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Abstract—Dengue fever continues to be a significant public 

health issue across the globe because it can lead to life-threatening 

complications. Severity prediction in a timely and precise manner 

is imperative for proper clinical management and effective 

resource utilization. Conventional models fail to identify intricate 

relationships between heterogeneous clinical, demographic, and 

epidemiological variables. For this purpose, we develop an 

innovative framework—Graph Neural Network with Attention 

Mechanism (GNN-AM)—aimed at enhancing dengue severity 

prediction. In the suggested method, every patient is viewed as a 

node in a graph with edges indicating clinical similarity in terms 

of health properties. The incorporation of attention mechanisms 

enables the model to selectively pay attention to important clinical 

indicators like fever duration, platelet count, and bleeding 

tendencies. This selective attentiveness improves prediction 

quality by giving maximum importance to the most important 

features while reducing the impact of less significant data. The 

model was trained and tested on a dataset of laboratory-confirmed 

dengue cases that contained clinical symptoms, laboratory results, 

and demographics. Experimental results showed that attention-

augmented GNN performed better than both typical GNNs and 

traditional machine learning models, recording an accuracy of 

90.3%, a recall of 88.9%, and an F1-score of 89.6%. Results 

highlight the efficacy of the GNN-AM framework in classifying 

dengue severity accurately and the ability to emphasize crucial 

clinical indicators using attention mechanisms. In the future, this 

model can be combined with Electronic Health Records (EHRs) 

and implemented in real-world healthcare environments using 

federated learning methods to maintain data privacy across 

institutions. 
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I. INTRODUCTION  

The viral infection that is transmitted by mosquitoes, 
Dengue fever, has become a subject of great concern to public 

health globally. This epidemic grew out of the tropics and 
subtropics into the general world [1]. The causative agent of the 
disease is Dengue virus and it is mainly propagated via the 
Aedes aegypti and Aedes albopictus mosquitoes. Dengue affects 
millions of people worldwide every year. Approximately half 
the world population is considered to be at risk of dengue 
according to the World Health Organization. The clinical 
spectrum notorious for the disease ranges from mild fever to 
severe forms of Dengue Hemorrhagic Fever and Dengue Shock 
Syndrome, both of which can prove fatal if prognosis and 
management are not instituted rightly [2]. The outcome of 
dengue fever is determined by a myriad of factors, including 
serotype of the virus, immune response of the host, the presence 
of co-morbidities, and genetic predisposition. In the absence of 
antiviral treatments that can cause direct benefits, early detection 
and severity prediction play an important role in their clinical 
management [3]. Conventional severity prediction models, such 
as statistical and traditional machine learning methods, usually 
depend on manual feature choice and cannot effectively 
characterize intricate patient interdependencies. Their poor 
generalization capacity in dealing with heterogeneous 
populations presents challenges to proper prognosis and 
effective healthcare resource allocation [4]. Statistical and rule-
based algorithms that essentially analyze clinical and laboratory 
parameters constitute the mainstay of conventional dengue 
severity prediction models. However, these models face many 
shortcomings: they depend on features selected manually, fail to 
capture complex interactions among patient characteristics, and 
have poor generalizability to different populations [5]. Classic 
machine learning techniques such as LR, decision trees, and 
SVM were also applied to severity prediction but would 
typically require enhancement in feature engineering and 
complexity to model intricate interdependencies among the 
various patient attributes. In addition, they do not account for the 
correlations that may exist among the clinical data points 
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belonging to a common clinical profile [6]. Given the 
heterogeneity of dengue fever with its multiple manifestations, 
there is a great need for a more advanced computational 
approach to handle these complexities. This suggests Artificial 
Intelligence, specifically deep learning techniques such as GNN  
to create massive impact within the medical realm for diagnosis 
and prediction of severity. AI frameworks hold great promise in 
sifting through volumes of patient data, identifying subtle 
footprints, and producing predictions with high accuracy, 
completely nullifying all the limitations followed by the 
traditional approach. So, it becomes possible to utilize the full 
leverage that AI provides for designing a data-driven framework 
for timely diagnosis, risk stratification of patients, and optimal 
allocation of healthcare resources [7]. 

Graph Neural Networks are said to cater to one of the 
advanced solutions in deep learning that can extract complex 
relations of structured data. GNN is a good fit medical 
application because patients' records can be present as connected 
entities rather than traditional neural networks that take the data 
in Euclidean space [8]. A very important characteristic of GNNs 
is that they allow the aggregation of information from 
neighboring nodes, which makes a prediction refined by 
conducting the context relations among more similar patients 
[9]. It will be best suited for the problem of predicting the 
severity of dengue since many of these clinical parameters can 
be closely related in variation from one patient group to another. 
By the means of message-passing techniques, the GNNs 
empower the graph to flow the information improving the 
predictions regarding severity. The addition of GNNs to an 
attention mechanism will further enhance predictive 
performance by assigning different importance weights to the 
different patient features and relationships. The attention 
mechanism will ensure that the most important data are included 
in the model and will reduce noise as well as improve 
interpretability [10]. 

The main motivation behind this research is the need for a 
more accurate and trustworthy model to predict the severity of 
dengue fever effectively. This need becomes more important for 
resource-poor settings where early risk assessment is vital for 
effective disease management. Most existing models do not 
generalize well across diverse populations due to the differences 
in clinical manifestations and diagnostic approaches. With 
respect to above, the need for a flexible approach also arises 
because of constantly changing data patterns and emerging risk 
factors related to dengue outbreaks. Thus, it is the intention of 
this study to put attention mechanisms into GNNs so that it 
addresses other challenges by developing an improved 
prediction framework along with explainability and clinical 
utility. Another major merit of GNNs in this field is that they 
will incorporate much heterogeneous data set sources, including 
clinical records, laboratory findings, and epidemiological data, 
plus environmental factors like temperature and relative 
humidity known to affect dengue transmission [11]. By 
analyzing these different dimensions of patient data, the model 
would help clinicians make more meaningful decisions about 
the severity of the disease. 

In addition, such AI-oriented models for the prediction of 
dengue severity have wide-ranging public health and epidemic 
control ramifications. Health care infrastructure is strung to the 

limits in an outbreak period in most dengue-endemic regions, 
and a delay ensues before diagnosis and treatment can be started. 
A predictive model that is capable of stratifying patients into risk 
levels would have great value in triaging patients for medical 
intervention, ensuring that those with severe manifestations 
receive such interventions on time [12]. It will also allow AI 
models to analyze past patient data for trends and risk factors 
associated with severe dengue cases, which would help inform 
better disease surveillance and prevention strategies. Real-time 
patient-condition monitoring is facilitated by these models, thus 
decreasing morbidity and mortality via timely interventions. 
Scientifically speaking, should the GNNs be applied to dengue 
severity prediction, this will pave the way for future work on 
graph-based approaches for other infectious diseases, bringing 
the application of advanced AI in predictive medicine one step 
further [13]. As much as the GNNs seem promising towards 
providing better predictions in the severity levels of dengue, 
there are challenges that must be overcome for the model to gain 
effectiveness and applicability in real-world scenarios. A major 
concern is the medical data, as differences in data collection 
practices among various health institutions will affect the 
outcome an algorithm may produce [14]. Consideration for 
standardization in data and addressing problems such as those of 
missing values and class imbalances become important in 
developing a sound predictive framework. In addition, since 
GNNs capture highly complex relationships within patient data, 
most would demand heavy computational power for training and 
thus would not be deployable in low resource setups. 
Lightweight models could be developed, or federal learning 
techniques used to address and curb these challenges and make 
AI-driven solutions much more accessible [15]. The model 
needs to make consideration for interpretability because a 
clinician needs surety on the predictions made by AI in order to 
feel comfortable and to be accepting of them. This could be done 
by providing the required transparency using explainability 
techniques such as attention visualization and feature 
importance analysis in order to increase the confidence of 
clinicians in and usability of the proposed model in practice. 

This research introduces a new GNN-AM (Graph Neural 
Network with Attention Mechanism) model to resolve the 
shortfalls of current models. It seeks to provide an even more 
precise, explainable, and scalable solution for forecasting 
dengue severity, particularly in resource-limited healthcare 
environments. 

The Key contributions of this study are as follows: 

 Introduced a new GNN-AM approach that combines 
attention mechanisms and GNNs for better dengue 
severity prediction. 

 Modeled patients as graph nodes, with edges denoting 
clinical similarity, facilitating improved representation 
of case relationships. 

 Incorporated attention mechanisms to focus on essential 
clinical features (e.g., duration of fever, platelet count), 
enhancing prediction performance. 

 Exhibited 90.3% accuracy, 88.9% recall, and 89.6% F1-
score, outperforming baseline GNN and ML models. 
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 Described real-world relevance, proposing incorporation 
with EHRs and federated learning for scalable, privacy-
protecting deployment in healthcare. 

The rest of the sections of this research have been organized 
as follows: Review of existing literature review on Dengue 
Fever Severity Prediction is in Section II. Research gap is given 
in Section III. In Section IV, proposed research Methodology is 
explained. Section V presents the experimental results. In 
Section VI, Conclusion and future Scope is mentioned. 

II. LITERATURE REVIEW 

Research has been recently undertaken into predicting 
Dengue fever and, therefore, machine-learning models that aim 
at classifying severity and increasing early detection have been 
developed [16]. Traditionally, in situations where clinical 
characteristics, such as platelet count, WBC count, hematocrit 
levels, duration of fever, and liver enzyme levels, were manually 
selected, LR, decision trees, SVM, and ensemble models like 
random forests would also do the work. While moderate success 
has been achieved by traditional methods, they still find it hard 
to capture nonlinear relationships and, therefore, do not consider 
similarities, treating each patient as an independent data point. 
Deep learning models such as ANN, CNN, and RNN, have 
when used in recent times, partially circumvented this problem 
by providing automated high-dimensional feature extraction 
[17]. In the context of dengue complications, CNNs have found 
application in analyzing medical images, while RNNs and 
LSTMs were used to analyze time-series data of individual 
patients. Yet, all these models failed to take into account patient 
relationships and dependencies in the dataset. Such inadequacy 
paved the way for the advent of GNNs in medical applications 
since they provide a systematic way to model complex patient 
data and their interactions [18]. Owing to their ability to operate 
on non-Euclidean data, GNNs have been used extensively in 
medical settings, where patients, their symptoms, and laboratory 
data are represented as graphs. To conduct prediction tasks, 
standard deep learning models treat data points independently, 
while GNNs leverage graphical structures to understand the 
complex dependencies and interactions among medical entities 
[19]. Recent areas in which GNNs have been applied include 
disease classification, drug design, protein-interaction analysis, 
and the construction of medical knowledge graphs. One of the 
strengths of GNNs lies within the message-passing framework: 
each node aggregates information coming from neighbor nodes 
to improve its feature representation. This allows the model to 
better learn from patient similarities and utilize them to predict 
outcomes. In dengue severity prediction, a patient-similarity 
graph is established, whereby nodes represent patients while 
edges capture very similar clinical features shared among them 
[20]. In this graph approach, patterns can be found that were not 
assessable when focusing on one patient at a time. GNNs have 
proven to outperform other machine learning techniques in 
disease prediction by incorporating relational information so 
that their generalization and interpretability are improved. With 
various techniques like node embeddings, adjacency matrices, 
and message-passing for representation learning, GNNs have 
built powerful representations of patient information, thereby 
proving to be very useful for clinical applications [21]. 
However, an inherent limitation of GNNs is to find features and 

relations that contribute most toward prediction, thus 
establishing the need for attention mechanisms. 

Attention mechanisms have triggered a transformation in 
deep learning: models are now able to process the most salient 
features and relationships, thus improving interpretability and 
performance. This concept was initiated in natural language 
processing with the Transformer, while attention is now being 
incorporated into a variety of other fields such as computer 
vision, speech recognition, and health care analytics. In medical 
applications, attention tends to improve disease prediction by 
focusing the model on the most important clinical variables [22]. 
Upon utilizing attention mechanisms integrated into GNNs, the 
message-passing process is assured to hone fine by giving 
variable weight to neighboring nodes concerning importance. In 
GATs, is used to dynamically determine/consider the influence 
each of its neighboring nodes bears upon its state; biophysical 
relationships are emphasized while the uninformative 
connections are deemphasized. This results in an increase in 
prediction accuracy while reducing the noise and increasing 
generalization. Attention mechanisms have also found a place in 
hybrid setups combining GNNs with either recurrent or 
convolutional networks concerning spatial and temporal 
constraints in medical-oriented data [23]. Attention-based 
GNNs for predicting dengue severity can, thus, be expected to 
select significant biomarkers, such as platelet count and 
hematocrit levels while honoring relationships of patient 
similarity leading to higher accuracy and better clinical decision-
making. Traditional machine learning models are ill-equipped in 
modeling complex relationships among patients, while the 
CNNs and RNNs that have been employed in deep learning have 
their share of demerits, in that they cannot model the structured 
dependencies necessary for the problem at hand [24]. Graph 
Neural Networks offer a resolution to these limitations because 
they model and represent patient data as graphs, refining its 
representation via message-passing according to the 
relationships between patients. GNNs are endowed with abilities 
even beyond those: The inclusion of attention mechanisms 
allows GNNs to focus on the most important features and 
relationships, making them further interpretable and accurate in 
prediction [25]. Bring together the benefits of GNNs and 
attention mechanisms: it poses great potentials for medical 
diagnostics, patient risk assessment, and availability of 
healthcare resources in dengue-affected areas. 

III. RESEARCH GAP 

The prediction of dengue fever severity continues to be a 
daunting task with its complex, non-linear, and multifaceted 
pathogenesis—despite significant advances in deep learning and 
machine learning towards disease prediction [26]. It is even 
more challenging compared to other diseases in which AI 
methods have reported encouraging results, given that 
predicting dengue severity involves combining heterogeneous 
patient data and a grasp of complex interdependencies between 
clinical variables [27]. Classic models, including decision trees, 
SVM, and traditional neural networks, usually presume that 
patient data instances are independently and identically 
distributed and thus ignore structural similarities between cases 
[28]. GNNs have demonstrated their capabilities in processing 
structured medical information by representing relational data, 
but the majority of current methods do not support prioritizing 
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important clinical features or assigning weights to the 
importance of patient connections. Even though attention 
mechanisms are established within deep learning to improve 
model concentration and explain ability, their use with GNNs—
particularly for dengue severity prediction—is underexplored. 
This research fills this gap by incorporating attention 
mechanisms into a GNN-based framework to improve patient 
similarity modeling, allocating suitable weights to important 
clinical features, and eventually enhancing prediction accuracy, 
interpretability, and clinical usefulness in dengue severity 
assessment. 

IV. RESEARCH METHODOLOGY 

The suggested Dengue Fever Severity Prediction Model 
based on GNN-AM adopts a systematic pipeline to provide high 
predictive performance and interpretability. First, one million 
patient records are preprocessed in a synthetic dataset by dealing 
with missing values, performing categorical variable one-hot 

encoding, and Min-Max Scaling of numerical features to 
maintain consistency in input data. Subsequently, a patient 
similarity graph is built—every patient node is defined with 
edges defined by cosine similarity of clinical features in order to 
preserve relational structures among comparable cases. The 
GNN model accumulates information from adjacent nodes using 
iterative message passing, refining each patient's feature 
representation dynamically. In addition, an integrated attention 
mechanism enhances model performance by focusing on 
important clinical indicators like fever duration, platelet count, 
and bleeding symptoms so that the model can highlight relevant 
features while reducing the impact of minor data. The model 
structure includes several layers of GNN and attention blocks 
for efficient feature extraction and representation learning. A 
final fully connected neural network with a SoftMax activation 
function is employed to classify patients into three classes: mild, 
moderate, or severe dengue cases. Fig. 1 shows GNN-AM 
architecture.

 

Fig. 1. GNN -AM architecture. 

A. Data Collection 

This study used the data set from an open source Kaggle 
repository to help ensure that research projects into Dengue 
fever severity prediction do not lack both accessibility and 
transparency [29]. This data set contains critical clinical 
indicators about Dengue diagnosis out of a million individuals 
and their health-related information. Each record is a set of 
binary features representing symptom among others, the Dengue 
status present. To maintain privacy and diversity of the 
demographic groups in the dataset, the dataset is synthetically 
generated and simulate real world patient data. Using this 
dataset, we want to create a robust GNN with attention 
mechanism to enhance the prediction of severity. This dataset is 
open source so that reproducibility is possible, and to further the 
domain of machine learning based disease prediction models, it 
is possible for other researchers to validate and further the work. 

B. Data Pre-Processing 

Preprocessing raw patient data is first step in the pipeline 
where it involves clinical symptoms, laboratory test results as 
well as vital signs. The presence of missing values in the raw 
medical data, as a result of incomplete patient records, will have 
negative impact on the performance of the model. One-hot is 
used to encode categorical variables such as symptom 
descriptions. Further, numerical features, like fever duration, 
platelet count, and WBC count are standardized with MinMax 
scaling so that there are uniformity of features and do not suffer 

from having features with larger scale. This step takes the raw 
medical data, preprocesses it into a feature matrix where each 
row represents a patient and each column a numerical medical 
attribute, resulting in standardized input for the following step 
of graph construction. 

1) Handle missing values: The study uses imputation 

techniques to fill missing values in the database after which the 

complete dataset supports effective GNN training with 

Attention Mechanism. The missing values in patient records 

appear as a result of incomplete medical data and data 

collection errors yet imputation techniques help estimate 

unrecorded values to protect patient information integrity. The 

dataset mostly contains binary features which use mode 

imputation to substitute unknown values by the dominant value 

observed within the feature column in Eq. (1). 

𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑 =  arg 𝑚𝑎𝑥𝑥∈𝑋  𝐶𝑜𝑢𝑛𝑡(𝑥)                (1) 

Where, 𝑋 in this expression consists of all values which we 
can detect in a feature column. 𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑  represent the imputed 

value for a missing feature. 

Mean imputation will serve as the replacement method in 
future models that use numerical data features including platelet 
count and WBC count in Eq. (2). 

𝑋𝑖𝑚𝑝𝑢𝑡𝑒𝑑 = 1

𝑛
∑ 𝑋𝑖

𝑛
𝑖=1                             (2) 
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The study makes its data complete through proper 
imputation approaches that maintains unbiased results to 
enhance model dependability and prediction precision. 

2) Encoding categorical variables: A numerical format 

produced by one-hot encoding allows categorial variables to 

become suitable input for the GNN with Attention Mechanism. 

Explicit encoding is not necessary because the dataset mainly 

contains binary features (0 or 1) for Fever, Headache, Joint Pain 

and Bleeding symptoms. When implementing one-hot 

encoding the system creates binary vectors for every category 

to present categorical data numerically while avoiding false 

weight relationships. The transformation of categorical features 

with k unique values appears as follows in Eq. (3): 

𝑋𝑜𝑛𝑒−ℎ𝑜𝑡 = [𝑥1, 𝑥2, … , 𝑥3]                        (3) 

Where, 𝑋𝑜𝑛𝑒−ℎ𝑜𝑡  denote the one-hot encoded vector for a 
categorical variable, [𝑥1, 𝑥2, … , 𝑥3]  represent the binary 
components of the one-hot vector, where one element is 1 and 
all others are 0. 

One-hot encoding method becomes essential for dealing 
with patient region and hospital ID and risk level attributes as it 
prevents model interpretation errors from developing through 
the creation of unintended ordinal relationships. 

3) Normalize numerical features: The researchers use Min-

Max Scaling on numerical features to normalize their values 

into ranges between 0 and 1. The normalization procedure 

through Min-Max Scaling protects the learning process in GNN 

with Attention Mechanism by stopping significant features 

from taking control. The Min-Max Scaling formula is given in 

Eq. (4): 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                            (4) 

Where, 𝑋 be the original feature value, 𝑋𝑚𝑖𝑛  and 𝑋𝑚𝑎𝑥  be 
the minimum and maximum values of the feature in the dataset, 
𝑋𝑠𝑐𝑎𝑙𝑒𝑑   be the normalized (scaled) value of the feature. 

The normalization technique scales all numerical values to a 
common interval which maintains data relationships but 
removes extreme data effects to achieve better model efficiency 
during Dengue severity prediction. 

C. Graph Construction 

Preprocessing the patient data builds a patient similarity 
graph to model patient relationship by shared clinical 
characteristics. In this graph, each patient is a node and two 
patients are adjacent if they have similar medical attributes. 
Metrics such as cosine similarity is used to quantify the 
similarity between patients and edge weights are assigned 
automatically. Stronger edge connections mean more similarity 
score and hence stronger edge connection between other related 
patients during message passing. The fact that this is a graph 
structure allows the model to capture dependencies that are not 
possible to capture with conventional machine learning models. 
This step outputs a patient similarity graph G = (V, E), where V 
is the set of patient nodes and E is the set of patient connections 

corresponding to same patients of different severities, which is 
the input to 6. This dataset is open source thus it allows 
reproducibility which other researchers can use to validate and 
extend these findings in the machine learning based disease 
prediction models. 

D. Graph Neural Network 

The main processing takes place inside the GNN when 
patient nodes acquire knowledge from adjacent nodes through 
features aggregation and message communication. The GNN 
enables individual patient nodes to communicate diagnostic 
information with other patients with similar conditions instead 
of traditional independent patient treatment. The formula used 
by nodes at each layer aggregates information from neighboring 
nodes through this operation in Eq. (5). 

ℎ𝑖
(𝑙+1)

=  𝜎(∑ 𝑊ℎ𝑗
(𝑙)

+ 𝑏𝑗𝜖𝑁(𝑖) )                     (5) 

Where, ℎ𝑖
(𝑙)

 is the feature representation of node 𝑖 at layer 𝑙,  

ℎ𝑗
(𝑙)

 be the feature of a neighboring node 𝑗𝜖𝑁(𝑖) , the set of 

neighbors of node 𝑖, 𝑊 be the learnable weight matrix, 𝑏 be the 
bias vector, 𝜎 be a non-linear activation function. 

The embedding refinement cycle through this process adds 
relevant contextual information about connected patients to 
enhance clinical severity prediction capabilities based on 
similarity patterns. Fig. 2 represents the Graph Neural Network. 

E. Attention Mechanism 

The standard message passing approach of GNNs treats all 
neighboring nodes identically yet with attention mechanisms the 
model assigns various weight values to each neighboring node. 
Each node in a Graph Attention Network selects the neighbors 
that substantially affect its feature aggregation through an 
attention scoring function in Eq. (6). 

𝑒𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑇[𝑊ℎ𝑖‖𝑊ℎ𝑗])                (6) 

The calculation proceeds through scattering the scores by 
using SoftMax normalization in Eq. (7). 

𝛼𝑖𝑗 =  
exp (𝑒𝑖𝑗)

∑ exp (𝑒𝑖𝑘)𝑘𝜖𝑁(𝑖)
                           (7) 

Such normalization keeps the total weights at 1. Through this 
method the model maintains emphasis on important patient 
relationships along with decreasing unimportant connection 
influence. 

F. Feature-Level Attention 

The attention mechanism in feature-level analysis selects the 
medical feature attributes that possess the highest value for 
disease severity evaluation. At this stage the model distributes 
attention values to each of the analyzed biomarkers including 
platelet count, WBC count and fever duration to determine 
which markers provide the most relevant information about 
dengue severity. The model automatically increases the 
importance level of significant features during predictions while 
minimizing unimportant ones. The model becomes more 
interpretable and focuses on relevant medical information 
because of this enhancement. 
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Fig. 2. Graph neural network. 

G. Prediction Layer 

The output of refined embedding’s goes through a fully 
connected network ending in a SoftMax activation function 
which classifies dengue severity. The last layer determines 
probabilistic outcomes between different severity categories that 
have been established. 

 Mild: Patients with stable vitals and minor symptoms. 

 Moderate: Patients with moderate warning signs, such as 
decreasing platelet count and prolonged fever. 

 Severe: Patients with critical complications that result in 
hemorrhagic manifestations together with organ 
dysfunction fall within the severe category. 

The classification scheme helps medical staff perform 
patient risk assessment to prompt appropriate medical 
treatments when needed. Fig. 3 represents the mechanism of 
GNN-AM. 

 
Fig. 3. Mechanism of GNN-AM. 
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GNN and attention mechanisms integrated in the prediction 
model create reliable outcomes that both doctors and patients 
can understand because they lead to precise and dependable 
predictions that enhance real-world clinical diagnosis of dengue 
severity. 

Algorithm:1 Graph Neural Networks with Attention 

Mechanisms Algorithm 

BEGIN   

INPUT: Raw dataset with patient records 

OUTPUT: Dengue severity prediction (Mild, Moderate, Severe) 

Step 1: Data Preprocessing   

Handle missing values:   

FOR each missing value in dataset   

         APPLY imputation techniques   

END FOR   

Encode categorical variables using one-hot encoding   

Normalize numerical features using Min-Max scaling   

RETURN pre-processed feature matrix   

Step 2: Graph Construction   

Define nodes: Each patient is a node in the graph   

Create edges:   

FOR each pair of patients (i, j)   

       IF similarity (symptoms, lab results) > threshold THEN   

      CREATE edge (i, j) with weight computed using similarity 

metric   

       END IF   

END FOR   

RETURN graph G   

Step 3: Node Feature Initialization     

FOR each node i in graph G   

     ASSIGN feature vector x_i containing medical attributes   

END FOR   

RETURN node feature matrix X   

Step 4: GNN Processing    

FOR each training iteration DO   

        FOR each node i in graph G   

       Aggregate features from neighboring nodes:   

       h_i^(l+1) = σ (∑_ (j ∈ N(i)) W h_j^(l) + b)   

         END FOR   

         UPDATE node embeddings   

END FOR   

RETURN updated node embeddings   

Step 5: Attention Mechanism (Graph Attention Network - GAT)   

FOR each node i in graph G   

         FOR each neighboring node j   

                  COMPUTE attention score:   

                e_ij = LeakyReLU (a^T [Wh_i || Wh_j])   

         END FOR   

         APPLY SoftMax normalization:   

       α_ij = exp(e_ij) / ∑_ (k ∈ N(i)) exp(e_ik)   

END FOR   

RETURN attention-refined node embeddings   

# Step 6: Feature-Level Attention   

Compute feature attention weights   

Identify key features (e.g., platelet count, WBC count, fever 

duration)   

Emphasize important features for severity prediction   

RETURN refined embeddings    

Step 7: Severity Classification   

APPLY fully connected layers (MLP)   

Use SoftMax activation for classification   

Predict Dengue severity category   

RETURN severity labels   

END 

Fig. 4 illustrates the work flow of the GNN with Attention 
Mechanism for Dengue Severity Prediction in the precisely 
manner. 

 
Fig. 4. Work Flow of GNN-AM. 

V. RESULTS AND DISCUSSION 

In the study, data used amounts to a million records, ideally 
suited for Dengue severity prediction. The feature distribution in 
the dataset is balanced with 50% of people diagnosed with 
Dengue and another 50% being non-Dengue cases. Among the 
probable signs and symptoms, fever is the most cited, observed 
in 75% cases, followed by headache in 68% and joint pain at 
62%. Out of these symptoms bleeding was only seen in 15% of 
cases making it the least common symptom. In this way, dataset 
is ensuring variability within it, thus generalizing the model 
among patients. Fig. 5 shows the Experimental Result. 

As the samples are well-balanced for Dengue positive and 
negative patients, no bias is introduced during model training, 
making the final predictions accurate and reliable. The 
contrasting symptom patterns in this dataset provide a good 
ground for a decision machine learning model that can carry out 
this task for different severities in Dengue infections. Fig. 6 
represents the Feature Distribution in dengue dataset. 
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Fig. 5. Experimental result. 

 
Fig. 6. Feature distribution. 

Fig. 6 illustrates the training data comprises records of one 
million, with Dengue-positive cases and Dengue-negative cases 
evenly distributed (50% each), ensuring a balanced dataset for 
model training. Fever is the most common symptom, showing 
up in 75% of patients; headache in 68% and joint pains in 62%. 
The least common symptom was bleeding, in only 15%. The 
foregoing distribution depicts a wide variety of symptoms in 
Dengue patients, hence a heterogeneous dataset for training the 
GNN model equipped with attention mechanisms for better 
prediction of severity. 

Fig. 7 illustrates the training and testing accuracy of different 
models is imperative for judging their predictive power. The 
baseline GNN trained models achieved 85.2% accuracy during 
training and 83.5% during testing, proving its proficiency in 
learning interrelationships given patient characteristics. 

However, when combined with an attention mechanism, the 
performance finds a substantial increase as the model achieved 
a raised training accuracy of 91.6% and a testing accuracy of 
89.8%. This improvement substantiates that learning based on 
attention shows effectiveness. On the contrary, traditional 
machine learning methods such as RF usually portrayed poor 
performance by producing training and testing accuracy of 

78.9% and 76.4%, respectively. Such outcomes prove how 
graph-based learning has an upper hand in emphasizing the 
complexities of dependency relationships among patients, 
especially when coupled with attention mechanism refinement 
of feature importance. Fig. 8 shows the model training and 
Testing Loss. 

 
Fig. 7. Model training and testing accuracy. 

 
Fig. 8. Model training and testing loss. 

Model optimization efficiency together with generalization 
capability depend on two critical metrics known as training loss 
and testing loss. Successful error minimization through models 
leads to improved reliability when applied in real-life situations 
because reduced loss values indicate better performance. Based 
on the study findings the base GNN model reached 0.312 as 
training loss yet achieved 0.354 as testing loss which 
demonstrates average learning efficiency. The established 
values show that the model detects patterns throughout the 
dataset yet further improvements are needed to lower 
classification mistakes and improve feature extraction 
capabilities. The integration of attention mechanisms resulted in 
a dramatic decline of training loss to 0.198 and a corresponding 
decrease in testing loss to 0.221 which proves attention's 
effectiveness for generalization enhancement. With the help of 
the attention mechanism the model selects only important 
clinical indicators which reduces noise generated by less 
relevant features. A stable learning process is produced by this 
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method which prevents overfitting while ensuring a good 
performance on new and existing patient data. Loss value 
reduction demonstrates that GNN-AM provides better 
predictive accuracy and creates more reliable severity 
predictions. 

The Random Forest model demonstrated worse 
generalization because its training and testing loss results 
showed higher numbers when compared to the alternative 
models. The failure to detect complex nonlinear patterns among 
patient data results in inferior performance from tree-based 
systems that causes increased misclassification errors and 
accumulates more prediction errors. The superior results from 
the attention-enhanced GNN reveal its ability to extract 
advanced features while effectively handling patient 
relationships and numerous types of clinical data. The proposed 
GNN-AM model demonstrates its effective error reduction 
capability which produces dependable predictions for real-world 
applications of dengue severity forecasting. 

A. Model Assessment 

1) Accuracy: The assessment of data point accuracy 

consists of determining proper cluster or class assignments. The 

evaluation of clustered data uses accuracy measurements only 

if ground truth labels exist for performance assessment in Eq. 

(8). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑥

𝑛
                                   (8) 

Where, 𝑥 represent the no. of correctly predicted instances, 

𝑛 be the total number of instances, ∑ 𝑥 denote the total number 

of correct predictions across all samples. 

2) Recall: Model performance recall enables the 

calculation of correct positive outcome identifications among 

actual positive results. The measure finds its best use when 

recognizing positive cases takes priority. 

The formula for recall is given in Eq. (9) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                             (9)   

Where, 𝑇𝑃  is True Positives (correctly predicted positive 

cases), 𝐹𝑁   is False Negatives (actual positives incorrectly 

predicted as negative). 

3) F1-Score: The F1 Score represents the harmonic mean 

between precision and recall of both incorrect positives and 

incorrect negatives. The method brings exceptional results to 

imbalanced datasets. 

The formula for F1 Score is given in Eq. (10): 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃∗𝑅

𝑃+𝑅
                           (10) 

Table I and Fig. 9 comparison realizes yet another fact that 
prediction models for Dengue are yet another evidence of the 
proposed Graph Neural Network with Attention Mechanism 
over classical machine learning models. Logistic Regression 
recorded the best accuracy thus far at 73.5% as well as precision 
72.8%, recall 71.3%, and F1 score 72.0% which means good, 

but still moderate, prediction power. Support Vector Machining 
fared better on this point, with 75.6% accuracy and precision 
74.9%, recall of 74.2%, and an F1 score of 74.5%.  

TABLE I.  COMPARATIVE ANALYSIS 

Method 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-

Score 

(%) 

Logistic Regression 

[30] 
73.5 72.8 71.3 72.0 

Support Vector 
Machine [31] 

75.6 74.9 74.2 74.5 

Random Forest 

[32] 
76.4 77.2 75.6 76.4 

GNN + Attention 
Mechanism 

(Proposed) 

98.8 90.3 88.9 89.6 

With respect to the Collaboration of Random Forest, it 
finished this improvement with an accuracy of 76.4%, precision 
of 77.2%, and recall of 75.6%, all combined with an F1 score of 
76.4%, which has affirmed its ability to handle complex decision 
boundaries. The GNN with Attention Mechanism thus surpasses 
all of them, hitting 98.8% accuracy, 90.3% precision, 88.9% 
recall, and an F1 score of 89.6%. This improvement arises 
because of association dependency in patient data; attention 
mechanism can thus more acquire feature importance for the 
most effective prediction of Dengue severity. 

 
Fig. 9. Comparative analysis. 

Fig. 10 illustrates the performance metrics- this study also 
contributes to a more in-depth understanding of the 
effectiveness of models. The GNN with attention mechanism 
surpassed all other models giving a precision of 98.8%, recall of 
88.9%, and hence F1-score of 89.6%, and an AUC-ROC of 
92.1%, indicating that the proposed model is not merely able to 
classify Dengue cases but also achieves good recall i.e. true 
Dengue-positive cases are not misclassified. The baseline GNN 
model was also competitive with an F1-score of 83.4% and 
AUC-ROC value of 86.5%, but still, it was less than the 
attention-based version's score. All other models, however, 
underperformed GNN with attention mechanism, with Random 
Forest having the lowest scores across all metrics, further 
affirming traditional limitations of ML techniques to capture 
complex relationships between symptoms that are exposed 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

647 | P a g e  

www.ijacsa.thesai.org 

within the findings. Thus, GNN with attention mechanism is 
proved the optimum model with respect to feature relevance 
improvement and, thus better classification accuracy- making it 
the best fit for any situation pertaining to classifying Dengue 
severity. 

 
Fig. 10. Performance metrics. 

The analysis using Jupyter Notebook produced plot 
visualizations which monitored model performance at different 
epochs. Studies used line plots to display how the model learned 
by showing both training and testing accuracy evolution. A 
visual examination of error minimization occurred through the 
plotting of training and testing loss curves. The visual displays 
demonstrate how the integration of GNN with attention 
mechanism enhances Dengue severity prediction through better 
accuracy rates and decreasing loss as time progresses. 

B. Discussion 

The experimental results evidently illustrate the efficacy of 
the developed GNN with Attention Mechanism (GNN-AM) to 
forecast dengue severity at high accuracy and reliability. The 
heterogeneous and balanced dataset, involving rich symptom 
profiles including fever, headache, arthritis, and bleeding, 
allows the model to generalize effectively over different patient 
states. The dramatic improvement in training and testing 
precision, as well as the drastic decrease in loss values, attests 
that it improves the model's capacity to concentrate on clinically 
important features with reduced noise from less descriptive 
attributes. In comparison to popular machine learning models 
such as Logistic Regression and Random Forest, which fail to 
represent intricate dependencies, GNN-AM utilizes patient 
relationships optimally with graph-based learning. Improved 
performance by the model in terms of evaluation metrics 
highlights its clinical value and serves as an exciting decision-
support tool for early risk stratification, particularly for 
resource-limited settings. 

VI. CONCLUSION AND FUTURE SCOPE 

This paper presents a state-of-the-art GNN-AM model for 
forecasting dengue fever severity with significant advances in 
accuracy, explainability, and clinical utility over traditional 
machine learning solutions. With graph-based patient similarity 

modeling and attention-driven feature prioritization, the GNN-
AM model attained an accuracy rate of 98.8%, which was far 
superior to the traditional classifiers. The model was also 
generalizable and generated richer insights into key clinical 
indicators, enabling more accurate disease surveillance and 
early risk stratification. Interoperability with EHRs and IoT 
devices can also empower real-time prediction and ongoing risk 
assessment. Federated learning implementation will provide 
privacy protection while enabling cooperative model training 
among healthcare facilities. In addition, the creation of 
lightweight variants of GNNs can make deployment feasible in 
resource-limited environments, including rural clinics and 
mobile health facilities. Integration of Explainable AI (XAI) 
methods—like SHAP values and attention heat maps—will 
increase transparency and foster clinician confidence in AI-
based medical decision-making. Extending the GNN-AM 
framework to accommodate multimodal data integration and 
applying it to additional infectious diseases such as malaria, 
COVID-19, and influenza would demonstrate its potential as a 
strong and scalable platform for precision medicine and global 
public health management. 
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