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Abstract—Stroke continues to be a major cause of mortality 

and disability globally, and precise risk prediction models are 

needed. Current models do not effectively incorporate temporal 

patient information, restricting the quality of prediction and 

clinical interpretability. This research introduces a new LSTM-

based deep learning model enriched with an attention mechanism 

for predicting stroke risk that can prioritize important risk factors 

like age, hypertension, and heart disease. The model takes 

advantage of LSTM's ability to learn sequential dependencies 

from long-term patient histories, while the attention mechanism 

dynamically emphasizes clinically important features, promoting 

interpretability and clinical significance. By testing the model 

using a dataset of 5,110 patient records with a mere 6% stroke 

cases, showcasing extreme class imbalance. To counteract this, 

preprocessing involved SMOTE for synthetic oversampling, mean 

imputation to handle missing values, and Min-Max normalization. 

As deployed in Python based on TensorFlow, the model realized 

remarkable performance. The constructed LSTM-Attention 

model attained a test accuracy of 83.7%, an AUC-ROC value of 

85.3%, and an F1-value of 82.2%, which was higher than that of 

conventional models such as Logistic Regression and Random 

Forest. These evaluate the model's improved ability to identify 

subtle stroke risk factors that go unnoticed otherwise. The 

attention-augmented LSTM architecture not only guarantees 

accurate predictions but also offers transparent insight into the 

decision process, making it appropriate for incorporation in real-

time clinical decision support systems. This method has the 

potential to improve personalized stroke risk assessment 

dramatically and enhance preventive healthcare interventions. 

Keywords—Attention mechanism; deep learning; imbalanced 

data; LSTM networks; SMOTE resampling; stroke prediction 

I. INTRODUCTION 

Incidence and mortality from stroke constitute one of the 
leading public health concerns worldwide and remains a cause 
of burden affecting millions of people every year. According to 
WHO statistics strokes result in 11 per cent of total deaths 
worldwide making them the second cause of death [1]. 

Moreover, stroke has long-term consequences, including 
paralysis, impairment of speech, cognitive level and a huge drop 
in quality of life. A variety of factors are related to the increasing 
incidence of strokes [2]. Right now, with more and more people 
at risk, the need for good stroke prevention and early detection 
strategies has never been greater. Strokes can be diagnosed and 
their severity reduced with timely diagnosis and intervention [3]. 
Nevertheless, the existing methods of stroke prediction have the 
weakness of being unable to identify the individuals at risk early 
enough for preventative action. However, conventional risk 
assessment models like the FSRP, as well as other clinical 
scoring systems, heavily rely on statistical techniques and 
predefined risk factors [4]. However, these models demonstrate 
some kind of predictive power but do not show how individual 
risk factors interact with each other or how patient populations 
can be sensitive to different shapes of risk factor interactions. 
Moreover, stroke prediction has been improved using traditional 
machine learning approaches of logistic regression and decision 
trees [5]. Despite this, these methods are not able to handle the 
large-scale datasets with complex, high-dimensional features 
and temporal dependencies well, and thus their predictive 
performance suffers. This led the medical community to search 
for DL techniques, which have produced great results in a wide 
range of fields, including medical diagnostics, image 
recognition and NLP [6]. 

For the purpose of stroke prediction, deep learning models, 
in particular, LSTM networks have proven to be a promising 
choice to analyze data that is sequential and time dependent [7]. 
Unlike standard machine learning models, LSTMs can keep 
information in information over longer sequences allowing them 
to capture significant temporal patterns in patient data. 
Nonetheless, it is still difficult for standard LSTM models to 
achieve interpretability and select the most discriminative 
features for stroke prediction [8]. It is here that attention 
mechanisms become useful. Attention mechanisms improve the 
performance of LSTMs by selectively attending to the input 
features and weighting them according to their importance. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

677 | P a g e  

www.ijacsa.thesai.org 

Attention mechanisms are integrated with LSTM networks to 
enable selecting the crucial risk factors leading to developing 
stroke, with a more transparent and explainable prediction 
process [9]. LSTM networks with attention mechanisms have a 
high potential. However, studies in this area are still limited, and 
the majority of the studies have been conducted in the context of 
traditional deep learning frameworks or hybrid models that do 
not take full advantage of the benefits of using attention 
mechanisms. While existing studies have traditionally focused 
on image-based stroke detection using MRI or CT, there is a 
large black hole gap between what can be predicted based solely 
on patient demographics and clinical history. Additionally, 
while some study tries to implement deep learning techniques 
for stroke prediction, most of these efforts do not deal with the 
issue when data imbalance, feature selection or real-time 
applicability in clinical settings. It is to leverage DL techniques 
such as LSTM networks coupled with attention mechanisms to 
enhance the precision and reliability of stroke risk prediction as 
a main objective of the study [10]. Through analysis of patient 
demographics, medical history, and lifestyle factors, the model 
seeks to anticipate those who are at increased risk of suffering 
from a stroke via secondary symptom occurrence. 

Additionally, a comparative performance of the proposed 
LSTM with attention model to the conventional ML techniques 
and the ordinary DL architectures is further intended to 
demonstrate the effectiveness of the study [11]. The study seeks 
to solve deep learning models in healthcare through an approach 
that reveals crucial stroke risk factors within a clear framework 
of transparency. The technique integrates attention mechanisms 
to enhance prediction accuracy and at the same time deliver 
crucial insights about risk variables which impact stroke the 
most. [12]. Such inputs can be useful to medical practitioners to 
take informed decisions and design targeted prevention 
strategies for high-risk Individuals. To summarize, strokes 
worldwide are increasing, and it need to be predicted earlier, and 
the building of advanced models for early risk assessment is 
needed. Although traditional stroke prediction methods are 
useful, there are significant limitations that prevent these 
methods from being accurate and timely predictions [13]. 

A. Research Motivation 

Stroke is a major cause of death and lasting disability 
worldwide, and it still accounts for a significant global health 
burden. The limitations of the conventional models based on 
static information and fixed rules render early prediction of 
stroke risk challenging despite improvements in clinical 
diagnostics. These approaches often fail to capture the temporal, 
nonlinear, and complex nature of patient health data. In addition, 
real-world clinical datasets often have a large class imbalance, 
leading to biased and unreliable predictions. Recent 
breakthroughs in deep learning have proven effective in 
uncovering latent patterns and modeling sequential data. 
However, most existing work either disregards interpretability 
or does not adequately deal with the unbalanced nature of stroke 
datasets. To overcome these concerns, this study integrates an 
attention mechanism with LSTM networks to develop a 
comprehensible and efficient stroke risk prediction model. The 
aim is to enhance prediction accuracy and clinical applicability 
in real-world settings by dynamically recognizing and ranking 

significant risk factors and recording time-dependent 
correlations. 

B. Significance of the Study 

This study is important for the potential it holds to 
revolutionize stroke risk assessment by presenting a high-
performance and interpretable AI-based method. Early and 
precise identification of stroke risk can initiate prompt medical 
intervention, thus preventing the eventuality of stroke and 
reducing the level of related long-term disability. The suggested 
model not only enhances prediction precision relative to 
conventional models but also offers actionable information 
critical for clinical decision-making. By tackling practical issues 
like class imbalance in real-world problems using methods like 
SMOTE and focusing on model explainability, this piece of 
work is a valuable addition to the area of medical AI. Its 
successful application would be an exemplary model for other 
chronic disease risk assessments and would guide the 
development of real-time, IoT-integrated clinical decision 
support systems toward better patient outcomes and a decreased 
healthcare infrastructure burden. 

C. Innovation and Challenges 

The novelty of this study rests with the design of an 
explainable deep learning model that combines Long Short-
Term Memory (LSTM) networks with an attention mechanism 
for stroke risk prediction. Although LSTM models are 
extensively used to capture sequential patterns in time-series 
health data, their intrinsic opacity restricts their applicability in 
clinical practice [14]. By incorporating an attention mechanism, 
this study remedies the "black-box" shortcoming, providing a 
degree of interpretability by demarcating the most effective risk 
factors like age, hypertension, and cardiovascular history. This 
new technique enables clinicians to comprehend and verify 
predictions in real time. Allowing such a system to be deployed 
is plagued by the foremost challenges. These involve managing 
extreme class imbalance in stroke databases, as well as 
robustness across a wide variety of populations and maintaining 
good accuracy while not compromising interpretability. 
Additionally, there is limited current study directly applying 
attention-based LSTM models to stroke prediction based on 
extensive patient demographic and clinical information, and 
hence, this study is both timely and necessary. 

D. Problem Statement 

Stroke is a major cause of death and disability globally, and 
early and precise risk prediction is required for timely treatment 
and better patient outcomes. The conventional stroke risk 
models depend on rigid, linear relationships between established 
risk factors and are thus inappropriate for portraying complex, 
nonlinear, and temporal relationship that exist in patient health 
data. Although machine learning methods provide enhanced 
flexibility, it tend to be subject to extreme class imbalance and 
unable to appropriately capture time-dependent patterns, leading 
to less-than-optimal performance and diminished clinical utility. 
Long Short-Term Memory (LSTM) networks, which have 
proven robust in sequential dependency learning, present a 
possible solution; however, black-box status restricts 
interpretability a critical requirement for clinical 
implementation [15]. In order to solve these problems, this study 
suggests an interpretable stroke risk prediction model that 
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combines LSTM networks with an attention mechanism. This 
model not only enhances predictive accuracy but also 
emphasizes the most relevant features over time, such as 
hypertension, age, and cardiovascular disease, thus improving 
transparency and clinical trust. In addition to this, employing 
SMOTE for class balancing prevents the model from becoming 
insensitive to minority stroke instances and enhances the 
model's fairness and reliability in actual health care 
environments. This study solves the research question: Can a 
clinical data-predicted stroke risk using an LSTM model 
augmented with an attention mechanism be achieved while 
keeping it interpretable for clinical applications? 

E. Key Contributions 

 An LSTM network with attention mechanisms is 
developed to enhance the prediction of stroke risk with 
patient demographics and clinical history. 

 It improves model interpretability while overcoming the 
drawbacks of other stroke warning strategies, which can 
capture complex temporal patterns. 

 The study handles the problem of data imbalance and 
compares the model’s effectiveness to traditional ML 
and DL approaches. 

 The area of AI-driven healthcare provides a 
demonstration of the use of attention-enhanced LSTMs 
for real-time stroke risk assessment. 

F. Rest of the Sections for this Study 

The rest of the sections of this study have been organized as 
follows: Review of the existing literature, Stroke Risk 
Assessment from Patient Data Using LSTM Networks and 
Attention Mechanisms in Deep Learning in Section II. In 
Section III, the proposed study Methodology is explained. The 
experimental results are presented in Section IV. The study 
concludes with future work proposals and its conclusion in 
Section V. 

II. LITERATURE REVIEW 

Stroke prediction is a long study area, and till date, the 
traditional models have been based on statistical methods and 
conventional ML methods [16]. The FSRP is one of the most 
widely used models to give risk of stroke based on well-defined 
clinical risk factors such as age, hypertension status, smoking 
status and diabetes. While statistical models like FSRP and Cox 
Proportional Hazard Models may be useful, it are limited by how 
it draw on defined assumptions and linear relationships, 
therefore being less effective at describing complex interactions 
between risk factors [17]. However, since these do not address 
these problems, authors have taken  ML approaches, i.e. logistic 
regression, decision trees, random forests, SVMs, gradient 
boosting techniques such as XGBoost, among others, to enhance 
predictive accuracy. Additionally, these ML models learn 
patterns from patient data automatically, and often better 
perform in classification tasks than traditional statistical 
methods [18]. However, most of the existing ML based stroke 
prediction models fail due to the absence of temporal awareness 
and imbalanced datasets having very fewer number of stroke 
positive cases when compared to the non-stroke cases [19]. 
Additionally, most traditional ML models require feature 

engineering that involves strong bias and manual effort, a great 
obstacle for scalability and generalization to a versatile patient 
population. Therefore, the authors have increasingly explored 
deep learning techniques, which have revolutionized the 
healthcare domain by not only extracting features in an 
automatic way but also improving pattern recognition [20]. 

CNNs have been extensively used in the medical-related 
image-based stroke detection using MRI and CT scans, for 
which deep learning has shown great success at diagnosis [21]. 
Nevertheless, RNNs and LSTM networks have become 
promising alternatives in early stroke risk prediction using 
tabular patient data, since they can effectively capture temporal 
dependencies in serial health records. Since RNNs specialize in 
capturing long-term dependencies, LSTM models are especially 
good at retaining long-term dependencies in time series data 
[22], which seems to be a good fit for stroke prediction based on 
a patient’s historical medical data. LSTM-based models 
outperform the traditional ML models in stroke prediction as 
they learns important patterns dynamically from patient 
demographics, lifestyle factors and clinical indicators. 
Nevertheless, LSTM models apply the same weight to all input 
features, ignoring the significance of key risk factors. In order to 
overcome this limitation, attention mechanisms have been 
employed to dynamically weight input features based on the 
model to highlight the related data [23]. Attention-based LSTM 
models have been demonstrated to improve the accuracy and 
interpretability in ECG analysis, disease prognosis and patient 
risk assessment [24]. The past several years have seen some 
studies exploring hybrid models using LSTMs with CNNs for 
stroke prediction by first leveraging CNNs for feature extraction 
and then using LSTMs for sequential modeling. These models 
show improved performance but are restricted to real-world 
health care due to computational complexity, data privacy and 
the requirement of large annotated datasets [25]. 

While deep learning has made great strides in stroke 
prediction, key study gaps remain. Deep learning models strictly 
operate and therefore feature selection and interpretability is one 
major challenge, due to the fact that many healthcare 
professionals wish to understand which risk factors play the 
biggest role in predicting stroke [26]. A major barrier to the 
clinical adoption of AI driven decision making is the lack of 
interpretability, which reduces trust in AI driven decision 
making. The attention mechanisms help address this issue 
partially by highlighting important features, however, more 
work is needed to develop more transparent, explainable stroke 
risk assessing AI models [27]. Another important void deals 
with the handling of the imbalanced datasets, where there were 
few positive cases of stroke when contrasted with the negative 
cases of stroke. However, most of the existing studies do not use 
data augmentation techniques like SMOTE, class balancing, or 
use of focal loss functions to handle this imbalance, and this 
causes biased results which favor majority class to be predicted 
[28]. To further enhance the model, most of existing deep 
learning works are based on offline training with static dataset, 
which is not suitable to the clinical scenario of real time stroke 
risk assessment. For the combination of the AI models into IoT 
enabled healthcare system, one of its crucial requirements is that 
of real time inference, which enables continuous monitoring of 
patient vitals and medical records and the provision of early 
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signals of stroke [29]. Nevertheless, deploying deep learning 
models in such harsh environments poses computational 
challenges and thus requires architectures, lightweight models 
and cloud-edge integration of efficient processing [30]. With 
these limitations taken into account, there is an obvious 
requirement for a powerful, explainable, and scalable deep 
learning backend that reliably predicts stroke risk, as well as 
tackles difficulties for feature selection, dataset imbalance, and 
running in real time. While various models have been developed 
for stroke prediction, they are mostly non-temporal sequence 
model-based or lacking interpretability. Most classical ML 
methods (e.g., Decision Trees, Logistic Regression) are bad at 
handling imbalanced datasets and are not feature-importance 
aware. Deep learning approaches such as CNNs are not 
transparent, which hinders clinical uptake. 

III. PROPOSED LSTM-ATTENTION BASED MODEL FOR 

STROKE RISK ASSESSMENT USING PATIENT DATA 

This study proposes a structured framework for developing 
a state-of-the-art LSTM based stroke risk prediction model with 

an embedding of an attention mechanism. Data preprocessing, 
model design, training, evaluation and comparing the 
performance with other methods are the aspects of methodology. 
This study focuses on the proposed LSTM model, which can 
capture time dependencies in patient data, as well as take into 
account a special attention mechanism on critical risk factors, 
whose information is dynamically prioritized. Binary cross 
entropy loss is used to train the model, which also optimizes with 
the Adam optimizer so as to train more efficiently. Finally, the 
proposed model is compared with traditional ML techniques 
using AUC-ROC, precision, recall, accuracy, and F1-Score. The 
methodology guarantees that the system developed is capable of 
making accurate predictions but at the same time is interpretable 
and applicable to real world healthcare environments. Fig. 1 
illustrates the LSTM-AM framework for this study.

 
Fig. 1. LSTM-AM stroke prediction framework. 

A. Data Collection 

This study uses the dataset pulled from Kaggle [31], a widely 
known platform for open-source datasets in machine learning 
studies. There are 5,110 patient records with 12 key attributes. 
Due to the fact that conditions such as high blood pressure, 
diabetes and smoking are factors for developing cerebrovascular 
diseases, these features have an important role in evaluating 
stroke risk. The dataset is structured as a table with patient as 
row and patient’s risk factors as columns. Preprocessing 
techniques are used since the real-world medical datasets have 
missing values and class imbalances. The numerical values with 
missing values are imputed using mean, categorical variables are 
converted into numerical using one-hot encoding. In addition, 
since stroke patients are much less common in the dataset 
compared to all the patients, it was used to balance the 
distribution to avoid model bias. To train and evaluate the 
proposed stroke prediction model using LSTM based attention 
mechanisms with the cleaned and preprocessed data, a stationary 
dataset has been chosen as the basis. 

B. Data Pre-Processing 

Multiple preprocessing steps are utilized to the dataset to 
improve both the quality of data and the performance of the 
stroke prediction model. The model needs these three basic steps 
which deal with missing values together with feature 
normalization and class rebalancing in order to maintain data 
integrity when predicting new cases. This study employs the 
described preprocessing methods for data transformation. 

1) Handling missing values. Inconsistencies within data 

collection and patient record errors along with missing clinical 

tests cause numerous missing values to appear in medical 

datasets. The author applied mean imputation to numeric 

features including BMI and glucose level as a statistical method 

that fills empty values with existing data average calculations. 

Using this method protects both the data integrity of patient 

records and statistical consistency across the whole dataset. The 

calculated impute value uses the following mathematical 

method: 
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𝑋𝑛𝑒𝑤 =  
∑ 𝑋𝑖

𝑛
𝑖=1

𝑛
                                (1) 

In Eq. (1), 𝑥𝑖  is the individual value in the, 𝑛 is the number 
of values in total, 𝑋𝑛𝑒𝑤 is the resulting mean value. 

2) Feature scaling. Multiple numerical attributes in the 

dataset need feature scaling because their diverse ranges can 

lead to one feature controlling the learning process. The scale of 

values for age extends between 0 to 100 but the scope for 

glucose measurements exceeds wide extremes and BMI 

measurements require different numerical scaling. All numerical 

attributes get normalized through Min-Max Normalization to 

achieve a standardized 0 to 1 value scale. Method has made the 

following computational transformation. 

𝑋′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                                 (2) 

In Eq. (2), 𝑥 is the real value, 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛  is the feature 
values of maximum and minimum. 

3) Class balancing. In the dataset stroke cases represent a 

minority compared to non-stroke cases resulting in a severe 

problem of class imbalance. The current imbalance between 

stroke cases and non-stroke cases would produce suboptimal 

sensitivity because models likely prefer the majority class. 

SMOTE method applies to equalize the dataset distribution. 

SMOTE creates synthetic samples for minority class instances 

through extrapolation between existing minority class examples. 

The following equation defines the process of synthesizing new 

samples for study: 

𝑋𝑛𝑒𝑤 = 𝑋𝑖 + 𝜆 X (𝑋𝑗 − 𝑋𝑖)                      (3) 

In Eq. (3), 𝑋𝑖 is the class sample, 𝑋𝑗 is the nearest value. The 

preprocessing pipeline of mean imputation followed by Min-
Max normalization. Then, SMOTE class balancing enables 
efficient preparedness of the dataset before LSTM-based stroke 
prediction model implementation that incorporates attention 
mechanisms. Pre-processing steps boost model reliability by 
improving accuracy and reducing bias while increasing stability, 
which enhances system usefulness in medical healthcare usage 

C. Stroke Risk Assessment from Patient Data Using LSTM 

Networks and Attention Mechanisms 

LSTM with Attention Mechanism is useful in terms of the 
LSTM’s ability to learn long-time dependencies and the 
interpretability of attention in stroke prediction. The LSTM 
network first processes patient health data in an order, taking 
into account the relationships amongst the risk factors as it are 
age, blood pressure, and glucose. At each time step, hidden 
states build on this information. The attention mechanism 
provides various weights to hidden states and gives more 
emphasis on the most important health indicators. These hidden 
states are weighted up to form a context vector that amounts to 
the context vector, which is the most salient stroke risk factor. 
After the final LSTM output is concatenated with a created 
context vector, it is finally fed into the fully connected layer to 

make the stroke prediction. The model increases accuracy and 
uncovers the most impactful risk factors through integration of 
LSTM’s sequential learning with attention’s feature 
prioritization. The architecture of LSTM is shown in Fig. 2. 

1) Role of LSTM in stroke prediction. LSTM networks as a 

kind of RNNs are created for sequential type data and long-term 

dependency. LSTM is used in this study to process patient health 

records and capture temporal dependencies existing between 

risk factors like age, glucose levels, blood pressure, and smoking 

status to find out that stroke prediction accuracy could be 

improved. LSTM has three important gates: forget gate removes 

the useless past data, input gate update the memory to the useful 

new data and output gate decides the final hidden state for the 

prediction. The cell state serves as a memory unit that retains 

important information, ignoring data that turns out not to be 

statistically significant. 

Also, LSTM acts as the automatic feature extractor, 
automatically extracting hidden patterns and nonlinear 
relationship between stroke risk factors without manual 
engineering of features. It effectively models these complex 
interactions to reduce false negatives and improve prediction 
accuracy. This suggests that LSTM is a strong candidate for 
medical applications, and it can be applied in real-world stroke 
detection and timely intervention to improve patient outcomes. 

2) Role of the attention mechanism in stroke prediction. 

Attention Mechanism improves the LSTM model by 

dynamically weighing the relevance of stroke risk factors at the 

sequence level and, in turn, enhances not only explainability but 

also prediction accuracy. Unlike typical LSTM models, which 

treat all input features as being of equal significance, the 

attention concept spots the most important features, such as age, 

hypertension and glucose level and as such make sure that the 

model weight more on the most important information and less 

on the noise brought by the less important features. LSTM is 

very good to learn long-term dependencies, but sometimes it has 

difficulties to keep important information in a long sequence. 

The attention mechanism overcomes this by scanning the past 

information and selectively retaining the meaningful stroke-

related patterns. To measure feature importance, attention gives 

weights to each feature as in Eq. (4): 

𝛼𝑡 =  
𝑒𝑥𝑝(𝑒𝑡)

∑ 𝑒𝑥𝑝(𝑒𝑗)𝑗
                                (4) 

These weights allow the model to weight important risk 
factors to ignore duplicate information. 

Besides accuracy, attention elevates model interpretability, 
enabling medical professionals to grasp the details that affected 
a stroke prediction. By dynamically focusing, the attention 
mechanism improves prediction accuracy, reduces overfitting 
to, and ensures that the LSTM model pays most attention to most 
important health indicators, therefore the predictions to happen 
by more reliable and more understandable. 
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Fig. 2. LSTM in stroke prediction. 

3) Integration of LSTM and attention mechanism in stroke 

prediction 

a) LSTM encodes patient data: The LSTM network 

processes the patient health records in order, learns the intricate 

connections and interdependency of factors like age, blood 

pressure, glucose level and smoking status. Choice differs from 

normal models, its essential historical info, and therefore, learn 

from the data of a patient from the patterns. At each step, for 

tracking key medical information, both hidden state and cell 

state are updated while discarding unnecessary information. 

This allows the model to comprehend how stroke risk factors 

develop and influence each other over time. By utilizing 

LSTM’s property of remembering long-term dependencies, the 

model is further improved in discovering minute stroke-borne 

patterns which might not be apparent at the initial glance of 

static data. The architecture of attention mechanism for 

prediction stroke is given in Fig. 3, and integration of LSTM-

Attention mechanism is shown in Fig. 4. 

 
Fig. 3. Attention mechanism in stroke prediction. 

In Eq. (5), the hidden state ℎ𝑡 for each time step 𝑡  is 
calculated by the LSTM layer as a function of its previous 
hidden state ℎ𝑡 − 1  and the current input 𝑥𝑡 . The temporal 
relationships from longitudinal patient data, such as blood 
pressure trends, fluctuation in blood glucose, and medical 
history over time can be encoded by the model due to its 
recurrent behavior. When combined with the context vector 
derived from attention for stroke risk, ℎ𝑇  is a compressed 
representation of the trajectory of the patient's general health. 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1)                                  (5) 

b) Attention identifies key features: Although LSTM 

successfully learn sequential dependency, not all the input 

features are able to convey an equal component in the stroke risk 

prediction. The attention mechanism improves the model by 

increasing, across different hidden layer states, which ones are 

the most important and should get the most attention. Instead of 

generalizing equal weight on all data points, attention works out 

a context vector which picks out significant risk factors 

dependent on attention scores. The attentions are computed in 

the following way for each hidden state: 

𝑒𝑡 =  𝑉𝑇𝑡𝑎𝑛ℎ(𝑊ℎℎ𝑡 + 𝑊𝑠𝑠𝑡−1)                    (6) 

In Eq. (6), ℎ𝑡  is the hidden state, 𝑊ℎℎ𝑡 + 𝑊𝑠𝑠𝑡−1 integrate 
the decoder and encoder states, 𝑉𝑇𝑡𝑎𝑛ℎ  it refers to the non-
linear activation with vector score. These scores are then turned 
into attention weights by applying the SoftMax function to get 
all weights sum to one: 

𝛼𝑡 =  
𝑒𝑥𝑝(𝑒𝑡)

∑ 𝑒𝑥𝑝(𝑒𝑗)𝑗
                                (7) 

In Eq. (7), 𝑒𝑡  is the attention score, which transform into 
probabilities. Final the context vectors computed by aggregating 
the hidden states awaited by their attention scores: 

𝑐𝑡 =  ∑ 𝛼𝑡ℎ𝑡𝑡                             (8) 
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Fig. 4. Integration of LSTM and attention mechanism in stroke prediction. 

In Eq. (8), c_t refers to context vector, α_t I the weight of the 
attention, ℎ𝑡  is the sum of the hidden state. This approach allows 
the model to use selectively the most relevant indicators of 
medical. In this way, it guarantees the improvement of both with 
the interpretability and precision, because it removes those less 
significant features. 

c) Final stroke prediction: After generating the attention-

enhanced context vector, it is fed into a fully connected layer to 

combine with the last LSTM output and is then used for stroke 

risk prediction. Therefore, the model then gives out a risk score 

of the likelihood that the patient will have a stroke. The 

combination of attention with LSTM raises prediction accuracy 

by letting the model concentrate on medically related functions 

versus treating each input in the same way. Additionally, the 

attention increases the interpretability of the model, because the 

model shows which factors contributed most to the prediction. 

This translucency is especially important in healthcare where 

model explanations matter significantly for clinical use cases. 

Through utilizing both LSTM and. This approach allows the 

model use selectively the most relevant indicators of medical, 

this way is guaranteed the improvement both with the 

interpretability and with the precision, because it removes those 

less significant features. 

This hybrid approach allows the model to leverage the 
attention mechanism's feature prioritization capabilities and the 
sequential learning capabilities of LSTM. The model learns to 
rank health indicators with the highest impact on the occurrence 
of strokes over all input features equally. A more comprehensive 
representation that contains both dynamic temporal 
relationships and the weighted contribution of each clinical 
feature is formed by concatenating the attention-improved 
context vector with the last LSTM output. Following a fully 
connected layer with a sigmoid activation function, this entire 
vector provides a probability score from 0 to 1, indicating the 
likelihood of stroke. 

𝑦̂ = 𝜎(𝑊. [ℎ𝑇 ∥ 𝑐] + 𝑏)                        (9) 

In Eq. (9), 𝑦̂  represents predicted stroke probability, ℎ𝑇 
represents final hidden state of the LSTM network, c represents 
attention-derived context vector, [ℎ𝑇 ∥ 𝑐]  represents 
concentration of LSTM and attention output, W is the weight 
matrix of fully linked layer, b is bias and 𝜎 is sigmoid activation 
function used for binary classification. 

Algorithm I: Stroke Risk Assessment using LSTM with 

Attention 

Input: Patient Data (age, blood pressure, glucose level, smoking 

status, etc.) 

Output: Stroke Risk Prediction (0 or 1) 

# Step 1: LSTM Encodes Patient Data 

Define LSTM_Model: 

 Initialize LSTM cells with hidden state h_t and cell state C_t 

 For each time step t in patient sequence: 

   Update h_t, C_t using LSTM cell 

 Store all hidden states {h_1, h_2, ..., h_T} 

# Step 2: Attention Mechanism Identifies Key Features 

Define Attention Mechanism: 

 For each hidden state h_t: 

   Compute attention score: e_t = V^T * tanh (W_h * h_t + W_s * 

s_t-1) 

 Compute attention weights using SoftMax: α_t = exp(e_t) / 

sum(exp(e_j)) 

  Compute context vector: c_t = sum (α_t * h_t) 

 

# Step 3: Final Stroke Prediction 

Define Stroke_Prediction: 

 Concatenate context vector c_t and last LSTM hidden state h_T 

  Pass through Fully Connected Layer with Activation Function 
(e.g., Sigmoid) 

  Output Stroke Risk Probability 

Return Stroke Risk Prediction 
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Algorithm I demonstrates the stroke risk estimation 
algorithm comprised of an LSTM with Attention is divided into 
three steps. The LSTM model then encodes the patient data, 
processing sequential health indicators like age, blood pressure 
and blood glucose. The hidden and cell states are updated at each 
time step, this way there are no long-term dependencies in the 
data. Secondly, the attention mechanism discovers key features 
by computing attention scores of each hidden state and directing 
a model to highlight the related health factors in data. The 
weighted sum of these states creates a context vector which 
emphasizes the most appropriate data for prediction. At last, in 
stroke prediction step, the context vector concatenated with last 
LSTM hidden states passed to fully connected layer with 
sigmoid activation for generating stroke risk probability (0 or 1). 
This framework boosts model interpretability as it guarantees 
that the model concentrates on vital health metrics for better 
stroke risk evaluation. 

D. Model Validation 

For verification of the model, an 80-20 train-test split and early 

stopping for preventing overfitting were utilized. Over 25 

epochs, the model was tested, and fine-tuning of 

hyperparameters was performed using cross-validation. The 

final model was selected as the best-performing model on the 

validation set. 

IV. RESULTS AND DISCUSSION 

In this study, all plots, including accuracy comparisons, loss 
curves, AUC-ROC curves, and feature importance plots were 
created from within a Jupyter Notebook. The Matplotlib and 
Seaborn libraries were largely used for data visualization so as 
to obtain clear and comprehensible graphical representations. 
Upon model evaluation, metrics were used from Scikit-learn 
library; specifically, ROC Curve plotting and confusion matrix 
visualization. Furthermore, the usage of NumPy and Pandas 
helped in the efficient processing of data for preprocessing and 
result analysis. The visualizations were meant to improve 
interpretability in order to shed light on how the model is doing 
within the various evaluation metrics. 

A. Experimental Outcome 

Fig. 5 illustrates that the attention mechanism identifies very 
important factors to stroke prediction, ensuring the model is 
interpretable. The age with the highest attention score of 0.85 
reaffirming its position as the most critical risk factor for stroke. 
Hypertension (0.78) and heart disease (0.72) also fall as very 
prominent attention scoring, corroborating scientific evidence. 
Whereas smoking status (0.65) and average glucose level (0.60) 
contribute significantly underlining the lifestyle risk effect for 
stroke. The BMI (0.55) earned some attention, though lower and 
hence less-but-also-critical, suggesting obesity as potentially 
contributing to the one condition, but it is not necessarily 
dominant over the other factors. This matching of the model's 
predictions to what is known through medicine solidifies their 
use in healthcare in terms of decision-making support. Putting 
in emphasis on interpretable risk factors, LSTM + Attention is 
consistent with transparent and reliable means for stroke 
prediction in the hands of a clinician. 

An unbalanced dataset would compel the model to classify a 
stroke case as a non-stroke case-such evaluations yield high 

false negatives, an undesirable condition when it comes to a 
medical application scenario. This resampling ensures that the 
model will learn good, meaningful patterns from stroke cases 
rather than being overwhelmed with the majority class. Well, 
oversampling is also known to add noise to the dataset, hence 
requiring a valid application. In general, fairness, recall, and 
generalization of the detection model for stroke are improved 
since it ensures they are not underrepresented in the model 
predictions. 

 
Fig. 5. Experimental outcome. 

TABLE I.  DATA CLASS DISTRIBUTION TABLE 

Stroke 

Outcome 

Count 

(Original) 

Percentage 

(Original) 

Count (After 

Resampling) 

Percentage 

(After 

Resampling) 

No Stroke 
(0) 

4,800 94.0% 4,800 50.0% 

Stroke (1) 310 6.0% 4,800 50.0% 

Total 5,110 100% 9,600 100% 

 

Fig. 6. Dataset class distribution. 

Table I and Fig. 6 illustrates the class imbalance with an 
overwhelming 94.0% of cases written in the "No Stroke" 
category and only 6.0% in the "Stroke" category. Such data can 
lead to biased models in the prediction of which classes the 
majority favors and reduces the power to reveal stroke cases 
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because these models will hardly recognize stroke cases. As a 
remedy to the above, SMOTE was utilized to create synthetic 
samples for the minority class. Post-resampling, the dataset was 
balanced to capture 50% stroke and 50% non-stroke cases. This 
enables the model not to be biased towards learned patterns from 
non-stroke cases but quite the opposite; it will learn more from 
stroke-related influences or characteristics. 

 
Fig. 7. Model training and testing accuracy. 

Fig.7 illustrates that the training and testing accuracy were 
steadily improving over epochs. The initial training at 5 epochs 
gave a result of 78.5% and for testing, a value of 75.2% was 
recorded. This reveals that the model has not learned the patterns 
of the data yet. The improvement shows even more on training, 
reaching the score of 88.5% for training accuracy and 83.7% for 
testing accuracy after undergoing training for 25 epochs. With 
both values improving, it is therefore evident that the model 
learns significant, meaningful patterns as regards stroke 
occurrence. Early stopping can be employed here to prevent the 
model from memorizing training data rather than generalizing to 
new cases. A well-balanced accuracy indicates that the model 
learns well the temporal patterns from patient data using LSTM 
with Attention. Final accuracy means strong predictive 
performance but could be improved with further techniques such 
as hyperparameter tuning, dropout regularization, or ensemble 
learning. 

 

Fig. 8. Model training and testing loss. 

Fig. 8 illustrates the training and testing loss values trace the 
model performance over time. At 5 epochs, training loss stood 
at 0.43 and testing loss at 0.47, indicating significant uncertainty 
on the model's part initially. The loss decreased gradually down 
to 0.26 (training) and 0.33 (testing) after 25 epochs, showing 
there had been some learning in the model. A decrease in testing 
loss indicates that the model is generalizing well, while the 
continuous decrease in training loss indicates the model has 
learned the patterns well. On the contrary, if training loss 
continues to drop and testing loss flattens or increases, that is a 
sure sign of overfitting. 

Thus, this trend indicates that continued training past 25 
epochs may be counterproductive, as some variability in results 
may arise due to the training data memorization. The loss 
reduction over time further indicates that the model is learning 
stroke risk patterns effectively and would thus be helpful in 
clinical settings. 

B. Model Assessment 

1) Accuracy. The assessment of data point accuracy consists 

of determining proper cluster or class assignments. The 

evaluation of clustered data uses accuracy measurements only if 

ground truth labels exist for performance assessment, as given 

in Eq. (10): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑥

𝑛
                                 (10) 

 
where, ∑ 𝑥 is the sum of predictions, which 0 is consider as 

an incorrect prediction and 1 refer to correct prediction. 

2) Recall. Model performance recall enables the calculation 

of correct positive outcome identifications among actual 

positive results. The measure finds its best use when recognizing 

positive cases takes priority, as given in Eq. (11): 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (11) 

where, TP is the true positive, FN  refers to false negative of 
the model performance. 

3) F1-Score. The F1 Score is the harmonic mean between 

recall and precision, so that it measures wrong positives as well 

as false negatives precisely. The method yields excellent results 

on highly skewed data, as given in Eq. (12), 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃∗𝑅

𝑃+𝑅
                              (12) 

where, 𝑅  is the recall value and 𝑃  is the precision value, 
which are calculated and give outcome as F1-score. 

Fig. 9 illustrates the evaluation performance of the model is 
also good across multiple metrics for the LSTM with Attention. 
The testing accuracy is 98.7%, showing evidence that strokes 
and non-strokes are classified well. Considering precision and 
recall or true positive rate, the model reduces false positives at a 
precision of 81.4% and retrieves actual stroke cases at a recall of 
83.1%. The F1-score of 82.2%, which confirms a fair balance 
between recall and precision, makes the model applicable to 
medical practice. 
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Fig. 9. Performance metric for stroke prediction model. 

 
Fig. 10. AUC-ROC curve. 

Fig. 10 shows the AUC-ROC scoring of 85.3% which shows 
good differentiation ability in identifying stroke versus non-
stroke cases, critical because failing to identify can be life-
threatening in such medical predictions. These metrics signify 
that the model is generalizable and can accurately predict stroke 
risk. Nonetheless, the performance can be enhanced with other 
parameters, patient features, or ensemble learning techniques. 

TABLE II.  COMPARATIVE ANALYSIS OF DIFFERENT MODELS 

Model Accuracy 

Logistic Regression [32] 79.3% 

Random Forest[33] 82.7% 

CNN[34] 84.1% 

GRU 85.6% 

Proposed LSTM + Attention 98.3% 

 

Fig. 11. Comparison of model accuracies for stroke prediction. 

Table II and Fig. 11 shows the comparison accuracy of five 
machine learning and deep learning models for predicting stroke 
risk. The highest accuracy of around 83.7% was obtained by the 
proposed LSTM+Attention model, which performed better than 
GRU, CNN, Random Forest, and Logistic Regression. Classical 
models, such as Logistic Regression and Random Forest, 
recorded decreased accuracy (79.3% and 82.7%, respectively), 
reflecting their inability to capture intricate temporal patterns. 
The better performance of the LSTM+Attention model 
underscores its strength in sequential learning of health data with 
the interpretability offered by the attention mechanism. 

CNN lacks interpretability, which is crucial for clinical 
deployment, although its performance is good. Although GRU 
is superior in sequence modeling, it is still not capable of 
uncovering which features contribute the most to judgment. 
With the use of attention mechanisms, the proposed LSTM + 
Attention model not only produces the highest accuracy of 
98.3% but also provides the valuable advantage of 
interpretability. The model now dynamically highlights critical 
risk factors, which enhances openness and trust. The noteworthy 
AUC-ROC improvement (85.3%) again testifies to the model's 
discriminative capacity, which differs the stroke and non-stroke, 
thereby being a highly reliable and clinically effective 
instrument for evaluating stroke risk in real-time. 

C. Discussion 

The main goal of this study involves designing an effective 
stroke risk prediction model employing LSTM network with 
attention, to improve the prediction accuracy as well as the 
interpretability of the stroke risk assessment. The original data 
of the dataset was shown to have a big class-imbalance issue 
with only 6% stroke cases out of the total. To overcome this, 
SMOTE resampling was used, which provided a balanced 
dataset that extended to better generalization, and reduced bias 
to the majority class. The model clearly got better accuracy and 
loss over epochs, hitting 83.7% test accuracy with 25 epochs. 
Nevertheless, early stopping has been used to avoid overfitting. 

Compared to the classical machine learning model such as 
LR (79.3%) and RF (82.7%), DL techniques, CNN (84.1%) and 
LSTM with Attention (83.7%), presented superior 
performances, in terms of recall and AUC-ROC scores. 
Although it outperformed by a tiny margin in accuracy than 
LSTM + Attention, the attention part of LSTM explained more 
by pointing on the meaningful signal like age (0.85), 
hypertension (0.78) and heart disease (0.72). These findings 
agree with previous study by doctors pointing out that age, 
cardiovascular disease and lifestyle are among key factors that 
increase the chances of a stroke occurring. 

In summary, it is the LSTM with Attention model that can 
accurately predict the stroke risk while maintaining the clarity in 
the decision-making process, which makes it a very useful 
clinical tool. Future studies can use additional patient attributes, 
real-time monitoring information and ensemble techniques to 
improve predictive performance more. Furthermore, 
implementing the model in IoT-healthcare systems may offer in 
time stroke risk analysis, integrating efficiently medics 
diagnosis elucidations so that in time prevention of stroke may 
accomplished smoothly from the medics. 
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Overall, the integration of stroke risk forecasting technique 
with recent medical technologies such as telemedicine and 
smartphone medical apps could change the game plan for stroke 
management and prevention. This technique could reduce the 
incidence of stroke and enable greater movement toward 
predictive and personalized care by enabling early care and data-
informed decision-making. 

V. CONCLUSION AND FUTURE WORK 

This study introduces a solid and interpretable deep learning 
solution to stroke risk prediction through the integration of Long 
Short-Term Memory (LSTM) networks and an attention 
mechanism. The model is capable of overcoming a significant 
weakness of conventional machine learning methods, i.e., it 
cannot capture sophisticated temporal dependencies from 
patient health records. In addition, through the incorporation of 
an attention mechanism, the model improves clinical 
interpretability by being able to bring to attention important risk 
factors like age, hypertension, and cardiovascular disease 
factors, corroborated by existing medical knowledge. With class 
imbalance being handled through SMOTE and data 
preprocessing optimized through mean imputation and Min-
Max normalization, the suggested model reached an accuracy of 
83.7%, a recall of 83.1%, and an AUC-ROC of 85.3%. These 
findings surpass traditional baselines such as Logistic 
Regression (79.3%) and Random Forest (82.7%) and are 
comparable with CNN-based methods (84.1%), though it retains 
a considerable interpretability advantage. One of the primary 
contributions of this work is the explicit identification of 
prominent clinical indicators using the attention mechanism, 
making the model more applicable to real-world decision-
critical settings like hospitals and telehealth platforms. In 
contrast to other black-box deep learning models, the strategy 
offers insight into how predictions are reached, thereby enabling 
evidence-based, personalized stroke prevention. 

In a subsequent study, to promote generalizability by using 
more heterogeneous datasets from different populations and 
health care systems. Coupling real-time data streams from 
wearable devices (e.g., blood pressure monitors or heart rate 
sensors) may enable day-long stroke risk scores. In addition, 
investigating ensemble learning architectures, e.g., combining 
LSTM with Convolutional Neural Networks (CNN) or 
Transformer models, may enhance predictive accuracy. Lastly, 
using the model in IoT-based healthcare systems can enable 
timely intervention and enable clinicians to act proactively 
against stroke occurrence. Treating fairness and bias among 
demographic populations will also be important to providing fair 
and trustworthy healthcare outcomes. 
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