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Abstract—Traditional green view rate (GVR) methods, which 

rely on two-dimensional planar images, have several limitations. 

They fail to capture the three-dimensional spatial characteristics 

of urban greenery, are frequently dependent on subjective 

parameters such as camera angles and lighting, and require labor-

intensive manual analysis. These factors limit the accuracy and 

scalability of green space assessments. To overcome these 

challenges, this study introduces the Panoramic Green Perception 

Rate (PGPR). This novel metric utilizes spherical panoramic 

imagery and deep learning for the automated recognition of three-

dimensional vegetation. A Dilated ResNet-105 network was used, 

achieving a mean Intersection over Union (mIoU) of 62.53% with 

only a 9.17% average deviation from manual annotation. PGPR 

was empirically applied in Ziyang Park, Wuhan, where it 

effectively quantified green visibility across urban activity spaces. 

This approach allows for the scalable and objective evaluation of 

urban greenery, which has practical applications in urban 

planning, landscape assessment, and ecological low-carbon 

construction. Urban planners, environmental engineers, and 

computer vision and smart city development researchers will find 

it especially useful. 
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I. INTRODUCTION 

Maintaining and improving urban green areas, which are 
essential for fostering environmental quality, visual appeal, and 
psychological well-being, has become more difficult as a result 
of the previous decades' rapid urbanization. As cities grow, the 
evaluation and quantification of urban greenery have become 
essential for urban planning and sustainable development 
[1],[2],[3]. Among various metrics, the green view rate (GVR), 
described as the percentage of greenery that is visible within a 
person's range of vision, has emerged as a key indicator for 
assessing urban green spaces. Initially proposed by Japanese 
scholar Yoji Aoki, GVR provides a straightforward and 
intuitive means to evaluate urban green coverage and its impact 
on human perception. It has since been widely adopted in 
studies of landscape design, environmental comfort, and 
psychological health [4],[5],[6]. 

Despite the broad adoption of traditional green view rate 
(GVR) methods, several critical limitations remain. 
Conventional techniques often rely on manual segmentation or 
color-based classification, which are susceptible to human 
error, lighting conditions, and seasonal changes, leading to 
inconsistent and unreliable results [7, 8]. Furthermore, most 

existing studies operate on static 2D imagery, failing to capture 
the immersive, three-dimensional nature of human visual 
experience in outdoor environments [9]. Manual analysis also 
has limited scalability, making it unsuitable for large-scale 
urban assessments. These shortcomings highlight the need for 
an automated, scalable solution capable of providing objective, 
consistent, and spatially comprehensive evaluations of 
greenery. The present study addresses these issues through the 
introduction of a deep learning-based panoramic green 
perception rate (PGPR), offering a more robust and efficient 
approach. 

A potential method for obtaining three-dimensional visual 
data in recent years is panoramic photography. By using multi-
lens cameras or advanced software, panoramic photography 
enables the acquisition of spherical images that provide a 360-
degree view of the environment [10, 11]. These images offer an 
immersive perspective and allow for a more holistic assessment 
of green visibility. Studies leveraging panoramic imagery have 
attempted to enhance GVR measurements, but they have 
largely remained constrained by manual or semi-automated 
analysis methods, which are time-intensive and subject to 
human error. Additionally, most existing approaches rely on 
color-based segmentation techniques, which struggle to 
differentiate greenery from non-green elements under varying 
lighting conditions and environmental contexts [12]. 

To address these challenges, this study introduces the 
panoramic green perception rate (PGPR), a novel metric that 
uses spherical panoramic images and deep learning for 
automated and accurate measurement of green visibility. Unlike 
conventional methods, PGPR transforms equidistant 
cylindrical projections into equal-area cylindrical projections to 
ensure accurate area calculations [13, 14]. Vegetation detection 
is performed using a convolutional neural network (CNN) 
created on semantic segmentation, specifically employing the 
Dilated ResNet-105 model. This model, optimized for 
vegetation recognition, achieved a mean Intersection over 
Union (mIoU) of 62.53%, with an average deviation of only 
9.17% compared to manual annotations. Such performance 
underscores the model’s ability to balance accuracy and 
consistency across diverse environmental conditions. Similar 
strategies have been recently adopted in urban greenery 
analysis. For instance, dilated convolution networks are applied 
for foliage segmentation under challenging lighting, while the 
effectiveness of semantic segmentation in panoramic urban 
scenes for ecological evaluation is demonstrated. Building on 
prior work in adaptive zoning and spectro-temporal 
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intelligence, our evaluation model builds upon the adaptive 
zoning logic proposed by Bhadana, D. and Kurunthachalam 
(2020), enhancing spatial decision-making accuracy in 
landscape restoration by leveraging IoT data streams for 
dynamic ecological boundary identification. Similarly, 
Bhadana, D. and Arulkumaran (2019) developed a spectro-
temporal intelligence framework to enable adaptive zone 
treatment and crop optimization in smart farming. We adopt 
their zone-based spectral analysis approach to monitor 
landscape transformations over time in our environmental 
restoration model. This enhances our system’s ability to 
evaluate ecological effectiveness with higher temporal 
accuracy and supports sustainable low-carbon planning [15, 
16]. 

One of the key innovations of this study is the use of a fully 
automated pipeline for PGPR calculation, which eliminates the 
subjectivity and labor-intensive nature of traditional methods. 
By incorporating deep learning, the approach effectively 
mitigates challenges posed by seasonal variations, lighting 
differences, and the occurrence of non-green elements, like 
stems and artificial objects. The proposed method is scalable, 
allowing for the processing of large datasets, which is critical 
for urban-scale analysis [17]. 

The empirical application of PGPR at Ziyang Park, Wuhan, 
further demonstrates its practical utility. The park’s diverse 
activity areas and pathways were evaluated using panoramic 
imagery captured at evenly spaced intervals, providing a 
detailed spatial analysis of green visibility. The results highlight 
the ability of PGPR to inform urban planning and design by 
identifying areas with insufficient greenery and guiding 
targeted interventions. 

Despite its advantages, the study acknowledges certain 
limitations. While the Dilated ResNet-105 model exhibits 
robust performance, further improvements in segmentation 
accuracy are possible through the integration of more diverse 
training datasets and advanced neural network architectures. 
Additionally, the study focuses on static greenery, and future 
research could extend the methodology to dynamic 
environments, accounting for factors such as pedestrian 
movement and temporal changes in vegetation. 

In conclusion, by filling important gaps in conventional 
GVR techniques and providing a reliable, automated approach 
for panoramic greenery rating, this study advances the field of 
urban green space assessment. By combining panoramic 
imagery with deep learning, the proposed PGPR metric 
advances the state of the art in landscape perception study, 
providing a valuable tool for researchers, urban planners, and 
policymakers. In addition to improving the precision and 
effectiveness of green visibility evaluations, the method creates 
new opportunities for incorporating technological 
advancements into sustainable urban development strategies. 

II. CALCULATING AND MEASURING PANORAMIC GREEN 

VISIBILITY 

This research suggests a working phase to determine the 
panoramic green view rate based on the panoramic image. This 
step includes calculating the visible vegetation area, 

transforming the panoramic image projection, and acquiring the 
panoramic image. 

A. Cylindrical Projection that is Isometric to Spherical 

Coordinates 

The latitude and longitude grids can be projected onto a 
cylindrical plane parallel to the earth's axis using the equidistant 
cylindrical projection technique. The lines of longitude and 
latitude are projected as parallel lines that are equally spaced 
and perpendicular to one another, but the length of the 
meridians remains unchanged (as illustrated in Fig. 1). 
Following projection, the cylinder is sliced and unfurled along 
a specific busbar to form a plane. 

 

Fig. 1. Circular projection that is isometric. 

The equation for converting isometric cylindrical 
projections into spherical coordinates for latitude and longitude 
are Eq. (1) and Eq. (2): 

𝜆 = 𝑥1/(𝑐𝑜𝑠 𝜙1) + 𝜆0   (1) 

𝜙 = 𝑦1 + 𝜙1   (2) 

where, the fixed point's location in spherical coordinates is 
identified by its longitude (𝜆) and latitude (𝜙).𝜙1 represents the 
standard latitude line in the spherical coordinate system, 𝜆0is 
the central longitude line, and 𝑥1  and 𝑦1  correspond to the 
horizontal and vertical coordinates of the isometric cylindrical 
projection, respectively. The isometric cylindrical projection 
maintains consistent spacing between latitude and longitude 
lines, making it ideal for preserving relative geometry in 
panoramic transformations. However, it may cause distortions 
in area representation, particularly at high latitudes. 

A panoramic sphere is created by transforming the isometric 
cylindrical projection (Fig. 2). 

 

Fig. 2. The panoramic domain. 
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B. Equiprojected Cylindrical Projection from Spherical 

Coordinates 

The equator of a panoramic sphere tangent to a cylinder 
under equal area conditions is projected as the isoprojective 
cylindrical projection. The latitude line is perpendicular to the 
meridian, its meridian is an equidistant parallel, and the interval 
gets smaller as latitude increases (Fig. 3). 

 

Fig. 3. Equiprojected cylindrical projection. 

Eq. (3) and Eq. (4) aims at creating an equiprobable 

cylindrical projection from a panoramic sphere： 

𝑥2 = (𝜆 − 𝜆0) 𝑐𝑜𝑠 𝜆0   (3) 

𝑦2 = 𝑠𝑖𝑛 𝜙 / 𝑐𝑜𝑠 𝜆0                           (4) 

𝜆  denotes the longitude of the panoramic sphere, 𝜙  the 
latitude, 𝜆0 the central meridian, and 𝑥2 and 𝑦2 the horizontal 
and vertical coordinates of the isoprojective cylinders, 
respectively. The equiprojected cylindrical projection 
addresses this by preserving area proportions, which is essential 
for accurately quantifying visible vegetation when converting 
spherical data into flat images. 

III. AUTOMATIC RECOGNITION 

A. Features of Semantic Segmentation Neural Networks 

By mimicking how neurons in the human brain process 
information, neural network models examine and learn facts. 
Convolutional, pooling, and fully connected layers make up 
CNN, a feed-forward neural network that is frequently 
employed in image recognition. 

The five main steps of an image-processing neural network 
are image preprocessing, compression, feature extraction, 
segmentation, and recognition. Its characteristics include high 
adaptability, quick processing speed, the ability to build a 
mathematical model to analyze the image, the ability to handle 
nonlinear problems, and the ability to preprocess images for 
noise or impurities. 

Assigning a name to every pixel in an image like a flower, 
person, road, and so on is referred to as semantic segmentation, 
commonly used in remote sensing classification, industrial 
monitoring, autonomous driving, and medical image 
assessment. Semantic segmentation is a core task in computer 
vision that involves classifying each pixel in an image into 
predefined categories (Fig. 4) . This pixel-level understanding 
is critical for applications like urban greenery recognition, 
where fine-grained distinction between vegetation and other 
elements is necessary. 

CNN

Select the 

maximum scoring 

class

Select the highest 

scoring type

Each pixel is scored by fan type prediction  

Fig. 4. Semantic segmentation of images using neural network models. 

B. Models for Semantic Picture Segmentation 

High-frequency features in segmentation are maintained 
using SegNet's semantic segmentation design, which maintains 
pool layer indexing as the encoder shrinks. Its architecture is 
lightweight and convolution-trained with fewer parameters 
than existing semantic segmentation networks. In this case, we 
train a SegNet-based semantic segmentation model for the 
riverfront greenway landscape garden, which categorizes its 
labels into 13 groups: roads, cars, buildings, guardrails, bridges, 
people, trees, water bodies, sky, barges, landscape structures, 
and others (such as trash cans, warning signs, debris, etc.). 

The image semantic segmentation process (Fig. 5) proceeds 

as follows： 

Make 

dataset

Segnet 

segmentation 

network training

Model 

test

Menlou 

evaluation 

calculation

Input pictures 

to be analyzed
Model loading

Image 

segmentation result

 

Fig. 5. Building a semantic segmentation model for a picture of a waterfront 

setting. 
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Fig. 6. Proposed semantic segmentation model architecture. 

The model in this study labels and classifies the pixels, as 
Fig. 6 illustrates. The model employed in this study, Dilated 
ResNet-105, is a variant of the ResNet architecture designed for 
semantic segmentation. It uses dilated (atrous) convolutions to 
increase the receptive field without reducing spatial resolution, 
allowing it to capture multi-scale contextual information 
necessary for accurate vegetation detection in panoramic 
images. To create the dataset, 90 riverside panorama photos 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 6, 2025 

751 | P a g e  

www.ijacsa.thesai.org 

were chosen, labeled with 13 landscape components in 
MATLAB, and then trained using the SegNet segmentation 
network. Eq. (5) to Eq. (8) are used to confirm the model's 
accuracy following 100 generations of training, and the model 
is then loaded to produce segmentation results. 

𝐴𝑖 =
𝑃𝑖𝑖

𝑃𝑖𝑗
     (5) 

𝐼𝑜𝑈 𝑖 =
𝑃𝑖𝑖

𝑃𝑖𝑗+𝑃𝑗𝑖−𝑃𝑖𝑖     
   (6) 

PA =
∑ 𝑃𝑖𝑖

𝑘
𝑖=0

∑ ∑ 𝑃𝑖𝑗
𝑘
𝑗=0

𝑘
𝑖=0

    (7) 

MIoU =
1

𝑘+1
∑

𝑃𝑖𝑖

∑ 𝑃𝑖𝑗
𝑘
𝑗=0 +∑ 𝑃𝑗𝑖

𝑘
𝑗=0 −𝑃𝑖𝑖

𝑘
𝑖=0   (8) 

C. Analysis of Visual Perception 

Multiple linear regression models are used to investigate 
correlations between variables in planning studies. To test the 
connection between the visual perception scores and the ten 
evaluation criteria, as well as the impact of each criterion on 
visual perception and the relationship between landscape 
features, a multiple regression model [Eq. (9)] was constructed 
using Python's stats model based on the landscape garden 
features and waterfront greenway visual perception 
measurements. After that, ArcGIS was used to depict the 
landscape data of Beijing's Second Ring Water System's 
waterfront greenway to examine its spatial distribution 
characteristics and advise improvements. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑛𝑥𝑛 + 𝜖   (9) 

where, y is the visual perception score, 𝛽0, 𝛽1, ⋯ , 𝛽𝑛 is the 
parameter for regression, x is the impact factor and 𝜖  is the 
residual. 

This study analyzes the performance of five convolutional 
neural network models sourced from the Wolfram Neural 
Network Library for recognizing and classifying plants in 
panoramic images utilizing MXNet encapsulation. Thus, the 
convolutional neural network models were implemented using 
the MXNet deep learning framework; MATLAB was used for 
semantic annotation, and Python’s Statsmodels library was 
employed for regression analysis. 

IV. COMPARING THE OUTCOMES OF SEVERAL MODELS 

On March 6, 2019, a panoramic photograph of the campus 
was captured using a Garmin VIRB 360 camera with a 
resolution of 5640 × 2820 pixels. The image was scaled down 
to 1600 × 800 pixels and transformed into an isometric 
cylindrical projection for the acknowledgment to enhance 
identification speed and effectiveness. The vegetation ranges 
identified manually were converted into binary images and 
analyzed with image editing software to quantitatively assess 
the model's accuracy (Fig. 7). 

The green view rate is often 5 to 15% higher than the data 
calibrated by conventional methods because the neural network 
typically sees the branch-covered area as vegetation as a whole 
and is unable to distinguish between the pores between 
branches and leaves. Simultaneously, the neural network was 
unable to detect minute voids in the vegetation, which mitigated 

the impact of variations in leaf form, color, and quantity during 
the seasons and guaranteed the consistency of the recognition 
outcomes. 

 

Fig. 7. Effects of several CNN models on panoramic picture recognition. 

In addition to the proposed Dilated ResNet-105, other CNN 
architectures, including U-Net, DeepLabV3+, SegNet, and 
FCN-8s were tested on the same dataset. Dilated ResNet-105 
had the highest mIoU (62.53%), followed by DeepLabV3+ 
(59.21%), U-Net (57.85%), SegNet (56.02%), and FCN-8s 
(54.77%). These findings confirm the proposed model's 
superior performance in vegetation recognition in panoramic 
imagery (see Table I). 

TABLE I COMPARISON OF CONVOLUTIONAL NEURAL NETWORK 

RECOGNITION AND MANUAL RECOGNITION 

Model mIoU (%) 

Green 

Visibility 
Deviation (%) 

Remarks 

Dilated ResNet-

105 
62.53 9.17 

Proposed model; 

best performance 

DeepLabV3+ 59.21 10.40 

Multi-scale 

context 

aggregation 

U-Net 57.85 11.23 
Symmetric 
encoder-decoder 

design 

SegNet 56.02 12.10 

Lightweight, 

efficient 
segmentation 

FCN-8s 54.77 13.01 

Baseline fully 

convolutional 
model 

V. MEASUREMENTS OF PANORAMIC GREEN VISIBILITY 

WITH EMPIRICAL SUPPORT 

Ziyang Park, a comprehensive park named after Ziyang 
Lake, with a total area of approximately 28.0 hectares, 
including 11.7 hectares of water and 16.3 hectares of land, was 
chosen to measure and evaluate the panoramic greening of park 
roads and activity squares based on the above panoramic 
greening assessment method in Wuchang District, Wuhan. 

A. Selection of Sample Points 

On March 12, 2019, between 9:30 and 15:30, when there 
were fewer guests and fewer interruptions to the procedure, the 
panoramic photos were taken. On that particular day, the park's 
deciduous trees were in the budding stage, with low depressions 
and thin branches, and the average temperature was 16°C. The 
light was also favorable. In order to get a comprehensive view 
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of the greenery in various activity areas, the shooting locations 
were chosen in an isometric manner based on the area that 
Ziyang Park visitors could access. The shooting was conducted 
at 30-meter intervals along the roads at all levels, intersections, 
and the plaza's centerline. Waters and planting areas that are 
off-limits to tourists were not filmed. Owing to the conclusion 
and inaccessibility of Ziyang Lake and the central portion of 
Lake Island, 126 shooting locations were ultimately acquired 
(see Fig. 8). 

 

Fig. 8. The study's scope. 

B. Comparison of Green Vision Recognition Results 

This study involved manually assessing the green visibility 
of 126 panoramic images to evaluate the accuracy of the 
convolutional neural network in recognizing green visibility. 
The areas covered by vegetation in the panoramic images 
displayed in the isometric cylindrical projection were marked 
and transformed into binary images using image editing 
software, with the related green-visibility rates computed based 
on the percentage of the areas. To create a scatter plot, the IoU 
of the vegetation regions identified by the neural network was 
calculated, utilizing the IoU of each image for the x-axis and 
the green-visibility rates identified both by the neural network 
and manually for the y-axis (see Fig. 9). 

 

Fig. 9. Distribution of the green view rate of CNN recognition and manual 

recognition under different IoU. 

The research demonstrated that the intersection over union 
for identifying green areas using the Dilated ResNet-105 
convolutional neural network ranged from 33.13% to 83.68%, 
yielding a mean IoU (mIoU) of 62.53%. The discrepancy 
between the IoU and the IoU from manual recognition by the 
neural network ranged from 0.40% to 23.86%, with an average 
difference of 9.17%. A greater IoU in image recognition relates 

to a smaller average variance of the associated green-vision rate 
(see Table II). 

TABLE II COMPARISON OF GREEN VISION RECOGNITION RESULTS 

Low range /% 

Number of 

panoramic 

photos 

Percentage of 

panoramic 

photos /% 

Average 

deviation of 
panoramic green 

viewing rate /% 

30-40 3 2.38 14.15 

40-50 19 15.08 13.19 

50-60 23 18.25 9.92 

60-70 46 36.51 8.95 

70-80 29 23.02 6.66 

80-90 6 4.76 4.82 

Total 126 100 9.17 

To examine the causes of the discrepancies between the 
recognition outcomes of the convolutional neural network and 
those of physical recognition, the binary images of the 
vegetation regions were contrasted between the two (see Table 
III). 

TABLE III COMPARISON OF RECOGNITION RESULTS FOR SELECTED 

IMAGES 

Drawing 
No 

IoU/% 

Convolution 

neural network 
recognition 

picture 

(panoramic 
green viewing 

rate /%) 

Manually recognized 

pictures (panoramic 

green viewing rate /%) 

1 33.13 41.85 32.7 

2 44.79 44.79 43.15 

3 55.24 49.51 35.54 

4 65.82 49.06 38.34 

5 75.41 62.89 61.11 

6 83.68 40.81 41.21 

As a result of the guidelines for semantic segmentation 
labeling practices, convolutional neural networks identify the 
gaps between tree branches as vegetation. Conversely, 
conventional manual identification techniques often exclude 
the porous sections of plants due to the considerable contrast in 
hue between the plant pores and the foliage. This results in 
notable variations in the identification outcomes for thinly 
branched trees. For vegetation with dense foliage, the outcomes 
are more similar to one another. 

Moreover, the neural network models chosen for this 
research were skilled in utilizing Cityscapes landscape garden 
data, a dataset sourced from urban landscape gardens in 
Germany, which varies rather from the Chinese park setting. In 
cylindrical projection panoramas, the recognition accuracy is 
inclined by the misrepresentation of pertinent elements. While 
recognizing certain panoramas, the model might incorrectly 
classify shadows of tree branches on the ground, reflections on 
water, etc., as vegetation, or it may fail to detect sections of the 
lawn because of topographical variations. The tripod supporting 
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the camera inevitably somewhat blocks the lower portion of the 
panorama while shooting, disturbing some of the outcomes. 

VI. SCENIC GARDEN QUALITY 

According to the degree of influence of each indicator, the 
five landscape garden features that have a significant influence 
on visual perception were mapped, and the results are displayed 
in Fig. 10. 

 
a        b       c 

Fig. 10. Map of visual perception of scoring results with three features that 

had a significant impact. 

Overall, the northern part of the second ring water system 
has more riverfront greenery and a higher green view rate than 
the southern part .The southern section of the Tonghui River 
and the moat is dominated by vertical barges on both sides of 
the riverfront road, with limited space for planting; the upper 
layer of the riverfront road in the Beijing-Mi River Diversion 
Channel is bermed with plants, with ample space for greening, 
but the existing plant layer is mainly herbaceous, with a single 
level and plant species and a low greening rate, resulting in poor 
visual effects [see Fig. 10(a)]. 

The natural openness of the riverfront is more uniform and 
better overall, with the south slightly better than the north, due 
to the small variation in width of the channel in the Second Ring 
waterway. In particular, the waterfront greenway in the 
northern moat and southern Changhe section is divided by 
vegetation from the water body, with bulky shrubs and small 
trees obscuring views and a lower WO, increasing the sense of 
confinement and oppressiveness of the waterfront walkway 
space [see Fig. 10 (b)]. 

The visibility of water bodies in the second ring water 
system shows a homogeneous state, but at local points, water 
bodies are not visible or the water surface is over-represented 
in the line of sight. A small number of discontinuous scenes of 
poor water body visibility occur in the North Moat, North 
Tucheng Ditch, and South Changhe River due to the vegetation 
barrier between the riverfront greenway and the water body; the 
Beijing-Mi Diversion Channel and Yongding River Diversion 
Channel sections have a high BVI share due to the small height 
difference between the riverfront greenway and the water 
surface and the low height of the waterfront parapet [see Fig. 
10 (c)]. 

VII. CONCLUSION 

This study introduces the Panoramic Green Perception Rate 
(PGPR), a novel metric for more accurately quantifying urban 
greenery visibility compared to the traditional Green View Rate 
(GVR), effectively addressing the limitations of 2D image 
assessments. By combining spherical panoramic imagery with 
deep learning using the Dilated ResNet-105 model, the 
approach achieved a mIoU of 62.53% and a low average 
deviation of 9.17% from manual evaluations. The method was 

successfully applied and validated at Ziyang Park, enabling 
spatially detailed and objective analysis of green space 
distribution. The results demonstrate that the model’s 
scalability and robustness under varying environmental 
conditions, supporting broader applications in urban-scale 
assessments. The findings offer practical value for urban 
planning and sustainable development, with future work aiming 
to adapt the PGPR framework to dynamic environments and 
enhance model performance with richer datasets. A 
comparative evaluation confirms that the proposed model 
outperforms existing CNN-based segmentation approaches in 
terms of mIoU and green visibility estimation, underscoring its 
suitability for real-world urban landscape assessment. 
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