crowds,” 
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 22–31. 

[7] F. A. Mustafa and A. S. Hassan, “Mosque Layout Design: An Analytical 
Study of Mosque Layouts in the Early Ottoman Period,” Frontiers of 

Architectural Research, vol. 2, no. 4, pp. 445–456, 2013, doi: 
http://dx.doi.org/10.1016/j.foar.2013.08.005. 

[8] I. V. Arnolds and S. Nickel, “Multi-Period Layout Planning for Hospital 
Wards,” Socioecon Plann Sci, vol. 47, no. 3, pp. 220–237, 2013, doi: 
http://dx.doi.org/10.1016/j.seps.2013.02.001. 

[9] M. Bhatt, J. Suchan, C. Schultz, V. Kondyli, and S. Goyal, “Artificial 
intelligence for predictive and evidence based architecture design,” in 
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 
in AAAI’16. AAAI Press, 2016, pp. 4349–4350. 

[10] A. Indraprastha and M. Shinozaki, “Computational Models for 
Measuring Spatial Quality of Interior Design in Virtual Environment,” 
Build Environ, vol. 49, pp. 67–85, 2012, doi: 
http://dx.doi.org/10.1016/j.buildenv.2011.09.017. 

[11] F. Regateiro, J. Bento, and J. Dias, “Floor Plan Design using Block 
Algebra and Constraint Satisfaction,” Advanced Engineering 
Informatics, vol. 26, no. 2, pp. 361–382, 2012, doi: 
http://dx.doi.org/10.1016/j.aei.2012.01.002. 

[12] J. Michalek, R. Choudhary, and P. Papalambros, “Architectural layout 
design optimization,” Engineering Optimization, vol. 34, no. 5, pp. 461–
484, 2002, doi: 10.1080/03052150214016. 

[13] W. Yixuan, “Indoor Optimal Design of Building Renovation 
Environment Space Layout Based on Genetic Algorithm,” Procedia 
Comput Sci, vol. 208, pp. 539–545, 2022, doi: 
https://doi.org/10.1016/j.procs.2022.10.074. 

[14] M. F. Anjos and M. V. C. Vieira, “Mathematical optimization 
approaches for facility layout problems: The state-of-the-art and future 
research directions,” Eur J Oper Res, vol. 261, no. 1, pp. 1–16, 2017, 
doi: https://doi.org/10.1016/j.ejor.2017.01.049. 

[15] J. Bénabès, F. Bennis, E. Poirson, and Y. Ravaut, “Interactive 
optimization strategies for layout problems,” International Journal on 
Interactive Design and Manufacturing (IJIDeM), vol. 4, no. 3, pp. 181–
190, 2010. 

[16] J. Kubalík, J. Lažanský, and P. Zikl, “Layout Problem Optimization 
Using Genetic Algorithms,” in Knowledge and Technology Integration 
in Production and Services: Balancing Knowledge and Technology in 
Product and Service Life Cycle, V. Mařík, L. M. Camarinha-Matos, and 
H. Afsarmanesh, Eds., Boston, MA: Springer US, 2002, pp. 493–500. 
doi: 10.1007/978-0-387-35613-6_56. 

[17] J. Liu, H. Zhang, K. He, and S. Jiang, “Multi-objective particle swarm 
optimization algorithm based on objective space division for the 
unequal-area facility layout problem,” Expert Syst Appl, vol. 102, pp. 
179–192, 2018, doi: https://doi.org/10.1016/j.eswa.2018.02.035. 

[18] A. McKendall and A. Hakobyan, “An Application of an Unequal-Area 
Facilities Layout Problem with Fixed-Shape Facilities,” Algorithms, vol. 
14, no. 11, p. 306, 2021, [Online]. Available: 
https://www.mdpi.com/1999-4893/14/11/306 

[19] L. S. Chemim, C. S. Nicolle, and M. Kleina, “Layout optimization 
methods and tools: A systematic literature review,” Gepros: Gestão da 
Produção, Operações e Sistemas, vol. 16, no. 4, p. 59, 2021. 

[20] K. Rasheed, H. Hirsh, and A. Gelsey, “A genetic algorithm for 
continuous design space search,” Artificial Intelligence in Engineering, 
vol. 11, no. 3, pp. 295–305, 1997, doi: https://doi.org/10.1016/S0954-
1810(96)00050-7. 

[21] Z. Guo and B. Li, “Evolutionary approach for spatial architecture layout 
design enhanced by an agent-based topology finding system,” Frontiers 
of Architectural Research, vol. 6, no. 1, pp. 53–62, 2017, doi: 
http://dx.doi.org/10.1016/j.foar.2016.11.003. 

[22] M. Yahya and M. P. Saka, “Construction site layout planning using 
multi-objective artificial bee colony algorithm with Levy flights,” 
Autom Constr, vol. 38, pp. 14–29, 2014. 

[23] J. Liu and J. Liu, “Applying multi-objective ant colony optimization 
algorithm for solving the unequal area facility layout problems,” Appl 
Soft Comput, vol. 74, pp. 167–189, 2019, doi: 
10.1016/j.asoc.2018.10.012. 

[24] A. Darwish, “Bio-inspired computing: Algorithms review, deep analysis, 
and the scope of applications,” Future Computing and Informatics 
Journal, vol. 3, no. 2, pp. 231–246, 2018, doi: 
https://doi.org/10.1016/j.fcij.2018.06.001. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

582 | P a g e  

www.ijacsa.thesai.org 

[25] Z. Y. Lim, P. S.G, and K. Izui, “Nature inspired algorithms to optimize 
robot workcell layouts,” Appl Soft Comput, vol. 49, pp. 570–589, 2016, 
doi: https://doi.org/10.1016/j.asoc.2016.08.048. 

[26] M. A. Jayaram, “Bio-Inspired Algorithms for Optimal Design of 
Trusses,” IOP Conf Ser Earth Environ Sci, vol. 982, no. 1, p. 12073, 
2022, doi: 10.1088/1755-1315/982/1/012073. 

[27] D. Prayogo, J. C. Sutanto, H. E. Suryo, and S. Eric, “A Comparative 
Study on Bio-Inspired Algorithms in Layout Optimization of 
Construction Site Facilities,” Civil Engineering Dimension, vol. 20, no. 
2, pp. 102–110, 2018. 

[28] Z. Liu, “The Application of Genetic Algorithm in the Optimal Design of 
Landscape Space Environment,” Math Probl Eng, vol. 2022, p. 8768974, 
2022, doi: 10.1155/2022/8768974. 

[29] X. Ding, M. Zheng, and X. Zheng, “The Application of Genetic 
Algorithm in Land Use Optimization Research: A Review,” 2021. doi: 
10.3390/land10050526. 

[30] T. Narahara and K. Terzidis, “Multiple-constraint Genetic Algorithm in 
Housing Design,” Synthetic Landscapes [Proceedings of the 25th 
Annual Conference of the Association for Computer-Aided Design in 
Architecture] pp. 418-425, May 2006. 

[31] M. Mitchell, “Genetic algorithms: An overview,” Complexity, vol. 1, 
no. 1, pp. 31–39, 1995, doi: https://doi.org/10.1002/cplx.6130010108. 

[32] J. McCall, “Genetic algorithms for modelling and optimisation,” J 
Comput Appl Math, vol. 184, no. 1, pp. 205–222, 2005, doi: 
https://doi.org/10.1016/j.cam.2004.07.034. 

 


