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Abstract—Algorithms for feature selection are growing in
interest among researchers aiming to connect specific features
in a dataset with specific classifications. Recent developments in
machine learning, particularly Support Vector Machine-based
artificial intelligence algorithms have demonstrated excellent
classification performance in highly nonlinear data. However,
identifying which features contribute most to classification re-
mains challenging, especially when datasets include hundreds
of variables. Initially, features must be screened to narrow
down the set for deeper analysis. Metabolomics datasets are
one such case, where many features must be examined to
determine those associated with heart disease diagnosis. This
work applies a Genetic Algorithm, incorporating a penalized
likelihood approach with Support Vector Machines for mutation,
to stochastically search the feature space. A large-scale simulation
study demonstrates that the proposed method achieves a high
true feature identification rate while maintaining a reasonable
false identification rate. The method is then applied to a Qatar
BioBank dataset focused on heart disease, reducing the number
of candidate metabolites from 232 to 37.
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I. INTRODUCTION

Metabolites are the intermediate or end products of
metabolism — the process in which the body converts energy
in food into energy available for running cellular processes [1].
Metabolism converts food into building blocks for proteins,
lipids, nucleic acids, and carbohydrates, and also eliminates
metabolic waste. The study of metabolites, or metabolomics
[1], has garnered interest in the biomedical community in
recent years due to its potential to improve early disease
detection and intervention through the analysis of relevant
biomarkers. Certain metabolites have been found to be cor-
related with the prediction or progression of diseases such
as Alzheimer’s [2], ovarian cancer [3], colon cancer [4], and
breast cancer [5], and have shown potential for improving
treatment efficacy in patients with rheumatoid arthritis [6],
[7]. The study of metabolomics has been growing steadily
due to its promise in advancing early disease diagnosis and
accelerating the historically decades-long path to innovation
in clinical interventions.

Using features of a dataset to determine correct classifi-
cation is a well-studied area of statistics. A wide variety of
techniques have been developed, including LDA (Breiman et
al. [8]), Classification Trees (Mondon, Camille [9]), Random

Forests (Ho [10]), Support Vector Machines (SVM) (Cortes
[11]), as well as Artificial Neural Networks (ANN) (Sarker
[12]). Applications of ANN to genomics research are discussed
in Lopez [13], and a good overview is provided by Zou [14].

In addition to classification, feature selection is very im-
portant. Determining which features from a set of features
contribute to classification is more difficult. The literature
includes a few works in this area using SVM, but most are
limited to smaller numbers of features. Heinemann [15] uses
SVM with a reverse elimination scheme to identify features
associated with classification. Li et al. [16] use a genetic
algorithm with an SVM to search through a small set of genetic
features for classification, although it is not likelihood-based
and is applied to microarray data. Tapak et al. [17] use a
two-line genetic algorithm with Support Vector Machines to
analyze gene expression data for psoriasis classification.

Recent advances in biomedical feature selection have
shown the potential of combining Support Vector Machines
(SVM) with Genetic Algorithms (GA) to improve disease clas-
sification in high-dimensional datasets. These hybrid GA-SVM
approaches have been successfully applied to problems such
as cancer detection, gene expression analysis, and metabolite
classification, often outperforming standard filter or wrapper
methods when properly tuned [18], [19], [20], [21]. Recent
studies have also shown that incorporating hybrid selection
strategies can yield more compact and accurate feature sets
[22], [23], motivating further innovation in the design of AI-
driven feature search algorithms for biomedical data.

Currently, there are no likelihood-based methods that allow
for posterior inclusion probabilities of the metabolites to be
calculated. Posterior inclusion probabilities allow researchers
to understand the relative importance of each metabolite.
A novel artificial intelligence methodology is introduced to
identify features that contribute to correct classification. The
method uses Support Vector Machines combined with a Ge-
netic Algorithm to perform a stochastic search through the fea-
ture space using a penalized likelihood-based approach. This
results in inclusion probabilities for each feature. Furthermore,
the Genetic Algorithm uses multiple parallel genetic lines that
mutate at each time step, with crossover between lines at
different intervals. Basic properties of the algorithm are studied
through a simulation study with 72 different experimental
conditions, each replicated 100 times.

This paper begins with an overview of the Qatar BioBank
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data in Section II, which serves as the motivating example.
Section III introduces the proposed algorithm, followed by
Section IV, where we run simulation studies under varying
conditions to assess the method’s ability to identify metabolites
linked to heart disease. In Section V, we compare our approach
against existing methods. Section VI presents results from
applying the method to the Qatar BioBank data, highlighting
metabolites associated with heart disease. We conclude in
Section VII with a discussion of the method and directions
for future work.

II. QATAR BIOBANK DATA

The Qatar Biobank was created in collaboration with
Hamad Medical Corporation and Qatar’s Ministry of Public
Health in an effort to collect and consolidate Qatar health
data, which includes metabolite samples. The Qatar Biobank
makes the data accessible to allow scientists to use information
about the region’s healthcare landscape to guide medical in-
novation tailored to local needs, and to enable local healthcare
workers to make informed decisions about patient care. The
Biobank currently has 38,213 total participants, 30,570 of
whom are Qatari citizens. To qualify for participation in the
Qatar Biobank, individuals must either be Qataris or long-
term Qatar residents who have lived in Qatar for at least
15 years. All participants must also be at least 18 years of
age [24]. Metabolite samples collected by the Biobank are
obtained from buffy coat, DNA, erythrocyte, PaxGene, plasma,
RNA, saliva, saliva and RNA, serum, urine, and viable cell
samples [24]. Samples are stored in a -80°C automated biostore
or cryopreservation laboratory and are processed through a
Waters ACQUITY ultra-performance liquid chromatography
(UPLC) unit, a Thermo Scientific Q-Exactive mass spectrom-
eter, heated electrospray ionization (HESI-II), and an Orbitrap
mass analyzer [25].

The initial dataset includes 1,046 participants with 1,159
measured metabolites, all of whom are Qatari citizens. As
many of the participants had multiple disease states, the data
was reduced to 626 participants who had exactly one of
the following disease states: Angina; Control; Heart Attack;
Stroke; or High Cholesterol. Table I shows the distribution of
these disease states across the sample, as well as the number
of males and females in the sample.

TABLE I. SUMMARIES OF DISEASE STATE AND GENDER FOR THE QATAR
BIOBANK DATA

Variable Group Count

Disease Angina 9

Control 291

Heart Attack 8

High Cholesterol 316

Stroke 2

Gender Female 303

Male 323

Table II provides summary statistics for clinical and de-
mographic variables such as Age, Systolic BP, Diastolic BP,
HDL Cholesterol, LDL Cholesterol, HBA1C (%), Hemoglobin
(g/dL), Creatinine (umol/L), Urea (mmol/L), Thyroid Stimu-
lating Hormone (mIU/L), Red Blood Cell (×106/uL), White

Blood Cell (×103/uL), and Pulse Wave Velocity for the Qatar
BioBank data. The number of samples is nr = 626 for all
variables.

TABLE II. SUMMARY STATISTICS FOR CLINICAL AND DEMOGRAPHIC
VARIABLES IN THE QATAR BIOBANK DATASET (nr = 626) FOR ALL

VARIABLES

Variable Mean Median StDev Q1 Q3 Min Max

Age 35.9 34.0 11.16 27.0 44.0 18.0 79.0

Systolic BP 110.4 110.0 11.22 102.0 118.2 85.0 139.0

Diastolic BP 71.6 71.0 8.07 66.0 99.0 43.0 89.0

HDL Cholesterol 1.36 1.31 0.36 1.09 1.56 0.41 2.87

LDL Cholesterol 3.32 3.40 0.99 2.55 4.00 1.00 8.84

HBA 1C% 5.37 5.40 0.40 5.10 3.60 4.20 6.40

Hemoglobin g/dl 13.66 13.70 1.73 12.50 15.00 6.80 19.70

Creatinine umol/L 67.98 67.00 15.36 56.00 79.00 34.00 140.00

Urea mmol/L 4.42 4.4 1.27 3.60 5.10 1.20 11.00

Thyroid Stimulating Hormone mIU/L 1.74 1.44 1.13 1.03 2.10 0.010 9.61

Red Blood Cell x106/ul 4.89 4.90 0.56 4.50 5.20 3.30 7.20

White Blood Cell x103/ul 6.61 6.40 1.74 5.50 7.50 2.80 14.60

PulseWave Velocity 10.68 10.30 2.55 9.10 11.60 0.00 25.80

III. METHOD

To identify which metabolites contribute to the correct
classification of heart disease, computational techniques such
as Support Vector Machines and Genetic Algorithms are used
in combination. This section provides details of a multi-line
Genetic Algorithm with crossover, implemented using Support
Vector Machines as the classifier.

A. Support Vector Machines

Support Vector Machine (SVM) is a type of supervised
learning algorithm used in machine learning to solve classi-
fication and regression problems. The main objective of the
SVM algorithm is to find the best possible line, or decision
boundary, that separates the data points of different classes.
This boundary is called a hyperplane when working in higher-
dimensional feature spaces. The main idea behind SVM is
to maximize the margin, which is the distance between the
hyperplane and the closest data points from each category that
needs to be classified. This makes the data easier to classify.

Support Vector Machine (SVM) has different types, such
as linear SVM, which separates the data with a straight line,
and nonlinear SVM, which is used when the data cannot be
separated by a line and is more complex. SVM transforms
the input data into a higher-dimensional feature space. This
transformation makes it easier to separate and classify the data.
To achieve this, SVM uses a kernel function that enables it to
implicitly calculate the dot product between the transformed
feature vectors and avoid unnecessary computations. Examples
of kernels include linear kernels, polynomial kernels, and radial
basis functions (RBF). These kernels are very important and
help capture complex relationships and patterns in the data.

In terms of a mathematical formulation, SVM separates the
data by a hyperplane given by

< W,Φ(x) > +b = 0, (1)

corresponding to the decision function f(x) given by:
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f(x) = sign(< W,Φ(x) > +b), (2)

where W is the weight vector, Φ is an implicit mapping of
the input data into a higher dimensional feature space defined
by a kernel function subject to the decision function and b
is the bias term, which is an offset parameter that allows the
hyperplane to be shifted away from the origin.

Vapnik [26], [27] showed that the optimal, in terms of
classification performance, is the hyperplane with maximal
margin of separation between the classes. This can be done by
constructing and solving a constrained quadratic optimization
problem whose solution W has an expansion W = ΣiαiΦ(xi)
in terms of the a subset of training patterns that lie on the
margin, where αi ≥ 0 is the Lagrange multiplier associated
with the training samples xi. The training patterns are called
support vectors and carry all the relevant information about the
classification problem. For more details, we refer the reader to
[28], [29], [30], [31], [32], [33].

Moreover, the SVM can generate class probabilities as an
output. In this case we use a sigmoid function given by

P (y = 1 | f) = 1

1 + eAf+B
, (3)

which is fitted to the decision values f of the binary
SVM classifiers, A and B are parameters to be estimated by
minimizing the negative log-likelihood function and f is the
decision function. We can extend the class probabilities to the
multi-class case where all binary classifiers class probabilities
output can be combined as one problem [34], [35], [36], [37],
[38], [39], [40]. In our case, we set up the SVM and consider
the following optimization problem.

minimize t({wn}, ζ) =
1

2

k∑
n=1

∥wn∥2 +
C

m

m∑
i=1

ζi

subject to ⟨Φ(xi),wyi⟩ − ⟨Φ(xi),wn⟩ ≥ bni − ζi, i = 1, . . . ,m

where bni = 1− δyi,n
(4)

where wn is the weight vector associated with class n,ζ is
a slack variable introduced to allow some misclassifications,
and ζi is a slack variable associated with each training sample
xi, and bni is associated with margin between the decision
hyperplane and the correct class n for the training example
xi. The decision function is given by:

argmaxn=1..k < Φ(xi),wn > (5)

For the search algorithm the Bayesian Information Crite-
rion (BIC) will be used which is given by (Schwarz [41]):

BIC(D|mi) = −2ln(L(D|mi))− pln(n) (6)

where L(D|mi) is the likelihood of the data D using model
mi, defined by the features in the model and p is the number of
features in the model. This is a penalized likelihood approach
that will favor a SVM utilizing a smaller number of features.

B. Genetic Algorithm

For the genetic algorithm, a population of five genetic lines
is utilized. To initialize these lines, each metabolite is selected
to be part of the model with probability 1/2. Once initialized,
at each step, each model mi is mutated by randomly selecting
one metabolite and creating a candidate model mi, where if
the metabolite is already in the model, it is removed; if it is
absent from the model, it is added. The model is then tested
to determine if it increases the likelihood. If it does increase
the BIC, then the metabolite will stay in the model; otherwise,
it will stay with probability ξ =

BIC(D|mi)
BIC(D|mi)

. If not, model mi

will be retained at this step. This allows the algorithm to move
between regions of high probability.

The crossover step for models mi with mj is done by
randomly selecting metabolites with probability 1/2, and the
chosen metabolite states (included or excluded) are copied
from the other model. For example, if one of the randomly
selected metabolites is in mi and not in mj , then this metabo-
lite will be removed from mi and added to mj . Similarly,
if the metabolite is in neither mi nor mj , then it will not
appear in either mi or mj . Likewise, if the metabolite is in
both mi and mj , then it will remain in both. Note that at each
crossover step, there is no randomization step to determine if
the crossover was advantageous to the BIC.

The following crossover schedule is used for the five
models: every 11 steps, models m1 with m2, as well as models
m3 with m4, undergo crossover steps. This crossover process
is done at every 23rd step for m1 with m3 and m2 with m4.
At every 37th step, m1 with m4 and m2 with m3 are crossed
over. At every 47th step, the crossover process is done with m1

and m5, immediately followed by m2 and m5. This allows m5

to have many more mutation steps between crossover, while
both m1 and m2 impact m5 at the same time. The multiple
models with crossover at this schedule allow each model to
have several mutation steps before a crossover step.

Fig. 1 shows the crossover schedule in visual format.
Initialize only starts at the beginning, and then the schedule is
repeated at each interval labeled by Steps. The diagram shows
that crossovers at every 44, 46, and 47 are close together,
meaning there is a large amount of mixing between all models.

This process is run for nstep = 1,000 steps. At each
step, the metabolites included in or excluded from the model
are recorded for each model. At the end of the 1,000 steps,
the number of times each metabolite appeared in each model
is determined, and the total number of times the metabolite
appeared in any model is calculated. This total is then used to
compute the Inclusion Probability by dividing it by 5,000, the
total number of opportunities the metabolite had to appear in a
model. Numerous test runs were performed, and nstep = 1,000
appeared sufficient, as by the final step, almost all models had
converged to the same solution, meaning they included the
same metabolites. If a metabolite has an inclusion probability
greater than 0.5, it is deemed important for classification.

The method was coded in R (v4.3.0) [42], using support
vector machines from the e1071 (v1.7.13) package [43], [44].
The algorithm takes approximately 8.3 to 80.4 minutes to
complete 1,000 steps on an Apple M2 Pro processor with
32GB of RAM, depending on the sample size nr, with larger
samples taking progressively longer.
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Fig. 1. Genetic algorithm crossover schedule for the first 50 steps. Crossover
intervals are preserved across all iterations. Note that mutations occur at

every step.

IV. SIMULATION STUDY

To study the performance of the algorithm, a simulation
study is conducted by varying the sample size nr, the number
of significant metabolites ns, the number of candidate metabo-
lites nc, the magnitude of effect (effect size), and the overall
variance of the relationship, σ2. To generate each simulated
metabolite dataset, an nr×nc matrix X was constructed, where
each element Xij follows a standard normal distribution:
Xij ∼ N(0, 1). The following two effect profiles are used
to assign the influence of each metabolite on classification:

β1 =

{
M(1− 1/(ns + 1))w w < ns,

0 otherwise
(7)

β2 =

{
M(1/ns + 1))w, w < ns

0 otherwise
(8)

where w = (1, 2, .., nc). Here β1 induces a decreasing
effect across the first ns metabolites while maintaining a
positive effect. Similarly, β2 induces an increasing effect across
the first ns metabolites. This is converted into a two linear
relationships defined by:

z1 = Xβ1

z2 = Xβ2 (9)

with two additional relationships with system noise added:

z∗1 = Xβ1 + ϵ1
z∗2 = Xβ2 + ϵ2 (10)

with ϵ1 ∼ N(0, σ2I) and ϵ2 ∼ N(0, σ2I) with
Cov(ϵ1, ϵ2) = 0. Here σ2 represents the inherent noise in the

system designed to confuse the classifier. To obtain the true
simulated classifications the following rule is used:

ytrue =



A z1 < −1, z2 < −1

S z1 > 1, z2 > 1

R z1 > 1, z2 < −1

T z1 < −1, z2 > 1

C otherwise

(11)

Fig. 2 shows an example dataset for this simulation. Here,
the number of observations is nr = 1,000, the number of
candidate metabolites is nc = 200, the number of significant
metabolites is ns = 5, the magnitude of the effect is M = 5,
and the system variance is σ2 = 0.5, using equation (11) as the
true classification boundaries. Notice that this includes a large
number of controls, class A, and class S, with smaller numbers
of R and T. This inequality in distribution is desired for
this simulation, as it reflects the inequality typically found in
metabolomic data. Furthermore, the simulation allows mixing
of A, R, S, and T with the control C. However, there is
rare mixing across the disease states A, R, S, and T. This
is a property of the metabolomic data under consideration,
as the participants were chosen based on exhibiting only
one of the disease states or being a control. Hence, the
data does not include individuals with multiple disease states.
Furthermore, it is assumed that a larger increase among a
number of metabolites corresponds to an additive effect toward
classification. Note that the goal of the study is not to achieve
correct disease classification but to identify which metabolites
contribute to the correct classification.
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Fig. 2. Example simulated dataset nr = 1, 000, nc = 200, ns = 10,
Magnitude = 2, and σ2 = 0.5. The red lines demark the true classification

boundaries set by equation (11).

A simulation study is performed to consider sample sizes of
nr = 300, 500, and 1,000, number of significant metabolites
ns = 5 and 10, number of candidate metabolites nc = 100 and
200, magnitudes = 1, 2, and 4, and variance σ2 = 0.1 and 0.5.
This gives 7,200 simulated datasets and analyses, which were
conducted on an AMD Ryzen Threadripper PRO 3975WX
3.5GHz 32-Core sWRX8 processor with 64GB RAM. For each
of the combinations, 100 datasets were simulated, the proposed
algorithm was run, and the Correct Identification Rate (CIR)

www.ijacsa.thesai.org 42 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

was calculated by counting the number of metabolites correctly
identified in the model by the algorithm, divided by the number
of true metabolites ns in the model. The resulting correct
metabolite identification rates were then averaged over the 100
datasets. The False Identification Rate (FIR) is also calculated
by adding the number of incorrect metabolites and dividing
by the total number of metabolites selected by the algorithm,
then averaging across all 100 datasets.

Table III shows the results for the simulation study. Results
are reported as CIR (FIR) in the table. Notice for ns = 5 and
nc = 100, the correct identification rate was near 1.000 for
all magnitudes and variances, with the exception of M = 1,
σ2 = 0.5, and nr = 300. Even in this exception, a 0.998
correct identification rate was achieved. When ns = 5 and
nc = 200, the correct identification rate goes down to 0.918
for nr = 300, M = 1, and σ2 = 0.5, but is near 1.000 for
nr = 500 and 1,000. It should be noted that in this case, there
is a small sample size nr = 300 with a relatively large number
of candidates nc = 200, small effect size M = 4, and large
variance σ2 = 0.5. One would expect, in this situation, the
method to have a more difficult time correctly identifying all
the metabolites. When ns = 10 and nr = 10, the method
seems to struggle to correctly identify all the contributing
metabolites, with a rate as low as 0.826. While this is not
terrible, it shows the sensitivity of the algorithm to cases
where the pattern is not as clearly defined. Whereas when
nr = 500, the lowest correct identification rate is 0.935,
and when nr = 1,000, the lowest correct identification rate
is 0.993, neither of which would be considered bad. This
corresponds to the general idea that the larger the sample size,
the more information is available for detecting patterns.

Table III also shows the FIR for each experimental com-
bination. Note that FIR values are in parentheses. Notice
that there is a general increase in the false positives as the
number of candidate metabolites is increased. For example,
when ns = 5, nc = 100, M = 1, and σ2 = 0.1 for
nr = 300, the false positive rate is 0.054 compared to the same
setting with nr = 200, where the false positive rate is 0.177.
This is persistent across all simulation settings. This should
be expected, as the space that needs to be searched through
is much larger and, hence, there are more opportunities for
a Type I error to occur. Also notice that as the variance σ2

increases, the false positive rate also increases. For example,
when ns = 10, nc = 200, M = 1, and σ2 = 0.1, the false
positive rate is 0.261, and when σ2 = 0.5, the false positive
rate is 0.268. This is also to be expected, as in general, in
any classification algorithm, the larger the variance (noise), the
more difficult it becomes for the algorithm to detect the correct
predictors. It also appears that as the magnitude increases,
the false positive rate also increases. However, the difference
between the false identification rates due to magnitude seems
to be less than 0.05, whereas the number of candidates nc

tends to produce a difference of 0.2.

As a screening algorithm, this method seems to be a good
choice, as the correct identification rates are high and the
number of false identifications is reasonable. The goal of any
screening method is to ensure that the correct metabolites are
identified. A simulation study should be conducted to deter-
mine the correct number of steps for the Genetic Algorithm,
the threshold cutoff, the effect size that can be detected, etc.

TABLE III. PROPORTIONS OF CORRECTLY AND FALSELY IDENTIFIED
METABOLITES (CIR/FIR) ACROSS SIMULATION SETTINGS. PROPORTION

OF CORRECTLY IDENTIFIED METABOLITES ARE BASED ON 100
SIMULATED DATASETS

nr

ns nc Magnitude σ2 300 500 1,000

5 100 1 0.1 1.000 (0.054) 1.000 (0.066) 1.000 (0.090)

1 0.5 0.998 (0.120) 1.000 (0.139) 1.000 (0.185)

2 0.1 1.000 (0.086) 1.000 (0.103) 1.000 (0.139)

2 0.5 1.000 (0.119) 1.000 (0.145) 1.000 (0.203)

4 0.1 1.000 (0.137) 1.000 (0.158) 1.000 (0.223)

4 0.5 1.000 (0.149) 1.000 (0.164) 1.000 (0.239)

200 1 0.1 0.950 (0.177) 0.986 (0.189) 1.000 (0.181)

1 0.5 0.918 (0.247) 0.980 (0.250) 1.000 (0.203)

2 0.1 0.996 (0.214) 1.000 (0.184) 1.000 (0.175)

2 0.5 0.988 (0.237) 1.000 (0.197) 1.000 (0.202)

4 0.1 0.996 (0.264) 1.000 (0.241) 1.000 (0.233)

4 0.5 0.988 (0.276) 1.000 (0.249) 1.000 (0.239)

10 100 1 0.1 0.958 (0.106) 0.998 (0.084) 1.000 (0.099)

1 0.5 0.951 (0.141) 0.997 (0.131) 1.000 (0.178)

2 0.1 0.989 (0.135) 1.000 (0.154) 1.000 (0.195)

2 0.5 0.979 (0.151) 1.000 (0.158) 1.000 (0.213)

4 0.1 0.984 (0.169) 0.999 (0.177) 1.000 (0.234)

4 0.5 0.975 (0.181) 0.999 (0.177) 1.000 (0.232)

200 1 0.1 0.837 (0.261) 0.945 (0.199) 0.997 (0.178)

1 0.5 0.826 (0.268) 0.938 (0.232) 0.993 (0.210)

2 0.1 0.913 (0.274) 0.982 (0.238) 0.995 (0.247)

2 0.5 0.907 (0.287) 0.983 (0.259) 1.000 (0.249)

4 0.1 0.892 (0.309) 0.973 (0.293) 0.998 (0.276)

4 0.5 0.876 (0.304) 0.971 (0.292) 0.998 (0.285)

However, this is beyond the scope of this study, as it is
exploratory and would detract from the presentation of the
method presented. More on extended simulation studies is
given in the Discussion.

V. COMPARISON WITH OTHER METHODS

To determine the performance of our Support Vector
Machine Artificial Intelligence (SVMAI) approach compared
with other modern techniques designed to answer this type
of question, such as Random Forests (RF) and Partial Least
Squares - Discriminant Analysis (PLSDA). Both of these
approaches are designed to perform both feature selection and
classification simultaneously, which is the goal of the SVMAI
approach.

The RF technique can be traced back to the basic classifi-
cation trees of Breiman [8]. The big issue with classification
trees is that they are sensitive to the initial feature selected to
cut along. Hence the need for a forest of classification trees,
which use randomization to determine which feature to cut
along at each step. This is a very popular approach for feature
selection as well as prediction. It has been used widely in
metabolomics for feature selection; see [45] for use in urinary
metabolomics, [46], who used the technique on Omega Fatty
Acid Pathways, and [47], who provides a very good overview
of the technique applied to lipid metabolites. For this work,
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the randomForest version 4.7-1.1 package [48] in R 4.4.1 [42]
is used.

PLSDA is an extension of standard Linear Discriminant
Analysis, which seeks to first find the Partial Least Squares
lines to fit each group, then determine the best discriminant line
for classification. A review and comparison of RF, PLSDA,
and standard SVM algorithms in metabolomics is provided by
[49]. For more details on the PLSDA algorithm, see [50], [51],
and a great simplistic discussion is given by [52].

A small simulation study was designed with sample sizes
of n = 300, 400, and 500, with the number of true significant
metabolites nt = 5 and 10, and 100 metabolites to search
through. The magnitude of the effect is 2.0, and the magnitude
standard deviation is 0.5. The simulated data uses the same
protocol as the simulation study in Section IV. To evaluate the
performance, the %Correct, %Incorrect, and Overall Classifi-
cation Accuracy are considered. Here, %Correct is the propor-
tion of truly significant metabolites detected, and %Incorrect
is the proportion of truly insignificant metabolites detected.
Hence, a high %Correct indicates that the approach has the
ability to find the true features. A high %Incorrect corresponds
to a considerable number of insignificant metabolites being
selected.

Table IV shows the results of this simulation study. Notice
that SVMAI has extremely high correct detection rates, with
the smallest at 0.997. In addition, the Classification Accuracy
of the SVMAI technique is consistently 1.0, meaning 100%
correct at classifying the heart health status. The %Incorrect
for the SVMAI approach tends to be lower than the RF
approach but much higher than the PLSDA technique. Of all
the techniques considered here, the RF approach performs
the worst, with low %Correct rates, high %Incorrect rates,
and low Classification Accuracy. From this study, one can
see that SVMAI is very good at determining the correct
metabolites with high classification accuracy. However, it does
select incorrect metabolites at a higher rate than PLSDA, but
generally lower than RF.

TABLE IV. RESULTS OF SIMULATION STUDIES TO COMPARE ACROSS
SVMAI, RF AND PLSDA TECHNIQUES FOR SCREENING. SAMPLE SIZES

ns = 300, 400, 500, NUMBER OF TRUE SIGNIFICANT METABOLITES
nt = 5, 10 WITH % CORRECT METABOLITES DETECTED, % INCORRECT
METABOLITES DETECTED AND % CLASSIFICATION ACCURACY. BASED

ON 100 SIMULATED DATASETS

% Correct % Incorrect Classification Accuracy

ns nt SVMAI RF PLSDA SVMAI RF PLSDA SVMAI RF PLSDA

300 5 1 0.8 0.798 0.123 0.553 0.23 1 0.539 0.851

10 0.988 0.857 0.716 0.158 0.175 0.19 1 0.456 0.853

400 5 1 0.8 0.8 0.128 0.454 0.05 1 0.545 0.803

10 0.997 0.887 0.761 0.143 0.156 0.05 1 0.470 0.806

500 5 1 0.8 0.8 0.141 0.398 0.06 1 0.552 0.778

10 0.999 0.897 0.806 0.157 0.117 0.03 1 0.482 0.777

VI. QATAR BIOBANK RESULTS

For the Qatar BioBank data, there were nc = 223
fully observed metabolites across nr = 626 participants.
The algorithm was performed on the dataset using 1,000
steps in the genetic algorithm. The computation time was
approximately 12 minutes on an Apple M2 Pro processor
with 32GB of RAM. Table V shows the metabolites with

Inclusion Probabilities greater than 0.9 for the Qatar BioBank
data concerning Heart Disease. Out of the 223 candidate
metabolites, 37 had an inclusion probability above 0.9, and
48 had an inclusion probability above 0.5 (not shown). Notice
that many of the metabolites have an inclusion probability
above 0.999, indicating they were present in almost all of the
models across the five genetic algorithm lines. Of particular
interest is the fact that there are eight metabolites with the
“X” prefix, which indicates an unknown chemical identity [53].
Also of note is that circulating BCAAs (leucine/isoleucine,
valine, glutamate/glutamine, proline, and methionine) have
been associated with predicting risk of coronary artery disease
[54], [55], indicating the validity of our method in capturing
previously known metabolites associated with heart disease.

TABLE V. METABOLITES AND THEIR INCLUSION PROBABILITIES FOR
THE QATAR BIOBANK HEART DISEASE DATASET. ALL METABOLITES

WITH AN INCLUSION PROBABILITY GREATER THAN 0.9 ARE PRESENTED
IN DESCENDING ORDER OF INCLUSION PROBABILITY

Metabolite Inclusion Probability

X - 23636 1.000

N1-methyladenosine 0.999

5alpha-pregnan-3beta,20alpha-diol disulfate 0.999

2,3-dihydroxy-5-methylthio-4-pentenoate (DMTPA)* 0.999

X - 11372 0.999

carnitine 0.999

2-hydroxyoctanoate 0.999

6-bromotryptophan 0.999

alanine 0.999

p-cresol sulfate 0.999

phosphoethanolamine 0.999

X - 14056 0.999

ornithine 0.999

deoxycarnitine 0.999

arginine 0.999

metabolonic lactone sulfate 0.999

X - 11880 0.999

X - 23639 0.999

1-arachidonoyl-GPI (20:4)* 0.999

choline 0.999

X - 21258 0.999

proline 0.999

dimethylarginine (SDMA + ADMA) 0.999

alpha-hydroxyisocaproate 0.999

indoleacetate 0.999

X - 24425 0.999

1-oleoyl-GPE (18:1) 0.999

N-delta-acetylornithine 0.999

5alpha-androstan-3beta,17beta-diol disulfate 0.999

taurocholenate sulfate* 0.999

pregnenediol sulfate (C21H34O5S)* 0.999

2-hydroxypalmitate 0.999

gamma-glutamylcitrulline* 0.999

X - 21364 0.999

hydroxy-CMPF* 0.998

creatinine 0.995

7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) 0.931
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VII. CONCLUSION

This work shows the ability to use a genetic algorithm
approach with multiple lines and frequent crossbreeding in
conjunction with support vector machines using a likelihood
approach to create an AI method to screen metabolites for
heart disease. The method proposed performs well under
simple simulation studies across a large number of scenarios.
The method allows for high correct identification rates of
metabolites (above 85%). The false positive rate is moderately
high, ranging from 5% to 30%. Hence, the algorithm would be
good for screening purposes to locate candidate metabolites for
further study. The results of the algorithm, when applied to the
Qatar BioBank data, allow for 223 metabolites to be screened
down to 37, all of which have an inclusion probability above
0.9. As the algorithm has a reasonably high false discovery
rate, one should be careful to make declarative statements that
all of the metabolites identified are truly contributing to the
disease state. Instead, one should state that there is preliminary
evidence that these metabolites may be related to these disease
states. Furthermore, since the data is dominated by Control
and High Cholesterol participants, the results most likely have
selected metabolites that are biased toward these two states.
However, future studies can verify or refute these claims.
Knowing which metabolites contribute to heart disease will
allow for assays to be developed that can indicate which people
are likely to have heart disease, which can lead to preventative
care to reduce the risk of heart disease.

Additional work could be done to study the performance
of the algorithm on more complex datasets. The work here
only considered a small number of disease states to mimic
the Qatar BioBank data; however, a higher number of disease
states and multiple disease states should be studied. Also,
the interaction of metabolites was not considered here. Work
by Boone et al. [56] and Lee and Boone [57] shows how
to explore a restricted space when interactions are present
for linear regression models. A similar approach could be
developed here.

In the simulation study presented, the Genetic Algorithm
only took 1,000 steps due to computational times. Another
simulation study should be conducted to determine if the
number of steps can reduce the false positive rates. This
study should attempt to determine a rule that one could apply
to determine the adequate number of steps to achieve an
acceptable false positive rate. In this study, one should consider
the ratio of candidate metabolites to number of participants,
nc

nr
, to look for a general pattern. Also, the threshold to be

deemed important could be adjusted from 0.5 to a higher
value to become more stringent and potentially reduce the
number of false positives. Furthermore, the SVMAI method
is superior to PLSDA and RF for Classification Accuracy
and %Correct metabolites selected and should be considered
when conducting metabolomic studies where classification is
of interest.

Another item that could be considered is how to address the
issue of missing data. Many of the metabolites have missing
values for various participants, which in this study have been
omitted. Only metabolites observed in all participants were
used here. As the computational complexity here is high,
several approaches could be used to impute the missing values,

such as mean imputation, the EM algorithm, and possibly
multiple imputation.
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