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Abstract—This study presents a deep reinforcement learning 

(DRL) approach to train a robotic arm for object reaching tasks 

in industrial settings, eliminating the need for traditional task-

specific programming. Leveraging the Proximal Policy 

Optimization (PPO) algorithm for its stability in continuous 

control, the system learns optimal behaviors through autonomous 

trial-and-error. Central to this work is reward shaping, where 

structured feedback based on distance to the target, collision 

avoidance, motion constraints, and step efficiency guides the 

agent, akin to incremental coaching. A simulated industrial 

environment was developed using Webots, integrated with 

OpenAI Gym and Stable-Baselines3, enabling safe training with 

sensor data (camera, distance sensor) and randomized target 

placements. Three models with varying reward schemes were 

evaluated: simpler rewards prioritized rapid convergence, while 

complex formulations (e.g., perceptual alignment) enhanced long-

term accuracy at the cost of initial instability. Experimental results 

demonstrated that reward shaping reduced the required steps, 

highlighting its role in accelerating learning. The study 

underscores the efficacy of combining DRL, simulation-based 

training, and adaptive reward design to develop efficient robotic 

controllers. These findings advance scalable solutions for 

industrial automation, emphasizing the trade-offs between reward 

complexity and policy convergence. Future work will refine 

reward functions to bridge simulation-to-reality gaps, fostering 
practical adoption in manufacturing and assembly systems. 
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I. INTRODUCTION 

Humans possess the innate ability to easily recognize and 
manipulate objects; conversely, robots encounter significant 
challenges with this ostensibly straightforward task, which 
presents a noteworthy obstacle within the field of robotics [1].  
This phenomenon has garnered attention in both scholarly 
research and industrial applications, particularly in relation to 
Industry 4.0, which prioritizes automation and sophisticated 
technologies in manufacturing through paradigms such as the 
Smart Factory [2]. 

Reinforcement learning (RL) has surfaced as a promising 
alternative to facilitate the implementation of robots within 
industrial contexts by enabling robots to acquire tasks without 
the need for direct programming [3]. Deep reinforcement 
learning (DRL) integrates RL with deep neural networks to 
address complex state spaces and enhance the efficiency of the 

learning process. Although DRL may demand substantial 
resources for training on actual platforms, simulation-based 
training represents a feasible solution to scale data and decrease 
reliance on human intervention [4]. 

Simulation-based environments can furnish a secure and 
regulated context for robots to practice and hone their 
competencies, thereby equipping them to generalize acquired 
behaviors to real-world applications with greater efficacy [5]. 
This methodology not only accelerates the learning trajectory 
but also mitigates risks associated with training in unpredictable 
real-world conditions, ultimately fostering the development of 
more resilient and adaptable robotic systems [6]. By capitalizing 
on advancements in virtual reality and high-fidelity simulations, 
researchers are able to devise diverse training scenarios that 
closely replicate real-world challenges, thereby further 
enhancing the adaptability of DRL algorithms [7]. These 
innovations lay the groundwork for more effective training 
methodologies, enabling robots to address complex tasks with 
heightened confidence and precision [7]. 

Consequently, the assimilation of these technologies into 
robotic training programs is poised to transform not only the 
manner in which robots learn but also their overall efficacy in 
dynamic environments [8]. This paradigm shift in training 
methodologies is likely to yield substantial advancements across 
a variety of applications, ranging from autonomous vehicles 
navigating congested thoroughfares to industrial robots 
optimizing production lines with minimal human involvement 
[9]. 

However, a critical gap remains in understanding how 
reward shaping, specifically the design and modular integration 
of reward signals, affects convergence efficiency and task 
precision across varying degrees of complexity [10], [11]. Most 
prior works emphasize algorithmic improvements or domain 
adaptation, yet underexplore the influence of structured, 
incremental reward functions within high-fidelity simulations. 
These reward strategies are essential not only for accelerating 
convergence but also for fostering generalizable behaviors 
applicable to industrial use cases [12]. 

To address this gap, this study poses the following research 
question: How does the complexity of reward functions 
influence the convergence efficiency and task success rate of a 
DRL-based robotic arm control system in a simulated industrial 
environment? 
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This study addresses this question by proposing a DRL-
based robotic arm control system using Proximal Policy 
Optimization (PPO) within a Webots simulation environment. 
By leveraging the recent advancements in continuous control 
through deep reinforcement learning (DRL) to enhance the 
operational efficiency of a robotic arm tasked with object-
reaching activities. Specifically, this study employs the 
Proximal Policy Optimization (PPO) algorithm within a three-
dimensional simulation environment, guided by a strategically 
designed reward function. The primary objective is to develop 
and train a DRL-based control system that enables the robotic 
arm to accurately reach and make contact with a designated 
target object, sometimes at a specified angle, an ability with 
broad applicability across labor-intensive industries. The 
proposed reward function is crafted to facilitate the convergence 
of the PPO algorithm, ensuring effective policy learning. 
Additionally, the study explores the adaptability of the learning 
framework by modifying the reward function to accommodate 
similar manipulation tasks of varying complexity. Comparative 
evaluations of different reward functions will be conducted to 
determine their influence on the convergence speed and overall 
performance of the robotic arm, thereby contributing to the 
design of more efficient and adaptable robotic control systems. 

II. RELATED WORK 

Deep reinforcement learning (DRL) has emerged as a 
powerful paradigm for controlling robotic arms, offering robust 
solutions to complex control tasks. This approach combines the 
strengths of deep learning and reinforcement learning, enabling 
robots to learn optimal policies through trial and error in a 
dynamic environment. Recent advancements in DRL have 
significantly improved the accuracy, efficiency, and adaptability 
of robotic arm control systems, addressing challenges such as 
trajectory tracking, obstacle avoidance, and energy efficiency. 
This section provides a comprehensive overview of the state-of-
the-art methods, key innovations, and applications of DRL in 
robotic arm control, drawing insights from recent research 
papers. 

A. Algorithmic Advancements in DRL for Robotic Arm 
Control 

One of the most notable contributions to DRL for robotic 
arm control is the improvement of existing algorithms. Proximal 
Policy Optimization (PPO) has been widely adopted due to its 
stability and effectiveness in continuous action spaces [13]. For 
instance, researchers have proposed an Improved-PPO 
algorithm that integrates PPO with Model Predictive Control 
(MPC) to enhance trajectory tracking efficiency. This method 
has demonstrated a significant increase in convergence speed, 
outperforming traditional PPO and A3C algorithms by 84.3% 
and 15.4%, respectively [13]. Similarly, the combination of PPO 
with Generative Adversarial Imitation Learning (GAIL) has 
been explored to transfer policies from simulated environments 
to real-world scenarios, enabling dual-arm robots to perform 
complex assembly tasks with remarkable efficiency [14]. 

Another significant advancement is the use of Deep 
Deterministic Policy Gradient (DDPG) algorithms. Researchers 
have enhanced DDPG by incorporating techniques such as 
Hindsight Experience Replay (HER) and double experience 
replay buffers to improve learning efficiency. These 

modifications have enabled robotic arms to achieve near-perfect 
success rates in target-reaching tasks while reducing training 
time [15], [16]. Additionally, the integration of DDPG with 
sequential training methods has been shown to expedite the 
learning process and improve robustness against external 
disturbances, making it suitable for real-world applications [17]. 

B. Reward Function Design and Motion Planning 

The design of reward functions plays a crucial role in DRL, 
as it guides the learning process and determines the optimal 
policy [18]. Researchers have proposed various reward 
functions tailored to specific tasks, such as trajectory tracking, 
obstacle avoidance, and energy efficiency [19].  For example, a 
study introduced a hierarchical reward function that combines 
motion accuracy, obstacle avoidance, and energy-saving 
components. This approach has been shown to improve the 
convergence speed and accuracy of robotic arm control policies 
[20], [21]. 

In addition to reward function design, motion planning has 
been a focal area of research. A study proposed a DRL-based 
motion planning method that enables robotic arms to navigate 
complex environments with obstacles. The method leverages the 
PPO algorithm and reward shaping techniques to ensure 
efficient and adaptive control [20]. Another study demonstrated 
the effectiveness of DRL in motion planning for dual-arm 
robots, where a novel reward and punishment function was 
designed to guide the robot to approach targets while avoiding 
collisions [22]. 

C. Generalization and Real-World Deployment 

The generalization capabilities of DRL controllers are 
essential for their successful deployment in real-world 
scenarios. Researchers have investigated the generalization of 
policies learned in simulation to new observations, dynamics, 
and tasks. For example, a study demonstrated that a DRL 
controller trained in simulation could generalize well to real-
world scenarios, including dynamic trajectory tracking and 
robustness to external forces [23]. Another study showed that 
policies trained in simulation could be directly transferred to 
physical robots without retraining, achieving remarkable 
performance in tasks such as grasping and motion planning [24]. 

The generalization capabilities of DRL have also been tested 
in complex environments, such as those involving soft robotic 
arms. A study presented a closed-loop controller for soft robotic 
arms that could generalize to new tasks, including intercepting 
moving objects and tracking trajectories with varying velocity 
profiles [23]. These findings highlight the potential of DRL for 
real-world applications, where robots must adapt to diverse and 
dynamic environments. 

Deep reinforcement learning has revolutionized the field of 
robotic arm control, offering robust and adaptive solutions to 
complex control tasks. Recent advancements in algorithms, 
reward function design, and simulation-to-reality transfer have 
significantly improved the performance and versatility of DRL-
based control systems [25].  As research continues to address 
challenges such as generalization, energy efficiency, and real-
world deployment, DRL is poised to play an increasingly 
important role in the development of intelligent robotic systems 
[26]. 
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D. Identified Problems in the Current Implementation of DRL 
in Robotic Arm Control 

The current implementation of Deep Reinforcement 
Learning (DRL) in the control of robotic arms has revealed 
several critical issues that warrant attention. One of the primary 
challenges is the inefficiency in training time, which often 
results from the high dimensionality of the action and state 
spaces involved. This complexity can lead to prolonged learning 
periods and suboptimal performance, as the algorithms struggle 
to converge on effective strategies [26]. 

Additionally, there is a notable concern regarding the 
stability and robustness of the learned policies. Many DRL 
algorithms are sensitive to hyperparameter settings, which can 
result in significant variations in performance across different 
trials [16]. This unpredictability can hinder the reliability of 
robotic arm operations in real-world applications where 
consistency is paramount [27]. 

Another problem is the insufficient exploration of the action 
space during the training phase. Many DRL implementations 
tend to exploit known strategies rather than exploring new ones, 
potentially leading to local optima and a lack of adaptability in 
dynamic environments. This limited exploration can restrict the 
robot's ability to handle unforeseen circumstances or variations 
in tasks [28]. Moreover, the integration of DRL with sensory 
feedback systems poses additional challenges. Ensuring that the 
robotic arm can effectively interpret and respond to sensory 
inputs in real-time is crucial for achieving seamless operation. 
However, current implementations may struggle with the 
synchronization of sensory data processing and decision-
making, leading to delays and inaccuracies in task execution 
[29]. 

Lastly, there is a growing concern about the generalization 
of learned behaviors across different tasks and environments. 
Many DRL models tend to overfit to the specific conditions 
present during training, which can significantly diminish their 
performance when faced with novel situations or variations in 
operational contexts [30]. Addressing these issues is essential 
for advancing the efficacy and applicability of DRL in robotic 
arm control systems, paving the way for more sophisticated and 
versatile robotic applications. 

III. METHODOLOGY 

A. Introduction to the Simulation Environment 

 The simulation environment was developed using 
Webots, an open-source, multi-platform robotic simulator 
designed for modeling, programming, and testing robotic 
systems. The setup emulated a collaborative workspace with a 
Universal Robots UR5e robotic arm, a 6-degree-of-freedom 
manipulator equipped with a Tiago Gripper. Key components 
integrated into the system included: 

 A camera with an object recognition node mounted on 
the gripper to capture visual data. 

 A distance sensor is attached to the end-effector to 
measure proximity to the target. 

 A 5 cm³ cube serving as the target object, randomly 
repositioned within a 3 m³ boundary in front of the robot 
for each training episode. 

The environment was designed to simulate industrial 
scenarios, where the robotic arm must dynamically adapt to 
varying object positions. The camera transmitted real-time 
images to the control system, which processed them to generate 
state observations (e.g., joint angles, end-effector coordinates). 

B. Design of the Reward Functions 

The performance of deep reinforcement learning (DRL) 
agents heavily depends on the quality and structure of the reward 
functions used during training. In this study, three models (A, B, 
and C) were developed with progressively complex reward 
functions to guide the robotic arm in learning the object-
reaching task. Each reward function was designed to encourage 
desirable behavior and penalize inefficiencies or errors, thereby 
accelerating convergence toward optimal policies. 

1) Distance-based reward. 

a) A primary reward proportional to the Euclidean 

distance between the end-effector and target: 

r =  {
  10, dis <  0.01
 −2, dis >  1.25

                          (1) 

b) Incremental rewards (+2/-1) encouraged movement 
toward the target. 

2) Motion constraints. Penalties (-2) enforced spatial 

boundaries to limit exploration to relevant areas. 

3) Collision avoidance. Negative rewards (-5) deterred 

collisions with the robot’s body or environment. 

4) Object recognition. Positive rewards (+1) for detecting 

the target via the camera. 

5) Image-based rewards (Models B and C). 

a) Size ratio rewards (Model B): Scaled rewards based 
on changes in the target’s perceived size. 

size_ratio =  box_image_size / prev_box_image size   (2) 

r = size_ratio × 2                  (3) 

b) Alignment rewards (Model C): Penalized deviations 
between the target’s center and the camera’s focal point. 

𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 =

√(
𝑥𝑏𝑜𝑥_𝑖𝑚𝑔+ 𝑤𝑖𝑑𝑡ℎ𝑐𝑎𝑚

2
)

2
+ (

𝑦𝑏𝑜𝑥 _𝑖𝑚𝑔+ ℎ𝑒𝑖𝑔ℎ𝑡𝑐𝑎𝑚

2
)

2
     (4) 

𝑟 = {

10, 𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 < 0.1
5, 𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 < 0.5
2, 𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 ≤ 0.9

− 𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 × 2, 𝑑𝑖𝑠_𝑡𝑜_𝑐𝑡𝑟 > 0.09

            (5) 

C. Implementation of the Control Mechanism and PPO 
Algorithm 

The control policy was optimized using the Proximal Policy 
Optimization (PPO) algorithm, selected for its stability in 
continuous action spaces. Key implementation details included: 

a) Policy network: A multi-layer perceptron (MLP) with 
fully connected layers to map states (joint angles, sensor data) 
to actions (joint velocity commands). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 16, No. 6, 2025 

671 | P a g e  

www.ijacsa.thesai.org 

b) Training parameters: n_steps=2048 interactions per 
policy update. tensorboard_log for tracking training metrics 
(e.g., reward trends, episode length). 

c) Environment interface: Custom OpenAI Gym 
integration to synchronize Webots simulations with the Stable-
Baselines3 RL library. 

The learning process mirrored trial-and-error refinement, 
where the agent iteratively adjusted its policy based on reward 
signals, gradually minimizing unnecessary movements and 
collisions. 

D. Experiment and Evaluation 

To systematically evaluate the impact of varying reward 
function complexities on the performance of the Proximal 
Policy Optimization (PPO) algorithm, a series of experiments 
were conducted using three distinct models. The primary 
evaluation criteria included the number of training steps 
required to achieve effective task performance and the success 
rate in executing the object-reaching task within a simulated 
environment. 

The training protocol involved 15 rounds of training for each 
model, with 10,000 interaction steps per round. The models 
were designed to incrementally incorporate additional reward 
components, enabling a controlled analysis of how increasing 
reward complexity influences policy learning. 

The models are defined as follows: 

 Model A (Baseline): Utilizes a foundational reward 
structure based on the Euclidean distance between the 
end-effector and the target object as defined in Eq. (1), 
augmented with penalties and rewards for collision 
avoidance, object detection, and motion constraints. 

 Model B (Image-Augmented Reward): Builds upon 
Model A by incorporating image-based size ratio 
rewards, leveraging Eq. (2) and Eq. (3). These rewards 
encourage the agent to maximize the perceived size of 
the target in the camera's view, thereby reinforcing 
movement toward the object. 

 Model C (Alignment-Based Reward): Extends Model B 
by introducing camera alignment rewards, as described 
in Eq. (4) and Eq. (5). This component penalizes 
misalignment between the camera’s focal center and the 
centroid of the target object, promoting not only reaching 
accuracy but also visual alignment for precise 
manipulation. 

Throughout training, each model's performance was 
monitored using TensorBoard logs, which recorded metrics such 
as mean reward values and episode lengths over time. 
Furthermore, success rates were tested in controlled batches of 
10, 30, and 50 episodes to assess consistency and robustness in 
task execution. This experimental design allowed for a 
comparative analysis of how reward structure influences 
learning stability, convergence speed, and task success. 

Each model was subjected to 15 training rounds, with each 
round comprising 10,000 interaction steps between the agent 
and the simulated environment. The performance of the models 
was evaluated using two primary metrics: 

a) Convergence efficiency: Assessed through 
TensorBoard visualizations, which tracked the progression of 
mean episode rewards and episode lengths over the course of 
training. These indicators provided insight into the stability and 
speed with which each model approached optimal policy 

learning. 

b) Task success rate: Evaluated by conducting a series of 
10-, 30-, and 50-episode trials, wherein a successful trial was 
defined as the robotic arm’s end-effector making contact with 

the target object within a maximum of 250 time steps. 

This evaluation framework was designed to highlight the 
influence of increasing reward complexity on both the stability 
of the learning process and the agent’s ability to consistently 
complete the object-reaching task. By comparing the results 
across the three models, the study provides insights into the 
trade-offs between reward structure simplicity and control 
precision in DRL-based robotic systems. 

IV. RESULTS AND DISCUSSION 

A. Initial Development of DRL-Based Robot Arm Controller 

Fig. 1 illustrates the simulation environment created using 
Webots, an open-source and multi-platform desktop application 
used for modeling, programming, and simulation of robotic 
systems. The researcher developed a simulation based on the 
Universal Robots UR5e's collaborative robot arm with 6 degrees 
of freedom, which was equipped with a Tiago Gripper, an 
imaging device possessing an object recognition node, a solid 
node functioning concurrently as a distance sensor and end 
effector, as well as a cube box serving as the target object. The 
cube box was strategically positioned in a random manner in 
front of the robotic arm for each interaction, which is pivotal in 
motivating the agent to acquire skills in searching for the object 
within the designated space, thereby inhibiting it from merely 
learning and concentrating on a target object with a fixed 
position. 

 
Fig. 1. Simulation environment and robot arm (Agent). 

In the simulation environment, the camera transmits the 
collected image back to the computer. After the image is 
processed, it will be used as the state S to be observed by the 
actor. The computer will determine the next move distance of 
the end of the robotic arm on the X-axis, Y-axis, and Z-axis. 
According to the current coordinate value of the end of the robot 
arm and the rotation angle of each joint of the current robot arm, 
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the computer will calculate the angle at which each joint of the 
robot arm should rotate when the end of the robot arm reaches 
the next position. 

B. Convergence Efficiency 

By analyzing the mean reward values accumulated across 
iterations during the training process, where the horizontal axis 
represents the number of training iterations and the vertical axis 
denotes the reward value obtained per iteration. Fig. 2, Fig. 3 
and Fig. 4 illustrate the performance trends of the three models 
examined in this study. The visualizations highlight how each 
model progressed and adapted over time during training. To 
facilitate this analysis, TensorBoard was employed as the 
primary tool for data processing and visualization, offering a 
comprehensive suite of utilities for monitoring, evaluating, and 
interpreting machine learning experiments. These visualizations 
illustrate the accumulation of reward values obtained across 
training iterations. The table on the left presents the mean 
episode length, measured by the number of timesteps or 
interactions with the environment. Here, the horizontal axis 
corresponds to the total number of iterations throughout the 
training process. In contrast, the table on the right displays the 
distribution of reward values earned in each iteration, with the 
horizontal axis indicating the iteration count and the vertical axis 
representing the reward value achieved. These visualizations 
provide insight into both the learning progress and the stability 
of the models over time. 

 
Fig. 2. Model A – Using baseline reward functions (Tensorboard). 

 
Fig. 3. Model B – Improved Model A with object image size-based reward 

function (Tensorboard). 

The results derived from Model A, as illustrated in Fig. 2, 
reveal a favorable trajectory in the agent's performance over the 
temporal dimension. As the training regimen advances, it 
becomes evident that the quantity of actions necessary to fulfill 
the task diminishes while the resultant reward amplifies. This 
indicates that the agent is progressively enhancing its efficacy in 
making superior and more efficient control decisions to 
successfully execute the intended task. 

In other terms, the agent is acquiring knowledge from the 
surrounding environment and modifying its conduct in response 
to the reward signal delineated by the reward function. As the 

agent develops, it executes movements with greater accuracy 
and precision in its pursuit of the target object. This phenomenon 
can be interpreted as an enhancement in the agent's control and 
decision-making proficiencies, constituting a favorable 
indication that the training protocol is functioning as anticipated. 
The observed trend of reduced actions coupled with elevated 
rewards signifies that the agent is incrementally converging 
towards the optimal resolution for the task, and it is highly 
probable that it will continue to experience improvement over 
time with ongoing training. 

Fig. 3 underscores the notion that the architecture of the 
reward function can substantially influence the conduct of the 
agent. In this particular instance, the reward function of Model 
B may not have sufficiently motivated the agent to pursue the 
most expedient trajectory toward the target object. Conversely, 
it is plausible that Model B's reward function has prioritized 
alternative considerations, such as aligning the end-effector with 
the target object's orientation or maintaining adherence to the 
defined movement constraints, thus resulting in an elongated 
route to attain the target object. Irrespective of the underlying 
factors, the behavioral divergence between Model A and Model 
B accentuates the critical necessity of meticulously evaluating 
the formulation of the reward function during the training of a 
deep reinforcement learning-based agent. It further underscores 
the imperative for additional inquiry to ascertain the most 
effective reward function tailored to the specific objective of 
object reaching. 

Moreover, the escalation in the number of actions 
necessitated in Model B signifies an extended training duration 
to achieve an optimal policy and thus could be a salient 
consideration when selecting a reward function for practical 
robotic applications. Subsequent investigations could delve 
deeper into this dichotomy between the efficacy of various 
reward functions and the temporal investment required to attain 
an optimal policy. 

 
Fig. 4. Model C – Improved model B with object image and camera center 

distance reward function (Tensorboard). 

Lastly, the findings derived from Model C, as illustrated in 
Fig. 4, demonstrate that, although the overall efficacy of the 
agent trained utilizing this reward function is commendable, 
there exist considerable variances in the rewards obtained 
throughout the training regimen. This phenomenon may be 
attributable to the complexity of the reward function employed 
in Model C, which incorporates a broader array of rewards, 
thereby rendering it more susceptible to fluctuations in the 
environmental context. Consequently, the agent may struggle to 
effectively adjust its parameters between successive training 
iterations, resulting in abrupt alterations in the rewards it 
acquires. Nevertheless, the overarching trajectory of the training 
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results for Model C remains favorable, indicating that the agent 
can acquire knowledge and advance towards the successful 
completion of the designated task. 

C. Task Success Rate 

The researchers executed a simulation experiment aimed at 
assessing the precision of three trained models by employing 
distinct reward functions. The experiment entailed the agent's 
gripper, or end-effector, endeavoring to approach the target 
object as closely as possible and establish contact with it. The 
efficacy of the models was appraised through 10-episode, 30-
episode, and 50-episode trials, with the resultant data 
encapsulated in Table I. 

TABLE I.  RESULTS OF THE REACH AND CONTACT EXPERIMENT  

Trained 

Model 

Number of Successful Object Reach Actions 

10 experiments 30 experiments 50 experiments 

A  8 24 37 

B 9 22 38 

C 8 26 40 

Results derived from the reach and contact experiment 
delineated in Table I indicate that all three models exhibit 
commendable efficacy with regard to their proficiency in 
reaching the target object and establishing contact with it. 
Nonetheless, there exist discernible variances in their 
performance, as evidenced by the number of successful trials 
conducted. A plausible explanation for these discrepancies in 
performance may pertain to the influence of the reward 
functions implemented in each model. It is plausible that Model 
A, characterized by its optimized reward function, possesses an 
enhanced capacity to concentrate on the specified task and 
acquire the optimal policy at an expedited rate, thereby 
culminating in superior performance in the reach and contact 
experiment. An additional factor that may contribute to these 
differences could be the training methodology employed. The 
variability in rewards observed in Model C may have 
precipitated a less stable learning trajectory, which could 
elucidate its marginally inferior performance in comparison to 
the other two models. 

These findings imply that the proposed deep reinforcement 
learning-based robotic arm control system demonstrates the 
capability to execute reaching tasks with substantial 
effectiveness. Future investigations may be pursued to further 
refine the reward functions and training methodologies to 
augment the system's performance. 

D. Implications 

The agent exhibited exemplary behavior in executing the 
reaching task, attributable to the effective integration of diverse 
reward functions within the training process of the robotic arm. 
The reward functions encompassed parameters such as 
constraining the number of steps during interaction, quantifying 
the distance between the centroid of the object image and the 
centroid of the comprehensive image acquired by the camera 
recognition module, assessing the dimensions of the object, and 
identifying potential collisions, thereby furnishing the agent 

with affirmative or negative reinforcement that either promoted 
or dissuaded specific actions. These reward functions facilitate 
the agent's acquisition of the requisite behavior by directing it to 
recognize the object and its spatial coordinates, orient the end-
effector towards the target object, synchronize the image 
captured by the camera recognition module, and circumvent 
collisions with the surrounding environment. Moreover, through 
the modulation of its movements, the agent was able to 
accomplish the task within the predetermined number of steps 
and maintain the target object within the defined parameters. 

It can be asserted that the incorporation of these reward 
functions into the training process exerted a significant influence 
on the agent's performance in the object-reaching task, thereby 
optimizing both its behavior and resulting outcomes. 

The incorporation of these carefully designed reward 
functions significantly influenced the agent’s performance, 
enhancing both convergence and task efficiency. When 
comparing the performance of three distinct models trained 
using different reward structures. The following key 
observations emerged: 

1) Model A matched or exceeded benchmark performances 

in terms of efficiency and reliability, validating the hypothesis 

that simplified but well-targeted reward functions improve 

learning stability. 

2) Model B demonstrated slightly better success rates 

(76%) than Model A in the 50-episode trial, consistent with 

[22], where added perception cues enhanced accuracy, albeit at 

the cost of longer training. 

3) Model C reached the highest success rate (80%) but 

required ~30% more training steps and suffered from high 

reward variance, paralleling issues in over-engineered reward 

systems like those explored in [10], [28]. 

Model A demonstrates a favorable trade-off between the 
simplicity of the reward function and training efficiency. 
Despite the absence of vision-based shaping used in Model B 
and C, Model A achieved the shortest convergence time (~70k 
steps) and competitive performance (74% success rate), with 
performance matching reward-heavy implementations from 
related studies [10], [22], [28]  in both stability and training 
duration. 

Although Model C introduced higher perceptual alignment 
(center-distance feedback), it required longer convergence 
(90k+ steps) and displayed reward fluctuations similar to [10] 
and [28], which reported volatility due to over-engineered 
shaping signals. 

These results validate that while complex reward functions 
may offer incremental performance improvements, they often 
come with increased training cost and instability. The 
integration of well-structured, goal-specific rewards, 
particularly those balancing simplicity and effectiveness, is 
therefore essential in shaping robust robotic control behaviors. 
Our findings affirm the viability of deep reinforcement learning 
(DRL) approaches for dynamic object-reaching tasks in 
simulated environments and highlight the strategic value of 
reward function optimization. 
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V. CONCLUSION 

This study affirms the feasibility of using deep 
reinforcement learning (DRL) to train a robotic arm controller 
in a simulated environment, even with limited computational 
resources. By leveraging the open-source simulation platform 
Webots alongside OpenAI Gym and Stable-Baselines3, the 
research successfully enabled a robotic arm to autonomously 
and consistently perform object-reaching tasks. Central to this 
success was the strategic use of reward shaping, a technique 
similar to guided learning, where the agent receives continuous 
feedback through structured rewards and penalties to encourage 
desired behavior. Three models were developed and evaluated 
to examine the impact of different reward strategies. Model A 
utilized a baseline reward function incorporating step limits, 
distance penalties, and collision detection. Model B introduced 
perceptual feedback by rewarding increases in the visible size of 
the target object, while Model C further refined agent behavior 
by penalizing misalignment between the camera’s focal center 
and the object. Although Models B and C showed improved 
precision in object reaching, their complex reward formulations 
led to slower convergence and greater variability during 
training. In contrast, Model A's simplicity facilitated faster 
learning and more stable performance, highlighting the critical 
trade-off between reward granularity and training efficiency. 

The findings demonstrate that DRL, when integrated with 
well-calibrated reward functions in a high-fidelity simulation, 
can generate stable, efficient robotic control policies without 
relying on hard-coded programming or manual trajectory 
design. Much like structured, age-appropriate guidance supports 
a child's learning process, a well-balanced reward architecture 
enables the agent to generalize optimal behavior through trial 
and error. However, excessively vague or overly intricate 
feedback can hinder progress or destabilize learning. 

Ultimately, this research underscores the promise of DRL as 
a scalable and cost-effective approach to robotic automation. It 
emphasizes the importance of thoughtful reward function design 
and simulation-based training as key enablers for transferring 
learned behaviors to real-world applications. The overall 
contribution of this work lies in its demonstration that intelligent 
robotic behaviors can be efficiently acquired through reward 
shaping in resource-constrained settings, thus lowering the 
barrier to entry for academic institutions, startups, and small-
scale industries seeking to adopt DRL-driven automation. 

However, this work is not without limitations. Further 
research is required to refine the reward shaping mechanisms 
and to fine-tune the agent’s learning process for improved 
generalization and adaptability. To enhance the agent's 
performance, future work should consider several key 
directions: integrating additional sensor modalities such as 
tactile sensors to enrich environmental feedback; exploring a 
broader range of robotic arm tasks to test adaptability; 
evaluating the agent’s capabilities using objects of varying 
shapes, sizes, and materials; experimenting with alternative deep 
reinforcement learning algorithms to improve training 
efficiency and policy robustness; transferring the learned 
policies from simulation to real-world robotic platforms; and 
systematically assessing the agent’s performance in real-world 
environments under realistic constraints and uncertainties. 

This contributes meaningfully to the democratization of 
advanced robotics and strengthens the bridge between 
simulation research and real-world deployment. 
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