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Abstract—Now-a-days, population growth is increasing more 

and more in all the places of the world. Specifically, this increase 

is in urban development based on economic and industrial 

improvement. It shows the massive impact on Land Use/Land 

Cover (LULC) and may change many times. The most popular 

use of land cover categorization is to analyze satellite imagery to 

categorize different land surface types, such as urban areas, 

agricultural fields, forests, and aquatic bodies. With the help of 

several land cover images, a unique classification model (UCM) 

based on satellite image classification will be developed in this 

study. The proposed approach implements the following stages. 

In the first stage, the pre-trained model U-Net was used to train 

the satellite images. In the second stage, the preprocessing 

techniques, including data acquisition and noise reduction, such 

as Adaptive Noise Removal (ANR) and Histogram Equalization 

(AHE), were used to preprocess the images. The third stage 

focused on extracting the features using Multi-Sensor Data 

Fusion (MSDF) to extract features like water bodies, roads, 

urban areas, edges, boundaries, and shapes. The final step uses 

the Maximum Likelihood Classification (MLC) combined with 

Support Vector Machines (SVM) to give the advanced 

classification results. Experimental results explain that the 

proposed approach outperformed the existing models in terms of 

better outcomes. 

Keywords—Land Use/Land Cover (LULC); U-Net; Multi-
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I. INTRODUCTION 

Satellite images most commonly show the present Earth's 
region, which helps to improve the classification of Land Use 
and Land Cover (LULC) [1]. LULC mainly analyzes locations, 
urban development, ecological science, and natural resource 
management. Several components build the Earth's surface, 
which help in determining which activities belong to different 
land types [2]. Land cover mainly refers to the physical factors 
of the Earth's surface, including water features, urban 
infrastructure, and desert areas. The components implemented 
in this paper are metropolitan areas, grassy fields, swamps, and 
forest regions. The term "Land use" represents agriculture, 
urbanization, relaxation, and restoration [3]. This context 
mainly converts land usage for financial and societal purposes 
[4]. Land usage involves how humans use land, whereas land 
cover focuses primarily on the actual state of the land surface 
[5]. For example, forests (land cover) may be exploited for the 
manufacture of wood, preservation, or relaxation. Industrial 
zones and private sector commercials exist in an urban area 
(land cover, land uses). 

Satellite images are essential in various applications, from 
disaster mitigation and crop evaluation to urban development 
and ecological surveillance. These images provide enormous 
data, both a chance and a difficulty [6]. Although the data 
includes fine-grained information about the Earth's surface, the 
vast amount of the data demands precise and efficient 
techniques for evaluation. Algorithms for machine learning 
(ML) have shown to be highly effective in deriving valuable 
data from satellite imagery. It has made it possible to classify 
land cover automatically, identify features, and track changes 
over time. ML provides a variety of techniques, each with 
advantages and disadvantages that can be used for classifying 
satellite images [7]. Cloud computing is one of the domains 
that help develop rapid applications using remote sensing 
technologies for monitoring crop classification. Google Earth 
Engine (GEE) is the cloud platform that analyzes 
environmental conditions and planetary analysis [8]. In this 
paper, the preprocessing is a critical step in LULC 
classification using remote sensing data. Effective 
preprocessing ensures the data is clean, consistent, and ready 
for analysis, leading to more accurate and reliable classification 
results. The pre-trained model trains the significant patterns 
belonging to LULC classification from the Landsat OLI 
(Vijayawada) dataset. For land cover classification using 
satellite images, integrating MLC and SVM takes advantage of 
both methods to increase classification consistency and 
efficiency. 

Firstly, the Satellite Image Data Acquisition with raw 
satellite images is collected. Adaptive Noise Removal (ANR) 
is applied to these images to remove noise, while AHE 
(Histogram Equalization) is applied to improve the image's 
contrast/quality. The preprocessed images use Multi-Sensor 
Data Fusion (MSDF) to merge various sensor data to improve 
the accuracy of feature extraction. A Unique Classification 
Model (UCM) of MLC- SVM is applied to the features derived 
from the fused data. MLC makes a statistical assignment of 
each pixel to the most likely class, followed by SVM, which 
enhances the classification. Simultaneously, a pre-trained U-
Net model, for instance, training, is used, and its knowledge is 
transferred to the classification pipeline with Transfer Learning 
to enhance performance. The last stage of the Result Analysis 
assesses an integrated model's classification accuracy and 
efficiency. This hybrid approach boosts precision and thus can 
be applied to land cover classification, vegetation mapping, 
and environmental monitoring. 
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The organization paper is designed as follows: Section I 
explains the introduction of LULC and its usage in various 
fields. Section II describes the literature survey by explaining 
multiple existing models and their performances. We have also 
identified research gaps that belong to various existing models. 
Section III describes the pre-trained model U-NET 
Architecture and its layers used to train on the LULC dataset. 
Section IV introduced the proposed methodology, which 
contains various techniques. Firstly, the preprocessing methods 
such as adaptive filtering (ANR) and AHE (Histogram 
Equalization), the feature extraction technique Multisensory 
data fusion (MSDF) are explained, and another model is 
Maximum Likelihood Classification (MLC). Finally, the MLC 
combined with SVM classified the LULC accurately and 
shows the results and discussions in Section V. Finally, the 
conclusion and future work are explained in Section VI. 

II. LITERATURE SURVEY 

Ansith et al. [9] gave an updated GAN architecture to 
enhance the resilience and accuracy of land use classification. 
The proposed system improves the classifier's capacity to 
discern between various land use categories by fusing a CNN 
for feature extraction with a GAN framework to produce 
realistic land use patterns. The updated GAN performs better 
than traditional CNN-based techniques, as evidenced by 
experimental results showing improved accuracy and better 
generalization across various datasets. The classification 
accuracy is improved by comparing it with various existing 
CNN algorithms. The accuracy of the suggested model was 
96.2% on the UC Merced dataset, while a normal CNN only 
managed 92.5%. A CNN-based method for periodic multi-
temporal pixel-based agricultural landscape classification was 
presented by Laban et al. [10]. The main goal is to increase 
classification accuracy by utilizing temporal sequences of 
satellite photos that capture the various crop species' 
phonological stages and seasonal fluctuations in land cover. 
Using a CNN architecture built to process sequential imagery 
and extract spatiotemporal features essential for differentiating 
between crop types and land cover classes, the suggested 
solution incorporates multi-temporal data from Sentinel-2 
satellites. The results show that the CNN-based model 
outperforms previous methods with significantly higher 
accuracy (92.5%), F1-Score (0.91), and kappa coefficient 
(0.89), indicating its potential for operational usage in land 
management and agricultural surveillance. Thepade et al. [11] 
examined the differences between a numbernumber of Deep 
CNN models already in use to assess how well they categorize 
land use [26] from high-resolution aerial imagery. The 
suggested EfficientNet is appropriate for applications with 
constrained computational resources because it is optimized for 
both computational economy and performance. It is the 
recommended model for scenarios with computing limitations 
since it is optimal for obtaining the best accuracy with 
economical resource utilization. Our results show that accuracy 
(90.1%), precision (89.6%), recall (89.0%), and computational 
cost are generally better with deeper designs. This work offers 
insights into balancing resource limits and performance when 
choosing suitable models for certain applications. 

Rao et al. [12] introduce a model that classifies satellite 
images of various land cover classes. The proposed model 

collects the images and applies the DeepLabv3 (Atrous 
convolution) technique, which outperforms all other algorithms 
in categorizing land cover. It combines it with multiple atrous 
rates to acquire multi-scale data. The proposed system's 
performance reveals a high accuracy of 92.3% and an F1-score 
of 0.91 compared to current models. Varma et al. [13] 
proposed the FCNN algorithm with LandTrendr that detects 
changes in multi-spectral satellite images. The proposed 
approach uses the existing noise filters to remove the noise and 
spectral instability. Segmentation also plays a significant role 
in segmenting the images and analyzing the meaningful objects 
to find dynamic changes over time. The proposed approach's 
effectiveness was measured using several metrics, such as an 
accuracy of 89.78% based on NDVI, NBI, etc. 

Fan et al. [14] proposed a novel feature learning approach 
(NFLA) recognizing the land-use scene with high-resolution 
images. The NFLA mainly uses the multiway sparse coding 
system to find multiple aspects in tedious sceneries. The 
proposed approach uses the BoW to extract various low-level 
features that consider the RGB and NIR data using patches 
with different sizes and several layers. The proposed NFLA 
was applied on three datasets with an accuracy of 87.67%, 
88.45%, and 89.12%, respectively. Xia et al. [15] presented the 
DL-based model that automatically classifies the aerial scene 
classification from UC-Merced and WHU-RS19 datasets that 
show low performance, which is already implemented with 
limitations. The proposed approach uses the Aerial Image data 
set (AID), which is very large, with 10k aerial scene images. 
Finally, the proposed approach obtains the classification of 
89.89% accuracy. Liu et al. [16] proposed MSCNN 
architecture for scene classification. Our MSCNN model 
leverages multiple input image scales to learn global and local 
features effectively. By integrating different scales, the 
network can comprehend the intricate patterns and textures 
across various scenes. The experimental results indicate that 
MSCNN achieved an accuracy of 83.5%, outperforming the 
previous best model, which had an accuracy of 79.6% for the 
MIT Indoor 67 dataset. For the SUN397 dataset, the MSCNN 
recorded an accuracy of 76.3%, compared to 73.4% by the 
previous leading method. For the Places365 dataset, MSCNN 
obtained an accuracy of 88.1%, surpassing the previous best of 
85.7%. 

Ouerghi et al. [17] proposed an automated model that 
detects changes between pairs of satellite images taken at 
different times. Our approach leverages CNN architecture, 
specifically a U-Net, due to its proven effectiveness in image 
segmentation tasks. We trained our model on a publicly 
available dataset containing annotated satellite images 
depicting various changes. The results achieved a Precision of 
0.88, a recall score of 0.85, an F1 score of 0.86, and an IoU of 
0.78. Peng et al. [18] proposed that the novel end-to-end 
Change detection (CD) method contains an encoder-decoder 
system with advanced segmentation called UNet++. This 
model connects the image pairs with local and fine-tuned data 
that generates the feature maps. The performance is improved 
by adopting the fusion approach with UNet++, which works on 
multiple sides and combines maps at various levels. Results 
show that the proposed approach shows effective outcomes 
with a high accuracy of 92.12%. Chen et al. [19] introduced the 
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model that finds the changes detected in images. The main aim 
of this approach is to change the data and remove the irrelevant 
noise, improving the proposed algorithm's performance. The 
existing approaches overcome the lack of accuracy, which 
leads to low performance. The dual attention fully 
convolutional Siamese networks mainly focused on detecting 
the changes obtained in high-quality images. Experiments 
show that the proposed approach obtains 3.1% to 4.3% of F1-
score improvements. Cai et al. [20] introduced the DenseNets 
model, which addresses several problems. The proposed 
approach finds accurate remote-sensing images by using the 
new landslip sample collection. The suggested landslip 
detection method identifies the three distinct Gorges reservoir 
sites in China. The suggested DenseNets' performance 
enhanced the F1 score and kappa of 0.9505 and 0.9474. 

III. PRE-TRAINED MODEL: U-NET ARCHITECTURE 

The U-NET architecture belongs to the CNN model that 
can be used in several image segmentation applications. In this 
scenario, the U-NET mainly focused on LULC analysis. It is 
well-suited for land cover classification using images from 
satellites because of its capacity to deliver accurate localization 
and context in image data [28]. Fig. 1 shows the architecture of 
pre-trained model. 

 

Fig. 1. U-NET architecture for training the land cover images. 

1) Encoder: In U-NET, the encoder uses a series of 

convolutional layers and max-pooling techniques to extract 

the context from the input image. This route is in charge of 

extracting hierarchical features by minimizing the spatial 

dimensions and improving the level of feature maps. 

Convolution: K = M ∗ A + y

ReLU Activation: A = ReLU(Z)

Max Pooling: B = Maxpool(C)

Where * stands for the convolution process, ReLU for the 
rectified linear unit function, and M and y for the convolutional 
layer's weights and bias. 

2) Bottleneck: The network has a bottleneck when the 

feature mappings are the most abstract and the spatial 

resolution is the lowest near the bottom of the U-shape. 

3) Decoder: Up-sampling methods and convolutional 

layers are used in the decoder route to reconstruct the spatial 

dimensions sequentially. This method preserves geographic 

data dropped throughout the down-sampling method by using 

skip connections originating from the encoder's respective 

layers. The final output will retain fine-grained details thanks 

to these skip connections. In up-sampling layer, two 

convolutional layers, and ReLU activations follow each step 

in the expanding path. These are followed by a concatenation 

with the equivalent feature map from the contracting path. 

Y = Concat(U, Aencoder)

4) Output layer: A 1x1 convolutional layer, the last layer 

in the U-NET, maps every feature vector with 64 components 

to the number of classes required for land cover segment. 

Final Convolution: K = M ∗ A + y 

Ŷ = Softmax(Z)

Using satellite imagery, the U-NET architecture has shown 
to be an effective method for classifying land cover. It is 
especially well-suited for this application because of its 
capacity to integrate spatial and contextual data. Accurate and 
scalable land cover classification will become more and more 
possible as machine learning techniques and satellite imagery 
data become more widely available. This will have a major 
impact on a number of fields, including disaster management, 
agriculture, urban planning, and environmental monitoring. 

IV. PROPOSED METHODOLOGY 

In this section, the proposed methodology is discussed in 
various steps. Fig. 2 describes the pipeline for satellite image 
classification with proposed approach. 

A. Pre-Processing Techniques 

Preprocessing the satellite images contains multiple 
systematic steps to prepare (or make ready) the pictures for 
further analysis. These methods are mainly used for feature 
normalization by removing the noise and highlighting the dark 
regions that help to classify the accurate land covers. The first 
step uses noise removal with adaptive filtering (ANR) and 
AHE (Histogram Equalization), which removes noise and 
enhances the contrast of the image. When using these two 
concepts, the Land cover classification results of the satellite 
images may be undistorted/unbiased from errors and thus more 
visually comparable. This section further explains the 
mathematical equations of these methods used in the capturing 
of satellite images and highlights their main purpose in land 
cover [27] type in the entire flow of the land cover 
classification system. Table I shows the comparative 
performance of algorithms. 
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Fig. 2. System architecture. 

TABLE I.  COMPARATIVE PERFORMANCE OF ALGORITHMS 

Authors 
Proposed 

Approach 
Performance Metrics Research Gaps 

Li et al. 
[21] 

Multisource 
CD UNet++ 

MSOSCD the IoU-

87.05% and F1-Score-

93.1% and for MSBC 
dataset the IoU-

87.05% and F1-Score-

65.77%. 

Lack of stable 

outcomes in terms 

of accurate 
locations with 

multisource 

features. 

Thepade et 

al. [22] 
DCNN 

Accuracy (%) of 
97.94, Precision (%) 

of 97.96, Recall (%) of 

97.94, and F1-Score 
(%) of 97.94. 

Lack of color 
based extraction is 

required to 

improve the 
performance. 

Jagannathan 

et al. [23] 

Hybrid Hot 

Encoding 
VGG19 

Accuracy of 98.5% 

The training with 

ResNet50 is very 
unclear. 

Bin Xia et 
al. [24] 

CNN 

Accuracy of 0.9472, 

Misclassification rate 
of 0.0528, and kappa 

coefficient of 0.9435. 

There is a lack of 

factors semantic 
data, obstruction, 

and distortion 

Sudeep et 

al. [25] 

Thepade 

SBTC 

Acc of 70%, MCC of 
0.68, and F1-score of 

0.69. 

Lack of feature 

extrcation in terms 
of land usage 

finding from aerial 

images. 

B. Multi-Sensor Data Fusion (MSDF) 

Feature extraction plays a crucial role in LCLU. The main 
functionality of feature extraction is to convert the raw data 
into a list of features that can be used to conduct further 
analysis. Multisensory data fusion (MSDF) takes one step 
further in improving the accuracy and reliability of the derived 
characteristics by aggregating information from multiple 
sensors. The MSDF integrates information from various 
sensors more robustly and precisely. These sensors improve 
data quality and filter noise, which affects system performance. 
It also condenses the raw, unprocessed sensor data to simpler, 
more meaningful features. Next, autonomous navigation, 
environmental observation, object discovery, etc., can use these 

features with more relevant and discriminative inputs with the 
effect of feature extraction that can significantly enhance the 
algorithms in these applications. 

The following formulations are most widely used to 
measure the features: 

Weighted Averaging: It is very easy to measure the 
weighted average of the sensor measurements thus, the weight 
is derived based on the accuracy of each sensor. 

W = ∑ wiai
n
i=1  

Kalman Filter: It is used for the sensor fusion specifically 
applications like LCLU. 

âk = âk−1 +  Kk(ck − Hâk−1)

C. Maximum Likelihood Classification (MLC) 

The MLC is the classification method that covers the land 
applied in GIS (geographic information systems) and remote 
sensing. Transfer learning trains the samples by utilizing the 
statistical factors of pixel values to specify the land cover. The 
probability of every pixel measures the members of each class 
by using the probability density function of multidimensional 
normal distribution—the pixel of every class placed with high 
potential possibility. The MLC is very effective and easy to 
classify into different effectively distributed and separated 
classes. Suppose the class distributions overlap, and then the 
performance drops low. Finally, the likelihood that every pixel 
in the image belongs to every land cover class by using the 
Gaussian (normal) distribution model. In this context, the 
highest probability (maximum likelihood) pixels are 
represented with the specific class. 

The probability P(A|Zi)  that a pixel feature vector A 
belongs to class Zi  is given by the multivariate normal 
distribution. 

P(A|Zi) =
1

(2π)d 2⁄ |Σi|1 2⁄ exp (−
1

2
(A − μi)

T ∑ (A −−1
i μi))  

D. Support Vector Machines (SVM) 

SVMs perform remarkably well in binary classification 
applications. SVM can easily handle high-dimensional feature 
spaces, which is common in remote sensing data. It finds the 
feature space hyperplane that most effectively separates the 
classes. SVM maximizes the margin between data points of 
distinct classes, which lowers the risk of overfitting, 
particularly in higher-dimension domains. The kernel approach 
maps input space to a high dimensional space and allows SVM 
to classify non-linearly. SVM maps the input data to a higher 
dimensional space where a linear separation is possible using 
kernel functions when the data are not linearly separable. The 
standard base kernels are the polynomial, sigmoid, and radial 
basis functions (RBF). The margin is between the hyperplane 
and the nearest points of both classes. This margin must be 
maximized via SVM. Since these data are the most trustworthy 
and closest to the selection border (hyperplane), they are 
essential for determining the precise location and orientation of 
the hyperplane. 

The binary classification issue is solved by using training 

dataset {(ai, bi)}i=1
N , Where xi ϵ Rn represents feature vector 
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and yi ∈ (−1, 1}  class label helps to finds the maximum 
margin. 

The equation of a hyperplane in an n-dimensional space is: 

w ∙ x − b = 0

Here, w is the normal vector to the hyperplane, and b is the 
bias term. 

To ensure correct classification, the following constraints 
must be satisfied: 

E. Optimization Problem 

The objective is to maximize the margin, which is 
equivalent to minimizing ||w||, subject to the constraints above. 
The optimization problem can be formulated as: 

minw,b
1

2
||w||2

Subject to yi(w ∙  xi − b) ≥ 1, i = 1, … . . , N 

Lagrangian Formulation 

Using Lagrange multipliers ∝i, the issue can be represented 

as: 

ℒ(w, b, α) =  
1

2
||w||2 −  ∑ αi[yi(w ∙  xi − b) − 1] N

i=1  

By solving this dual problem, we get: 

maxα ∑ αi −
1

2
∑ ∑ αiαjyiyj(xi ∙  xj)

N
j=1

N
i=1

N
i=1 

Subject to ∑ αiyi = 1, αi ≥ 0N
i=1 . 

The optimal w is given by: 

w = ∑ αiyixi
N
i=1  

Finally, the SVM model can classify new, unseen data 
points (pixels) into land cover classes based on the learned 
decision function: 

f(x) = sign(w ∙ x − b)

F. Combination of MLC and SVM 

The combination of SVM and other methods obtains a high 
classification rate based on land cover. The MLC is a reliable 
method that works effectively on various types of satellite 
images and land cover situations, helping to increase the 
accuracy of classification. 

G. Dataset Description 

The dataset mainly gather the information of Vijayawada as 
of 24-10-2022 as shown in Fig. 3 and Fig. 4. Vijayawada is 
situated on the banks of the Krishna River, in the geographic 
middle of the Andhra Pradesh state in India, it is a historic city 
with coordinates of 16003’11” N and 800 03’91” E. Equatorial 
weather prevails, with warm summers and mild winters. In 
May and June, the temperature peaks at 47 °C, whereas in the 
winter, it ranges from 20 to 270 °C. The average annual rainfall 
is 103 cm, while the average humidity is 78%. 

 

Fig. 3. Sample Vijayawada city map collected from USGS database. 

 
Fig. 4. This is the actual MAP of Vijayawada as on 24-10-2022. 

V. RESULTS AND DISCUSSIONS 

A. Performance Metrics 

The following parameters show the performance of ML 
algorithms applied on USGS dataset. The classified image 
contains five classes’ building_regions, green_lands, 
farmlands, sandlands and water_regions. All these regions are 
marked with various colors. The confusion matrix is calculated 
and obtained results are compared with existing system results. 

Accuracy (ACC)  =
TP + TN

TP + TN + FP + FN
 

Precision (Pre)  =
TP

TP + FP
 

Specificity (Spc) =
 TN

TN +  FP
 

Recall (Re) =
TP

TP +  FN
 

F1 − Score (F1S) = 2 ∗ 
(Precision ∗ Recall)

(Precision + Recall)

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B. Discussions 

The algorithms were implemented using the Python 
programming language. Each algorithm obtained the count 
values based on the actual values and predicted values. The 
existing models, such as the Change detection network 
(CDNet) and fully convolutional-early fusion (FC-EF), were 
compared with the proposed approach. 

Table II describes the classification performance of existing 
CDNet model based on the count values belongs to five classes 
shown in Fig. 5. The average (acc) of all the classes is 0.72%, 
pre of 0.72%, (re) of 0.71%, (spc) of 0.92%, and F1S of 0.72%. 
Among all the parameters the specificity shows the high values 
that represents the imbalance in binary classification. 

TABLE II.  PERFORMANCE OF CDNET BASED ACTUAL VALUES AND 

PREDICTED VALUES 

LCLU Acc Pre Re Spc F1S 

Building Regions 0.72 0.66 0.72 0.91 0.69 

Green Lands 0.72 0.74 0.69 0.93 0.71 

Farm Lands 0.72 0.71 0.69 0.93 0.70 

Sand Lands 0.72 0.74 0.78 0.93 0.76 

Water Regions 0.72 0.74 0.71 0.93 0.73 

 
Fig. 5. Count values obtained from 5x5 confusion matrix using CDNet. 

TABLE III.  PERFORMANCE OF FC-EF BASED ACTUAL VALUES AND 

PREDICTED VALUES 

LCLU Acc Pre Re Spc F1S 

Building Regions 0.80 0.81 0.75 0.95 0.77 

Green Lands 0.80 0.81 0.76 0.95 0.78 

Farm Lands 0.80 0.76 0.75 0.94 0.75 

Sand Lands 0.80 0.75 0.89 0.93 0.81 

Water Regions 0.80 0.84 0.83 0.96 0.83 

Table III describes the classification performance of 
existing FC-EF model based on the count values belongs to 
five classes shown in Fig. 6. The average (acc) of all the 
classes is 0.80%, (pre) of 0.83%, (re) of 0.796%, (spc) of 
0.94%, and F1S of 0.79%. Among all the parameters the 

specificity shows the high values that represents the imbalance 
in binary classification. 

 
Fig. 6. Count values obtained from 5x5 confusion matrix using FC-EF. 

TABLE IV.  PERFORMANCE OF PROPOSED BASED ACTUAL VALUES AND 

PREDICTED VALUES 

LCLU Acc Pre Re Spc F1S 

Building Regions 0.93 0.97 0.91 0.99 0.94 

Green Lands 0.93 0.92 0.91 0.97 0.91 

Farm Lands 0.93 0.87 0.91 0.97 0.89 

Sand Lands 0.93 0.91 0.97 0.97 0.94 

Water Regions 0.93 0.98 0.94 0.99 0.96 

Table IV describes the classification performance of 
existing FC-EF model based on the count values belongs to 
five classes shown in Fig. 7. The average (acc) of all the 
classes is 0.93%, (pre) of 0.95%, (Re) of 0.95%, (spc) of 
0.98%, and F1S of 0.97%. Compare with above algorithms the 
proposed approach shows the high performance. 

 
Fig. 7. Count values obtained from 5x5 confusion matrix using proposed 

approach. 
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Fig. 8. (A) Input image, (B) Output image after implementation with the 

proposed MLC and SVM. 

VI. CONCLUSION 

The proposed MLC combines U-NET as a pre-trained 
model that transfers the LULC patterns to the proposed SVM 
algorithm. Other preprocessing techniques, such as ANR and 
AHE ref, refine image noise, extract significant features using 
MSDF, and handle high-dimensional data and non-linear 
relationships. The proposed approach is also a Unique 
Classification Model (UCM) that classifies the accurate LULC 
regions in the datasets. The Integrated SVM effectively 
improves classification in this work by focusing on the critical 
support vectors that define the class separations. Despite the 
increased computational complexity of integrating MLC and 
SVM, the algorithm remains scalable and efficient. Finally, the 
proposed approach obtains high performance in terms of 
average accuracy of all the classes of 0.93%, precision of 
0.95%, recall of 0.95%, specificity of 0.98%, and 0.97% based 
on five classes such as building_regions, green_lands, 
farmlands, Sandilands, and water_regions as shown in Fig. 8 
and Table V. Compared with the above algorithms, the 
proposed approach shows a high performance. In the future, 
high-quality images will require finding the various land types 
using ecosystem mapping and satellite imagery with accurate 
region classification. Also, developed the integrated models to 
detect and classify various deep learning models combined 
with image processing to show high impact on LULC regions. 

TABLE V.  THE DIFFERENT LAND TYPES COVERED WITH VARIOUS 

COLORS 

Colors Regions 

Red Buildings 

Green Greenery Lands 

Yellow Agricultural Lands 

Sandy Brown Sand Lands 

Blue Water regions 
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