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Abstract—Sickle Cell Anemia (SCA) is a hereditary condition 

causing abnormal red blood cells, leading to severe health 

complications. Traditional treatment approaches for SCD often 

involve reactive management, which can delay appropriate 

interventions and worsen patient outcomes. The aim of this study 

is to leverage machine learning (ML) algorithms, including 

Logistic Regression (LR), Support Vector Machines (SVM), and 

Decision Trees (DT), to identify high-risk groups among SCA 

patients using clinical and pathological data from King Abdulaziz 

University Hospital. This study employs a comprehensive dataset 

comprising 200 SCA patients, with data preprocessing to handle 

missing values and feature selection techniques to enhance model 

performance. The dataset is divided into training and testing sets, 

and models are evaluated using ten-fold cross-validation. 

Performance metrics such as True Positive Rate (TPR), False 

Negative Rate (FNR), Positive Predictive Value (PPV), and False 

Discovery Rate (FDR) are used to assess model effectiveness. The 

results indicate that the SVM model with the top seven correlated 

features achieved the highest TPR and PPV, along with the lowest 

FNR and FDR, demonstrating its superior performance in 

identifying high-risk patients. The study concludes that ML 

models, particularly SVM, can significantly improve risk 

assessment and patient management in SCA, offering a proactive 

tool for healthcare providers. The main message is the potential of 

ML algorithms to enhance clinical decision-making and improve 

outcomes for patients with SCA. 

Keywords—Sickle cells anemia; feature selection; predicting 

complication; machine learning 

I. INTRODUCTION 

SCD is a hereditary condition that results in the production 
of abnormal red blood cells. The disease was first identified in 
1910 [2]. Today, it is estimated that approximately 5% of the 
global population carries a gene for sickle cell disease or 
thalassemia [1]. Annually, over 300,000  newborns are affected 
by severe forms of these disorders, with most cases occurring in 
low- and middle-income countries [3], [4]. SCD is particularly 
prevalent in regions such as the Mediterranean, Africa, India, the 
Caribbean, and the Middle East. 

In Saudi Arabia [5], SCD is a common genetic disorder, with 
carrier rates varying from 1.4% to 2% in certain areas and 
reaching as high as 27% in some regions. The Saudi premarital 
screening program has revealed that 0.26% of the adult 
population is affected by SCD, while 4.2% carry the sickle cell 
trait. The highest prevalence is observed in the Eastern province, 
with SCD affecting about 1.2% of the population and sickle cell 
trait carriers comprising approximately 17%. Current treatment 
decision-making for SCD involves monitoring symptoms and 
complications and adjusting treatment plans accordingly. This 
reactive approach can significantly impact patients' lives, 
leading to delayed treatment options and irreversible disease 
complications. Despite extensive epidemiological surveillance, 
no publicly reported model has yet been validated on a Saudi 
cohort to predict severe events; this gap leaves clinicians reliant 
on qualitative heuristics and underscores the need for data-
driven, localised risk stratification. 

Sickle-cell complications place a persistent burden on 
emergency and hematology services in Saudi Arabia; delayed 
therapeutic escalation is common because current risk 
assessments rely on clinician intuition or post-event markers. By 
embedding a data-driven prognostic layer into routine complete-
blood-count (CBC) workflows, clinicians can transition from 
reactive to proactive care. Applying artificial intelligence (AI) 
tools, particularly Machine Learning (ML) algorithms, to predict 
the severity and complications of SCD in diagnosed patients, 
offers a proactive solution that could assist physicians in making 
more informed treatment decisions. ML techniques can analyze 
vast amounts of clinical and pathological data to identify 
patterns and risk factors that are not easily discernible through 
traditional methods. Consequently, the objective of this study is 
to leverage ML algorithms, including Logistic Regression, 
Support Vector Machines, and Decision Trees, to identify high-
risk groups among SCD patients using data from King 
Abdulaziz University Hospital. By developing predictive 
models, we aim to enhance the accuracy of risk assessments and 
improve patient management. Directly addresses a national 
patient-safety gap and aligns with Vision 2030’s precision-
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medicine goals. Research Question (RQ): Which of the 
evaluated machine-learning algorithms (Logistic Regression, 
Support Vector Machine, or Decision Tree) most accurately 
identifies high-risk SCA patients using routinely collected 
hematological features in a Saudi clinical setting? The 
remainder of this paper is organised as follows: Section II details 
the dataset and pre-processing pipeline. It describes the three 
candidate algorithms and feature-selection procedure; Section 
III sets out the experimental protocol. It presents quantitative 
results; Section IV discusses clinical implications and 
algorithm–data suitability; finally, Section V concludes with 
limitations and future work. 

A. Related Work 

SCD is a complex genetic disorder characterized by 
significant phenotypic variability [6]. The development of 
accurate prediction models for SCD severity and outcomes is 
crucial for improving patient care and treatment decision-
making [7]. ML techniques have shown promise in interpreting 
medical data and predicting disease severity, complications, and 
treatment dosages [7]. Bayesian network modeling has been 
used to create a personalized disease severity score that predicts 
the risk of death within 5 years, incorporating factors such as 
renal insufficiency, leukocytosis, and hemolytic anemia severity 
[8]. While known modifiers like fetal hemoglobin levels and α-
thalassemia influence disease severity, other genetic variants 
and environmental factors, including climate and air quality, 
may also play a role [6]. Despite recent successes, modeling the 
multisystem pathology of SCD remains challenging, and further 
research is needed to improve prediction of specific adverse 
outcomes and global disease severity [9]. 

Research on predicting disease severity in SCD has focused 
on various factors and approaches. A systematic review 
identified multiple indices used to assess SCD severity, 
incorporating elements like organ damage and complications, 
but found a lack of consensus and validation for these measures 
[10]. To address this, experts developed a severity classification 
system using a modified Delphi panel, considering factors such 
as age, genotype, and organ damage [11]. ML techniques have 
shown promise in predicting acute organ failure in critically ill 
SCD patients, using physiological markers derived from vital 
signs [12]. Despite these advancements, modelling the variable 
and multisystem pathology of SCD remains challenging. While 
there have been some successes in predicting specific adverse 
outcomes and global disease severity, significant challenges 
persist in developing comprehensive prognostic tools for SCD 
[9]. 

Feature selection techniques are crucial for improving model 
performance in clinical prediction by identifying relevant 
features from large datasets [13]. Common approaches include 
filter and wrapper methods [14]. Filter methods use criteria like 
correlation, significance, or variable importance to rank features, 
while wrapper methods employ algorithms to evaluate feature 
subsets [13]. Hybrid approaches combining filter and wrapper 
techniques have shown promise in generating minimal 
redundancy maximal relevant feature subsets [15]. A tri-stage 
wrapper-filter framework has been proposed, utilizing ensemble 
filter methods, correlation analysis, and meta-heuristic 
optimization to select optimal features for disease classification 
[16]. These techniques aim to reduce dimensionality, remove 

irrelevant or redundant data, and improve classification 
accuracy [16], [14]. Effective feature selection can lead to more 
parsimonious models, reduced training time, and improved 
predictive performance in clinical settings [13], [16]. 

ML algorithms have shown significant potential in 
improving healthcare outcomes for patients with SCD. Studies 
have demonstrated that ML models outperform traditional 
readmission risk scoring systems in predicting 30-day hospital 
readmissions for SCD patients [17]. Random Forest algorithms 
have been particularly effective, achieving higher accuracy and 
area under the curve (AUC) scores compared to standard [17]. 
ML techniques have also been successful in predicting SCD 
from erythrocyte smears, with ensemble models like Random 
Forest-XGBoost showing superior performance [18]. The 
integration of ML in healthcare extends beyond SCD, offering 
opportunities for personalized treatment and improved resource 
allocation across various medical conditions [19]. These 
advancements in ML-driven predictive models have the 
potential to revolutionize healthcare systems, leading to more 
efficient and patient-centered care. 

II. METHODS 

A. Patient Population 

The 200 patients from King Abdulaziz University Hospital 
(KAUH) were eligible for the study, and any patients who were 
not diagnosed with SCA were excluded. The dataset retrieved 
data from electronic health records, including each patient's 
complications records and clinical and pathological data. The 
data were accessed for research purposes from (1/10/2020). All 
patients' identities were anonymized, and authors did not have 
access to information that could identify individual participants 
during or after data collection. Table I shows the features that 
were included in the study. Ethical approval was obtained from 
the unit of the Biomedical Ethics Research Committee at KAUH 
(Reference No. 511-20). As participants’ data were 
retrospectively included from medical records, the need for 
informed consent was waived by the ethics committee, as the 
data were fully anonymized before access. 

B. Patients Outcomes 

The patients enrolled in the study were divided into two 
broad outcome groups: (i) Low-risk group: SCA patients who 
did not develop any complications; and (ii) high-risk group: 
SCA patients who developed complications. The complications 
include: Vaso-Occlusive Crisis (VOC), Hepatorenal, gallstone, 
Stroke, Osteotomy, Avascular Necrosis (AVN), Chronic Kidney 
Disease (CKD), acute tubular necrosis, Upper Respiratory Tract 
Infection (URTI), cute Chest Syndrome  (ACS), pulmonary 
Embolism (PE), Pneumonia, Cholecystitis, and Priapism). 

C. Datasets 

The dataset used in this study comprises three distinct sheets: 
"ContWithMissing", "ContNoMissing,” and 
"CatWithNoMissing”. Each sheet presents a different aspect of 
the data, catering to specific requirements for ML model 
development and evaluation. Firstly, the "ContWithMissing" 
sheet contains continuous data with some values missing, 
indicating a need for imputation or exclusion during 
preprocessing. This sheet is crucial for understanding data 
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completeness and planning subsequent data cleaning steps. 
Secondly, the "ContNoMissing" sheet provides continuous data 
with no missing values. This dataset guarantees that all 
continuous data inputs are available for analysis. Thirdly, the 
"CatNoMissing" sheet contains categorical data with all missing 
values addressed. The number of rows reduced compared to the 
original dataset because some Thalassemia patients were 
excluded. This sheet ensures that categorical data inputs are fully 
available for analysis and modeling. 

TABLE I.  CLINICAL AND PATHOLOGICAL FEATURES 

Features Description 

Age Clinical feature recorded at the time of diagnosis. 

Gender Clinical feature recorded at the time of diagnosis. 

Hemoglobin 
level (Hb) 

An internal protein within red blood cells that serves as 

a transport system for oxygen from the lungs to the 
tissues and organs of the body, and a transport system 

for carbon dioxide from the body to the lungs. 

White Blood 
Cell (WBC) 

A cell in the blood and lymph is produced in the bone 

marrow. White blood cells are a component of the 
body's immune system. They assist the body in fighting 

off illness and disease. Granulocytes (neutrophils, 
eosinophils, and basophils), monocytes, and 

lymphocytes are the different kinds of WBCs (T cells 

and B cells). 

Platelets 

Large cells in the bone marrow known as 
megakaryocytes form platelets. They assist in forming 

blood clots that can slow or halt bleeding and assist in 

wound healing. 

Mean 

Corpuscular 

Volume (MCV) 

The MCV blood test evaluates the erythrocyte count, 
which is the average size of red blood cells. 

Mean Cell 

Hemoglobin 

(MCH) 

The typical hemoglobin level in a typical red blood cell. 

The MCH is calculated by calculating the red blood cell 

count and hemoglobin levels. 

Mean Cell 

Hemoglobin 

Concentration 
(MCHC) 

The hemoglobin concentration in red blood cells, on 

average. 

Reticulocyte 

Newly produced, immature red blood cells, known as 

reticulocytes, emerge from the bone marrow. They 
form and ripen in the bone marrow before they are 

released into the blood. 

Red Cell 

Distribution 
Width (RDW) 

A red cell distribution width (RDW) test is used to 

determine your blood's red blood cell volume and size 
range (erythrocytes). 

Hemoglobin 

Electrophoresis: 

 
 

Hb A 

Hb A2 
Hb F 

 

 

Hb S 

Electrophoresis for hemoglobin is a procedure that uses 

a high-voltage electric field to separate the various 
types of hemoglobin found in the blood. Additionally, 

it searches for abnormal forms of hemoglobin. 

The most commonly occurring type of hemoglobin (Hg 
A) in healthy adults. 

Hb F Fetal hemoglobin. Unborn babies and newborns 

have a specific type of hemoglobin. Immediately after 
birth, Hb F is replaced by Hb A. 

Sickle cell disease is the common cause of hemoglobin 

of this type. 

Aspartate 

Amino 

Transferase 
(AST) 

A special enzyme, present in increased levels in the 

blood following a heart attack or liver disease, aids in 

the transfer of an amino group from glutamic acid to 
oxaloacetic acid. 

Alanine Amino 
Transferase 

(ALTI) 

A naturally occurring enzyme found in the liver and 

heart. The ALT enzyme is released into the blood when 
liver or heart injuries occur. As a result of liver damage 

(such as from viral hepatitis) or an insult to the heart, 

the blood ALT levels increase. 

Features Description 

Alkaline 
phosphatase 

(ALPI) 

An enzyme which is commonly found in various body 
parts, but is most prevalent in the liver, bones, intestine, 

and kidneys. A blood test to measure the activity of 

alkaline phosphatase is used to gauge the enzyme's 
concentration. Elevated ALP levels may be a result of 

liver disease or another type of health problem. 

Gamma-

glutamyl 
Transferase 

(GGT) 

An enzyme found throughout the body in many organs 

at the highest concentrations found in the liver. 
Elevated GGT can be found in the blood of most people 

with liver or bile duct problems. The blood sample test 

is meant to gauge the level of GGT. When the liver is 
injured, GGT levels increase normally, but if the liver 

is compromised, they will be higher. 

D. Framework 

The framework (Fig. 1) is divided into three sections: data 
preprocessing, features selection techniques, and ML methods. 

 

Fig. 1. Framework for preprocessing, feature-selection and modelling. 

1) Data preprocessing: The dataset included numerical 

values with missing data. This step included: imputing missing 

data and reformatting the data using medical knowledge. 

2) Impute missing data: Two of the most frequently used 

approaches for dealing with missing data are imputation and 

deletion, and the former can introduce bias while the latter 

introduces both bias and a reduction in statistical power [20]. In 

this step, linear interpolation uses the two nearest points to 

estimate the value of the interpolated point in a one-

dimensional data sequence [21]. For all features, the numerical 

values were imputed with the linear interpolation using SPSS 

21 since removing patient data reduces patient datasets, which 

can affect the performance of learned models, we chose to 

eliminate those features with missing percentages above 10%. 

3) Reformate the features using medical knowledge: We 

used existing knowledge, including standard blood count 

boundaries [22], and clinical expertise domains, to format data 

into categories. 

4) Feature selection techniques: Feature selection 

algorithms are broadly divided into three categories: filter 
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methods, wrapper methods, and embedded method [23]. Here 

we first used filter methods. 

A statistical score is applied to each feature through the use 
of filter feature selection methods. The results are rated by score, 
and then the preferred features are selected to be retained or 
discarded from the dataset. The methods are typically univariate 
and either treat the feature in isolation or regard it in the context 
of the dependent variable. Here, the top correlated features 
include finding new patterns in large datasets, which highlight 
interesting relationships between pairs of variables. For two-
variable relationships, we used two techniques as a measure of 
dependence: i) the maximal information coefficient (MIC)[24]. 
The results were sorted from largest to lowest and discarded as 
the lowest score feature, ii) the Chi-squared test which is a 
nonparametric statistical test that is widely used to assess the 
statistical significance of predictive factors [25]. We used 
Recursive Feature Elimination (RFE) which iteratively builds 
models and removes the least key features. 

The second feature selection technique was the wrapper 
method which evaluates the performance of a subset of features 
by training a machine learning model. They use search 
algorithms to find the best subset of features based on the 
model’s performance. Two common methods are known as 
forward selection and backward elimination. We used forward 
selection to start with an empty set and added features one by 
one based on performance improvement. 

This study used hybrid feature selection approach that 
combines the strengths of both methods (filter and wrapper). 
Initially, features are ranked using specific criteria, followed by 
applying a wrapper algorithm to generate a subset from the 
ranked features [15]. 

We chose to use filter and wrapper methods for feature 
selection instead of embedded methods because filter methods 
are computationally efficient and model-agnostic, allowing for 
quick preliminary feature evaluation. Wrapper methods, though 
more computationally intensive, account for feature interactions 
and improve model performance by evaluating subsets through 
model training. In contrast, embedded methods are model-
dependent, which could limit the flexibility and generalizability 
of our feature selection process. By using filter and wrapper 
methods, we ensured a versatile and robust feature selection 
applicable across various machine learning models. 

5) Machine learning methods: Three ML methods were 

utilized: Logistic regression (LR), Support Vector Machine 

(SVM), and Decision Tree (DT). LR is a statistical method used 

to model the probability of a binary outcome based on one or 

more predictor variables [26]. It is particularly useful in 

scenarios where the dependent variable is categorical, such as 

pass/fail or disease/no disease [27]. Unlike linear regression, 

which predicts continuous outcomes, logistic regression 

estimates the probability of an event occurring versus not 

occurring [27]. LR implemented using the fitclinear function in 

MATLAB 2024a. In the context of this study, LR is employed 

to predict whether patients fall into high-risk or low-risk 

categories based on their features. The fitclinear function 

optimizes the model parameters using maximum likelihood 

estimation to find the best fit for the data. The logistic function 

(sigmoid) transforms the linear output into a probability, which 

is then used to make binary predictions. The model's 

performance is evaluated using cross-validation to ensure 

robustness and avoid overfitting. 

Another common ML model is SVM which is a supervised 
learning method used for both regression and also classification 
[28].However, they are most commonly utilized for binary 
classification. The SVM algorithm aims to find an appropriate 
hyperplane in such an N-dimensional space that accurately 
classifies the data points [29]. The memory efficiency of SVM 
and its efficiency for high-dimensional environments are the two 
key benefits of employing it. SVMs are among the most 
extensively used and successful ML algorithms in supervised 
learning for classifying and recognizing problems. They get a 
solid theoretical foundation, which makes them invaluable 
throughout this field. The essential principle behind SVMs was 
that with some high input vector x and vector output y, there 
must be some unknown and non-linear relationship (mapping, 
function) y = f(x). There seems to be no knowledge about input 
data vectors' underlying joint distributions. The training data 
would be the only information provided. As a result, they are 
classified as supervised learning algorithms. SVMs create a 
hyperplane to divide two classes. The algorithm intends to attain 
the greatest possible separation between the classes. 

SVM finds the hyper-plane as in feature space which 
distinguishes between categories for classification. A training 
data point has been represented as points within feature space by 
an SVM model, which is mapped in a way in which points 
belonging to the different classes were also separated by just as 
wide a margin as possible. The testing data points then are 
mapped into the same space and classified according to where 
they fall upon that margin. SVM implemented here using the 
fitcsvm function in MATLAB 2024a. In this study, SVM is 
utilized to classify patients into high-risk and low-risk categories 
based on their features. 

The third ML method is DT, which is a popular machine 
learning method used for classification tasks. DTs are effective 
in handling non-linear relationships and can be scaled for big 
data applications [30]. DTs have been applied in various fields, 
including education, building, botany, social science, and 
medicine [31]. DT implemented using the fitctree function in 
MATLAB 2024a, the DT functions by repeatedly dividing the 
dataset into smaller subsets according to the values of input 
features, creating a structure that resembles a tree. In this tree, 
each node corresponds to a feature, each branch signifies a 
decision rule, and each leaf node indicates an outcome. The 
fitctree function grows the tree by selecting features that best 
split the data according to a chosen criterion, such as Gini 
impurity or entropy. 

The process of building a decision tree begins with selecting 
the best feature for the root node. The algorithm evaluates all 
features and selects the one that best separates the data into 
distinct classes. This is done by calculating the split criterion for 
each feature. Gini impurity was used to measure the probability 
of a randomly chosen element being misclassified if it was 
randomly labeled according to the distribution of labels in the 
subset. Lower values of Gini impurity indicate better splits. 
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Once the best feature is chosen, the data is split into subsets 
based on the values of this feature. For categorical features, this 
involves creating branches for each category. The process of 
selecting the best feature and splitting the data is repeated 
recursively for each subset. At each node, the algorithm 
considers only the subset of data that reaches that node. The 
recursion continues until one of the stopping criteria is met: all 
instances in a node belong to the same class, there are no 
remaining features to split on, the maximum tree depth is 
reached, or a minimum number of instances per node is 
specified. 

In this study, the DT model is used to classify patients into 
high-risk and low-risk categories based on their features. The 
model is trained using 90% of the dataset and validated using 
10% of the dataset. Ten-fold cross-validation is applied to ensure 
the model's robustness and to prevent overfitting. 

The selection of the most appropriate machine learning 
method depends on the specific application and dataset 
characteristics [31]. 

6) Performance evaluation: By using the confusion matrix, 

one can see how the selected model performed in each category. 

The confusion matrix helps you figure out where the model 

messed up. The number of observations is defined as the 

following: 

 TP: patients are correctly categorized as low risk. 

 FP: patients categorized in low risk, but they predicted as 
high risk. 

 TN: patients are correctly categorized as high risk. 

 FN: patients categorized in high risk, but they predicted 
as low risk. 

Final Model and Feature Set Selection: For the final model 
and feature set selection, we employed a comprehensive 
evaluation process based on four key performance metrics: True 
Positive Rate (TPR), False Negative Rate (FNR), Positive 
Predictive Value (PPV), and False Discovery Rate (FDR). The 
TPR is the ratio of true high-risk classifications to true high-risk 
cases. The FNR is the proportion of incorrectly classified 

instances in relation to the number of actual classes in high risk. 
PPV stands for predicted in a high risk to correctly classified in 
high-risk observation ratio. The FDR is the rate of predictions 
that are incorrect per class that was classified as high risk. 

Initially, we applied filter methods to efficiently evaluate and 
reduce the dimensionality of the dataset, using statistical 
measures such as correlation coefficients and mutual 
information to identify relevant features. This provided a 
preliminary selection of features that served as the basis for 
further refinement. 

Subsequently, we utilized wrapper methods, including 
accounting for feature interactions and refine the feature subset. 
Wrapper methods involve directly evaluating subsets of features 
by training the selected machine learning model from the filter 
selection method. This iterative process allowed us to identify 
the most impactful features and improve model performance. 

After generating multiple models with various feature sets, 
we compared their performance based on the metrics mentioned 
above. The evaluation process ensured that the selected model 
and feature set offered a good balance of achieving the highest 
TPR and PPV and the lowest FNR and FDR.  This approach to 
combining filter and wrapper methods enabled us to achieve a 
robust and reliable predictive model, tailored to the specific 
needs of our application. 

III. RESULTS 

A. Insight Into Data 

The dataset included 200 SCA patients, 10 patients were 
excluded because they were diagnosed with Thalassemia. The 
low-risk group included 90 patients while the high-risk group 
included 110 patients. 

B. Preprocessing Results 

The analysis of the "ContWithMissing" sheet revealed 
varying degrees of missing data across different clinical 
features. To address this, linear interpolation was applied to 
impute missing values for numerical features using SPSS 21. As 
shown in Table II, features with more than 10% of missing data 
were excluded to avoid bias and ensure robust model 
performance. 

TABLE II.  STATISTICS OF THE MISSING DATA  

 N Missing Percent Minimum Maximum Mean 

AGE 188 2 1.1% 12 59 31.08 

Gender 182 8 4.2% 1 2 1.55 

Hb. 190 0 0% 1 13 8.22 

WBC 190 0 0% 3.70 45.70 13.97 

PIT 190 0 0% 5.10 853 411.81 

MCV 189 1 0.5% 37.50 380 86 

MCH 189 1 0.5% 19 80 29.128 

MCHC 190 0 0% 24.60 38.80 33.64 

Ret. 164 26 13.7% 0.014 16.9 2.02 

RDW 159 31 16.3% 6.50 208 23.96 

Hb A 52 138 72.6% 0 54.10 8.25 

Hb A2 103 87 45.8% 1.80 9.40 3.80 
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Hb S 101 89 46.8% 0 36 8.59 

Hb F 127 63 33.2% 0.6 96.1 77.02 

AST 141 49 25.8% 13 230 54.18 

ALT 147 43 22.6% 14 244 46.28 

ALKP 138 52 27.4% 5 352 96.28 

GGT 65 125 65.8% 6 223 41.43 

Complication 190 0 0% 0 1 0.47 

TABLE III.  REFORMATE THE FEATURES USING MEDICAL KNOWLEDGE RESULTS  

Feature Term Range Value Define 
No. of Missing 

Estimated 

Age (years) 
Old 

Young 
12-59 

>40 

<=40 

0 

1 

2 

0 

Gender 
Male 

Female 
 

1 

2 

0 

1 

0 

1 

Hb (g/dL.) 

Normal 

Low 

Very low 

2-13 

12-15 

>=7, <=12 

<7 

2 

1 

0 

0 

WBC (K/uL) 
High 
Normal 

Low 

3.7-45.7 
>11.5 
>=4.5,<=11.5 

<4.5 

2 
1 

0 

0 

PLT (K/uL) 
High 
Normal 

Low 

5.10-853 
>=450 
150-450 

<=150 

2 
1 

0 

0 

MCV (fL) 

High 

Normal 
Low 

26.98-380 

>94 

80>=,<=94 
<80 

2 

1 
0 

0 

1 
0 

MCH (pg) 

High 

Normal 
Low 

19-80 

>31 

27>=,<=31 
<27 

2 

1 
0 

0 

1 
0 

MCHC (%) 

High 

Normal 

Low 

24.6-38.8 

>36 

32>=,<=36 

<32 

2 

1 

0 

0 

Reticulocyte (%) 

High 

Normal 

Low 

0.014-169 

>1.5 

0.5>=,<=1.5 

<0.5 

2 

1 

0 

4 

0 

22 

Red cell distribution 
width (Male) 

High 

Normal 

Low 

0.01-16.9 

>14.5 

11.8<=,>=14.5 

<11.8 

2 

1 

0 

10 

0 

0 

Red cell distribution 

width (Female) 

High 
Normal 

Very low 

0.08-0.23 
>16.1 
12.2-16.1 

<12 

2 
1 

0 

0 
0 

16 

electrophoresis 

Hb A (%) 

Normal 
Low 

Very low 

0-54.10 

 

95-98 
<95 

=0 

2 
1 

0 

0 
77 

61 

Hb A2 (%) 
High 

Normal 

1.8-9.4 

 

>=3.5 

1.5-3.5 

1 

0 

27 

8 

Hb F (%) 
Abnormal 

Normal 

0-36 

 

>=2 

<2 

1 

0 

89 

0 

Hb S (%) 
Abnormal 

Normal 
 

1 

0 

1 

0 

63 

0 

Aspartate Amino 

Transferase (AST) 

(U/L) 

High 

Normal 

Low 

13-230 

>37 

15>=,<=37 

<15 

2 

1 

0 

40 

8 

1 

Alanine Amino 

Transferase (ALTI) 

(U/L) 

High 

Normal 
14-244 

>78 

12>=,<=78 

2 

1 

1 

42 

Alkaline phosphatase 

(ALPI) (U/L) 

High 
Normal 

Low 

5-352 
>150 
40>=,<=150 

<40 

2 
1 

0 

13 
36 

3 

Gamma-glutamyl 
Transferase GGT 

(U/L) 

High 
Normal 

Low 

6-223 
>85 

5,<=85 

2 

1 

25 

100 

Complications 
None 

Complications 
 

None 

Complications 

0 

1 
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Age and gender data were nearly complete, with only 1.1% 
and 4.21% missing, respectively. Critical parameters such as 
hemoglobin levels, white blood cell count, platelets, mean 
corpuscular volume, mean cell hemoglobin, and mean cell 
hemoglobin concentration had no missing values. Reticulocyte 
and red cell distribution width had 13.68% and 16.32% missing 
values, respectively, and were thus excluded from the analysis. 
Hemoglobin electrophoresis tests showed substantial missing 
data (HbA 72.63%, HbA2 45.79%, HbF 46.84%, HbS 33.16%), 
leading to their exclusion. Similarly, liver enzyme 
measurements such as AST, ALT, ALKP, and GGT had 
significant missing data, particularly GGT with 65.79%, and 
were excluded from further analysis. This approach ensures that 
the dataset remains robust and reliable for subsequent analysis 
and model development. The data was also reformatted using 
medical knowledge and standard blood count boundaries to 
categorize values meaningfully. Table III shows the reformat of 
numerical data using medical knowledge. 

C. Filter Selection Results 

The feature selection process utilized different methods for 
the "ContWithMissing" and "CatWithMissing" sheets. For the 
"ContWithMissing" sheet, Table IV shows the top correlated 
features using MIC analysis. The top features included Platelets 
(MIC: 0.41987), WBC (MIC: 0.41139), MCH (MIC: 0.3613), 
MCV (MIC: 0.3171), MCHC (MIC: 0.27546), Hb (MIC: 
0.26462), and AGE (MIC: 0.16802), all of which were included 
in the final model due to their strong correlations. 

For the "CatWithMissing" sheet, the Chi-squared test was 
used to determine the statistical significance of the features. This 
analysis revealed several significant features, including WBC 
and Platelets. 

Notably, WBC showed a significant difference between low 
and high-risk patient categories (p-value: 0.005), and Platelet 
counts also displayed statistical significance (p-value: 0.027). 
Table V shows significant features. 

By integrating MIC analysis for continuous data and Chi-
squared analysis for categorical data, the final model 
incorporated the most predictive and statistically significant 
features, thereby enhancing its performance and reliability in 
predicting mismatch repair complications. 

D. Machine Learning Methods Results 

The feature selection and ML model evaluation was 
conducted using the "CatNoMissing" sheet. For this process, 
10% of the data was held out as testing data while 90% was used 
for training. The final dataset underwent ten-fold cross-
validation. The LR, SVM, and DT models were assessed using 
several performance metrics, including TPR, FNR, PPV, and 
FDR. Table VI shows the final results using feature selection 
and ML methods. 

TABLE IV.  TOP CORRELATED FEATURES 

Features MIC (strength) 

Platelets 0.41987 

WBC 0.41139 

MCH 0.3613 

MCV 0.3171 

MCHC 0.27546 

Hb 0.26462 

AGE 0.16802 
 

TABLE V.  (A) SIGNIFICANT FEATURES 

Feature Medical Knowledge 
Patients Categories Chi-Square Test 

Low risk High risk Frequency Percent p-value 

Age (years) 
>40 

<=40 

79 

19 

80.6% 

10.1% 

79 

11 

87.8% 

5.9% 

158 

30 

84% 

16% 
0.23 

Sex 
1 

2 

47 

46 

50.5% 

49.5% 

35 

54 

39.3% 

60.7% 

82 

100 

45.1% 

54.9% 
0.13 

Hb (g/dL.) 

12-15 

>=7, <=12 
<7 

2 

86 
12 

2% 

86% 
12% 

0 

75 
15 

0% 

83.3% 
16.7% 

2 

161 
27 

1.1% 

84.7% 
14.2% 

0.33 

WBC (K/uL) 

>11.5 

>=4.5,<=11.5 
<4.5 

49 

50 
1 

49% 

50% 
1% 

63 

27 
0 

70% 

30% 
0% 

112 

77 
1 

35.8% 

61.6% 
2.6% 

0.005 

Platelet (K/uL) 

>=450 

150-450 

<=150 

30 

65 

5 

30% 

65% 

5% 

38 

52 

0 

42.2% 

57.8% 

0% 

68 

117 

5 

35.8% 

61.6% 

2.6% 
0.027 

MCV (fL) 

>94 

80>=,<=94 

<80 

16 

47 

37 

16% 

47% 

37% 

18 

49 

22 

20% 

55.1% 

24.7% 

34 

96 

59 

18% 

50.8% 

31.2% 

0.19 

MCH (pg) 
 

>31 

27>=,<=31 

<27 

23 

43 

34 

23% 

43% 

34% 

32 

33 

24 

36% 

37.1% 

27% 

55 

76 

58 

29.1% 

40.2% 

30.7% 

0.15 

MCHC (%) 
>36 
32>=,<=36 

<32 

6 
85 

9 

6% 
85% 

9% 

7 
69 

14 

7.8% 
76.7% 

15.6% 

13 
154 

23 

6.8% 
81.1% 

12.1% 

0.31 

Ret (%) 
>1.5 
0.5>=,<=1.5 

<0.5 

5 
1 

75 

6.2% 
1.2% 

92.6% 

6 
1 

76 

7.2% 
1.2% 

91.6% 

11 
2 

151 

6.7% 
1.2% 

92.1% 

1.00 
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TABLE V (B). SIGNIFICANT FEATURES (CONTINUE) 

Feature Medical Knowledge 
Patients Categories Chi-Square Test 

Low risk High risk Frequency Percent p-value 

RDW 

Male 

>14.5 
11.8<=,>=14.5 

<11.8 
 

84 

1 
1 

 

97.7% 

1.2% 
1.2% 

 

72 

0 
1 

 

98.6% 

0 
1.4% 

 

156 

1 
2 

 

98.1% 

0.6% 
1.3% 

1.00 
Female 

>16.1 
12.2<=,>=16.1 

<12 

Hb A (%) 
95-98 
<95 

=0 

0 
9 

20 

0% 
31% 

69% 

0 
11 

12 

0% 
47.8% 

52.2% 

0 
20 

32 

0 
38.5% 

61.5% 

0.26 

Hb A2 (%) 
>=3.5 
1.5-3.5 

34 
24 

58.6% 
41.4% 

23 
22 

51.1% 
48.9% 

57 
46 

55.3% 
44.7% 

0.54 

Hb F (%) 
>=2 

<2 

53 

5 

91.4% 

8.6% 

41 

2 

95.3% 

4.7% 

94 

7 

93.1% 

6.9% 
0.69 

Hb S (%) 
1 
0 

67 
0 

100% 
0% 

60 
0 

100% 
0% 

127 
0 

100% 
0 

- 

AST (U/L) 

>37 

15>=,<=37 

<15 

53 

24 

1 

67.9% 

30.8% 

1.3% 

42 

20 

1 

66.7% 

31.7% 

1.6% 

95 

44 

2 

67.4% 

31.2% 

1.4% 

1.00 

ALTI (U/L) 
>78 

12>=,<=78 

6 

75 

7.4% 

92.6% 

2 

64 

3% 

97% 

8 

139 

5.4% 

94.6% 
0.29 

ALPI (U/L) 

>150 

40>=,<=150 
<40 

18 

31 
25 

24.3% 

41.9% 
33.8% 

16 

26 
22 

25% 

40.6% 
34.4% 

34 

57 
47 

24.6% 

41.3% 
34.1% 

1.00 

GGT (U/L) 
>85 

5,<=85 

4 

32 

11.1% 

88.9% 

1 

28 

3.4% 

96.6% 

5 

60 

7.7% 

92.3% 
0.37 

Complications 
Low risk 
High risk 

(Complications) 

    
100 

90 

52.6% 

47.4% 
 

TABLE VI.  MACHINE LEARNING METHODS RESULTS 

Feature 

Selection 
Model Features 

Training 

Accuracy 

Testing 

Accuracy 
Testing TPR Testing FNR Testing PPV Testing FDR 

None 

LR 
AGE, Gender, 

Hb, Platelets, 

WBC, MCV, 
MCH, MCHC, 

Ret, RWD, Hb 

A, Hb A2, 
Hb F, Hb S, 

AST, ALTI, 

ALPI, GGT. 

65.3 35a 
64.3 

 

35.7 

 

30 

 

70 

 

SVM 56.7 62.5 
50 

 

50 

 

46.7 

 

53.3 

 

DT 58.7 50 
64.3 

 

35.7 

 

37.5 

 

62.5 

 

Chi-square 

LR 

Platelets, WBC. 

60.7 52.5 64.3 35.7 39.1 60.9 

SVM 62.7 52.5 54.54 45.45 60 40 

DT 61.9 52.5 54.54 45.45 60 40 

MIC 

LR Platelets, WBC, 

MCH, MCV, 

MCHC, Hb, 
AGE. 

62 47.5a 85.7 14.3 38.7 61.3 

SVM 54 50 85.7 14.3 40 60 

DT 52 52.5 71.4 28.6 40 60 

Wrapper 

LR 

Platelets, WBC, 

MCV, MCHC 

54.38 52.63 20 80 66.67 33.33 

SVM 60.23 57.90 72.72 27.27 61.53 38.46 

DT 66.08 36.82 36.36 63.63 44.45 55.56 

a An overfitting model is a data science concept in which a statistical model fits precisely against its training data.* selected model. 
 

Initially, models were trained without feature selection, 
using all available features. The LR model achieved a training 
accuracy of 65.3% but showed significant overfitting with a 
testing accuracy of 35%. The TPR and PPV were 64.3% and 
30%, respectively, while the FNR and FDR were 35.7% and 

70%. The SVM model performed better on the testing data, 
achieving an accuracy of 62.5%, a TPR of 50%, a PPV of 46.7%, 
an FNR of 50%, and an FDR of 53.3%. The DT model had a 
testing accuracy of 50%, with a TPR of 64.3%, a PPV of 37.5%, 
an FNR of 35.7%, and an FDR of 62.5%. 
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Next, feature selection was applied using significant features 
(chi-square) identified through statistical tests, specifically 
focusing on Platelets and WBC. The LR model improved 
slightly with a testing accuracy of 52.5%, a TPR of 64.3%, a 
PPV of 39.1%, an FNR of 35.7%, and an FDR of 60.9%. Both 
the SVM and DT models showed similar improvements, with 
SVM achieving a testing accuracy of 52.5%, a TPR of 54.54%, 
a PPV of 60%, an FNR of 45.45%, and an FDR of 40%. The DT 
model had a testing accuracy of 52.5%, a TPR of 54.54%, a PPV 
of 60%, an FNR of 45.45%, and an FDR of 40%. 

Further evaluation with the top 7 correlated features (MIC) 
revealed that the SVM model with these features achieved the 
best performance metrics, with a testing accuracy of 50%, a TPR 
of 85.7%, a PPV of 40%, an FNR of 14.3%, and an FDR of 60%. 
The LR model also performed well, with a testing accuracy of 
47.5%, a TPR of 85.7%, a PPV of 38.7%, an FNR of 14.3%, and 
an FDR of 61.3%. The DT model had a testing accuracy of 
52.5%, a TPR of 71.4%, a PPV of 40%, an FNR of 28.6%, and 
an FDR of 60%. 

After applying wrapper selection methods, the SVM model 
with 4 features demonstrated the best performance among the 
evaluated models, with a testing accuracy of 57.9%, a TPR of 
72.72%, a PPV of 61.53%, an FNR of 27.27%, and an FDR of 
38.46%. A total of 218  =262,143 models were generated for 
each technique and assessed. The final model was selected based 
on its superior performance metrics, specifically the highest 
TPR and PPV, along with the lowest FNR and FDR. The 
selected SVM model showed exceptional capability in correctly 
identifying high-risk patients while minimizing incorrect 
classifications. This comprehensive evaluation confirmed the 
robustness and accuracy of the SVM model in predicting patient 
risk, making it the optimal choice for this analysis. 

IV. DISCUSSION 

This study aimed to implement ML algorithms to identify 
high-risk groups among SCA patients using clinical and 
pathological data from King Abdulaziz University Hospital. The 
primary objective was to develop predictive models that 
enhance the accuracy of risk assessments, thereby improving 
patient management and treatment outcomes. The application of 
LR, SVM, and DT in this study demonstrated the potential of 
ML in healthcare, particularly in the context of genetic disorders 
like SCA. 

The findings indicate that the SVM model outperformed LR 
and DT in identifying high-risk SCD patients. Specifically, the 
SVM model with the top 7 correlated features achieved the 
highest TPR and PPV, along with the lowest FNR and FDR. 
These results suggest that SVM is particularly effective in 
distinguishing between high-risk and low-risk patients, making 
it a valuable tool for clinicians. The experimental results echo 
theoretical expectations: SVM excelled because the dataset (n = 
200, 7–17 active predictors) is high-dimensional relative to 
sample size, a setting in which the max-margin principle reduces 
over-fitting. LR performed adequately on linearly separable 
CBC ratios, whereas DT handled non-linear interactions but was 
vulnerable to small-sample fragmentation. 

A crucial element of the study was the feature selection 
process, which significantly enhanced model performance. Both 

filter and wrapper methods were employed to identify the most 
relevant features, thereby reducing model complexity and 
improving prediction accuracy. The top 7 correlated features 
(Platelets, WBC, MCH, MCV, MCHC, Hb, and Age) were 
found to be significant predictors of risk in SCA patients. 
Among these, Platelets and WBC counts were particularly 
noteworthy. Platelets, which are essential for blood clotting, and 
WBCs, which play a key role in immune response, are critical 
indicators of a patient's health status and potential 
complications. Indeed, the complete blood count (CBC) 
evaluates these cells, helping detect various diseases and 
conditions [32]. A lower platelet to WBC ratio is associated with 
increased risk of postoperative infectious complications in 
patients undergoing radical nephrectomy [33]. In essential 
thrombocythemia patients, platelet counts outside the normal 
range correlate with an immediate risk of major hemorrhage, 
while elevated WBC counts are associated with both thrombosis 
and hemorrhage [34]. A conserved pattern of recovery, defined 
by co-regulation of WBC and platelet populations, has been 
identified across various inflammatory. This pattern of recovery, 
marked by an exponential decline in WBC and a subsequent 
linear increase in platelet count, could signify a basic model of 
human physiological response and serve as a means to identify 
high-risk patients. [35]. 

One of the key challenges addressed in this study was the 
handling of missing data. The application of linear interpolation 
to impute missing values ensured that the dataset remained 
comprehensive and informative. Excluding features with more 
than 10% of missing data helped maintain the integrity of the 
models, avoiding potential biases that could arise from 
incomplete data. 

The decision to use a combination of filter and wrapper 
methods for feature selection, rather than embedded methods, 
was justified by the need for flexibility and computational 
efficiency. While embedded methods integrate feature selection 
within the model training process, they can be computationally 
intensive and less adaptable to different algorithms. The 
approach adopted in this study allowed for a more tailored 
feature selection process, enhancing the performance of each 
ML model. 

Despite the promising results, this study has some 
limitations. The sample size of 200 patients, while adequate for 
initial model development, may not capture the full spectrum of 
variability in SCD presentations. Future studies with larger 
datasets and multi-center collaborations are needed to validate 
the findings and enhance the generalizability of the models. 

Using LR, SVM, and DT with small-sized datasets presents 
both opportunities and challenges. LR is advantageous for small 
datasets because it is less prone to overfitting due to its simpler 
linear model structure. It can provide meaningful insights and 
interpretability, especially when the relationship between the 
predictors and the outcome is approximately linear. However, 
its performance may suffer if the underlying data distribution is 
complex. 

The SVM, particularly with linear kernels, are also suitable 
for small datasets as they maximize the margin between classes, 
which can lead to better generalization on unseen data. SVMs 
are robust to overfitting making them effective for datasets with 
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a small number of samples but many features. However, SVMs 
can be computationally expensive, and their performance is 
highly sensitive to the choice of kernel and hyperparameters, 
which can be challenging to optimize with limited data. 

Finally, DTs were intuitive and easy to interpret, making 
them appeal for small datasets. They could capture complex 
interactions between features without requiring a large amount 
of data. However, DTs are prone to overfitting, especially with 
small datasets, as they tend to create overly complex trees that 
do not generalize well. 

V. CONCLUSION 

In conclusion, this study demonstrates the potential of ML 
algorithms, particularly SVM, in identifying high-risk SCA 
patients. The integration of hybrid feature selection techniques 
and effective handling of missing data contributed to the 
development of accurate predictive models. These findings 
underscore the value of ML in healthcare, offering a tool for risk 
assessment and patient management in SCA. The capability of 
ML to enhance clinical decision-making, improving patient 
outcomes in genetic disorders like SCA. The SVM model (TPR 
= 85.7 %, PPV = 61.5 %) offers a clinically actionable screening 
tool for SCA wards. Limitations include (i) single-centre data, 
which may under-represent regional genotype variability, and 
(ii) retrospective feature availability, potentially biasing model 
coefficients. Future work will involve a prospective, multi-
centre cohort integrating inflammatory biomarkers and whole-
genome variants to refine risk predictions and support 
personalized therapy pathways. 
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