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Abstract—Technological advancements in recent decades have
significantly increased the scale and complexity of software
systems, which poses challenges to their development and reli-
ability. Component-based software development (CBSD) offers
a promising solution by enabling modular and efficient soft-
ware construction. However, CBSD alone cannot fully address
challenges such as ensuring reliability and avoiding errors like
deadlocks. Verification techniques, such as model-checking, are
necessary to ensure the correctness of CBSD systems. Despite
its effectiveness in verifying system properties, model-checking
faces a critical issue known as state-space explosion (SSE), which
hinders scalability. This study introduces an incremental verifi-
cation technique for CBSD to address SSE and ensure deadlock
freedom. The proposed technique incrementally constructs and
verifies component-based systems, eliminating verified portions
of components to minimize state-space size during subsequent
verification steps. It utilizes a component model that supports
encapsulation of computation and control, making incremental
verification feasible. Evaluation of the technique using coloured
petri nets with non-trivial case studies demonstrates its ability
to detect deadlocks early and manage SSE effectively, thereby
improving the efficiency of the verification process.

Keywords—Component-based software development; incremen-
tal software construction; software verification

I. INTRODUCTION

The rapid growth of technology has led to increasingly
complex software systems, which necessitate advanced devel-
opment methods to manage this complexity while ensuring
system reliability. One such approach is Component-based
Software Development (CBSD), which optimizes software
development by breaking down systems into reusable, self-
contained components [1]. CBSD allows for modular design,
which can reduce development time and cost. However, as
software systems grow in scale, even CBSD faces challenges
in ensuring system correctness and avoiding errors, such as
deadlocks, during development.

To enhance the reliability of CBSD, formal verification
methods are needed to identify and address potential errors.
Model-checking is a well-established technique for verifying
the correctness of software systems by exhaustively exploring
the state space (SS) of the system [2]. It can automatically
detect issues like deadlocks by analyzing system behaviors.

However, model-checking suffers from the state-space ex-
plosion (SSE) problem, where the number of states to be
analyzed grows exponentially with system complexity, making
verification infeasible for large systems [3].

Addressing SSE in model-checking is crucial for the
practical application of verification in CBSD. Despite various
approaches in the literature to mitigate SSE, a critical gap
remains: the need for techniques that integrate verification
throughout the development process rather than waiting until
system construction is completed. Early detection of design
errors is highly desirable, as it can significantly reduce the
cost of fixing these errors compared to discovering them during
later stages of development or maintenance [4].

Incremental verification is a promising approach to over-
coming challenges in SSE by verifying components as they are
developed and integrated, rather than waiting for the entire sys-
tem to be completed. This approach enables early detection of
defects and manages SSE more effectively by verifying smaller
portions of the system incrementally [5]. However, despite its
potential, incremental verification remains underexplored in
the context of CBSD. This gap is partly due to the difficulties
in maintaining consistent behavior and synchronization across
different increments, making it challenging to ensure that new
components integrate seamlessly without disrupting previously
verified functionality [6].

To address this gap, this paper introduces a technique for
the incremental construction and verification of component-
based systems using a specialized component model called
PUTRACOM [7]. PUTRACOM is designed to support en-
capsulation and concurrency, making it particularly well-
suited for incremental verification. Its ability to decouple
computation and control addresses the challenges of managing
interdependencies between components, which are commonly
encountered in CBSD. The proposed approach emphasizes two
critical aspects: maintaining system behavior consistency dur-
ing the incremental integration of components and integrating
verification at each stage to avoid redundant checks on already
verified components.

This research offers two key contributions. First, it presents
a method for preserving system behavior and synchronization
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during the incremental integration process, ensuring that the
addition of new components does not compromise the verified
properties of existing ones. Specifically, this research focuses
on verifying the property of deadlock freedom. Second, it in-
troduces a verification strategy that isolates previously verified
components, preventing their re-verification and thereby reduc-
ing the overall state-space size during subsequent verification
stages. This technique is evaluated using coloured Petri nets,
a well-established tool for modeling and verifying concurrent
systems [8], and applied to complex case studies, including
the Common Component Modeling Example (CoCoME) [9].

The results show that the proposed incremental verification
approach effectively mitigates the SSE problem and enhances
the efficiency of the verification process in CBSD. By identi-
fying errors early in the design stage and reducing verification
effort, this approach improves the practical application of
model-checking in component-based systems.

II. BACKGROUND

This section provides preliminary information about the
PUTRACOM component model [7], which is designed
for building concurrent systems using exogenous connec-
tors, inspired by the X-MAN model. PUTRACOM com-
prises three fundamental units: computation units (CU), ob-
server/observable units (OOU), and exogenous connectors.

The CU encapsulates all computations and is modeled us-
ing reactive transition systems (RTSs) [4]. This encapsulation
allows for decoupling between components while ensuring
fixed behavior.

The OOU captures events visible to other components or
the computing environment, modeled by interface automata
[10]. This approach simplifies communication, avoiding com-
plexities associated with traditional models like message pass-
ing and port-to-port connections. The OOU observes all events
from other components or the environment. An atomic compo-
nent in PUTRACOM is defined through RTSs, which represent
potential behaviors of discrete systems. RTSs distinguish three
types of events: input, internal, and output. Below is the formal
definition of a computation unit based on RTS.

Definition 1 (computation unit). A CU is a reactive transition
system defined by the tuple (s0,S,E,G,∆), where:

• S is a set of states, with s0 as the initial state;

• E is a set of events, including input events (EI), output
events (EO), and hidden events (EH );

• G is a guard function assigning boolean constraints to
events;

• ∆ ⊆ S×E ×G×S is a set of transitions.

Input and output events are considered observable (EObs =
EI ∪EO) and accessible from the OOU. The OOU is modeled
as a multiset, meaning the same event can occur multiple
times. These events influence the component’s state depending
on whether the input events are admissible. Output events
produced by the CU are also observable in the OOU. The
formal definition of an OOU is as follows.

Definition 2 (Observer/Observable Unit). The OOU is a finite
multi-set defined as (EObs, f ), where f : EObs −→ N maps
observable events to their multiplicities.

III. PROPOSED SOLUTION AND METHODOLOGY

This section outlines the proposed methodology focuses
on the incremental construction and verification within the
extended PUTRACOM framework. An overview of the so-
lution is illustrated in Fig. 1. In the first step, the approach
utilizes exogenous connectors, ensuring encapsulated com-
ponent interactions. The methodology involves defining key
elements such as noticing and publishing functions to manage
event interactions between components and connectors. The
composition of components is then formalized, allowing for
structured integration within the PUTRACOM system. The
detailed explanations are in Section IV.

The second step detailed in Section V is the incremental
construction approach to develop a modular system by gradu-
ally integrating components and composite components. Each
increment, will be systematically added using connectors for
synchronization and interaction. The methodology will involve
defining trace functions to analyze component behavior and
applying n-way synch and asynch compositions to ensure
effective integration. The process includes maintain consis-
tency between the original and composed systems, preserving
interaction behavior throughout the construction stages by
defining observable traces and refinement relations.

Third step is relayed to the incremental verification detailed
in Section VI, verifying each system increment before adding
the next. It generates and checks the state space for local and
global properties (deadlock-freeness). To manage state space
explosion, it reduces state space size by focusing on observable
behaviors and removing hidden parts, ensuring efficient and
consistent verification. To validate our approach, we modeled
three case studies using Coloured Petri Nets (CPNs), detailed
in Section VII. Evaluation metrics include the number of
generated state spaces, memory consumption, and processing
time.

IV. INITIALIZATION OF THE EXTENDED PUTRACOM
FRAMEWORK

This section presents additional definitions for extended
PUTRACOM related to incremental construction and verifi-
cation. Composition operators, termed connectors, are exoge-
nous, allowing components to remain encapsulated without
directly sending or receiving messages. The OOU manages
and controls observable events without involving the CUs in
the control process.

Definition 3 (connector). A connector is a tuple Γ =
(L,T,Sub,EΓ,Gγ), where:

• L is a set of connection lines, representing the physical
or logical links between components;

• T = {sync,async,con,seq, itr} indicates the types
of connectors, including synchronous, asynchronous,
conditional, sequential, and iterative interactions;

• Sub = {b0,b1,b2, ...,bn} is a set of components sub-
scribed to the connector;
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Fig. 1. Components with details in PUTRACOM.

• EΓ is a set of events that consists of two mutually
disjoint sets: output events EO

Γ
⊆ (EO∪env) and input

events EI
Γ
⊆ (EI ∪env), where, EO is the set of output

events; EI is the set of input events defined for the
system; env represents the set of external events or
environmental conditions that can influence or interact
with the connector.

• G(γ) = {g0,g1, ...,gn} is a set of boolean constraints
over the connector γ ∈ L.

Once output events are ready, the corresponding OOU
notifies the connector using a noticing function.

Definition 4 (noticing). Let Γ be a set of connectors and S be a
set of components where s ∈ S. A noticing function N : EO →
Γ maps output events of components to their corresponding
connectors, such that N(eo) = γ , where γ ∈ Γ and eo ∈ EO.

The activation and occurrence of a noticing depend on
verifying predefined conditions associated with the event, as
specified by the function BoolConst. The following definition
serves as the primary definition of an atomic component in
PUTRACOM, summarizing the core concepts presented in the
preceding definitions.

Definition 5 (atomic component). An atomic component in
PUTRACOM is a tuple com = {CU,OOU, init,G,N}, where:

• CU = (s0,S,E,V,∆) is a reactive transition system;

• OOU is the observer/observable unit of the compo-
nent, defined as a multiset (EObs, f );

• init : E → S is an initial function that assigns each
event e ∈ E to its corresponding initial state s0 in S;

• Gcom : E → BoolCons is a function mapping each
event to its corresponding set of user-defined Boolean
constraints;

• N : EO → Γ is a noticing function that notifies the
corresponding connector.

Once a connector is notified of an event occurrence by
the OOU, it is responsible for disseminating this event to

the relevant components. This process is managed by the
publishing function, which ensures that all intended recipients
receive the event.

Definition 6 (publishing). Let b ∈ Sub, eo ∈ EO
Γ

, γ ∈ Γ, and
env. A publishing is defined as a function P : EO

Γ
−→ OOU

that maps an output event eo through the connector γ to the
corresponding OOU, such that OOU ⊆ {OOU{bi}n

i=0
∪ env}.

Publishing an event requires satisfying conditions from Gγ .
If met, the event is sent to the OOU of the relevant subscribers.
In the noticing function, events are marked as "!", and in
publishing, as "?".

Once a connector received an event by noticing and pub-
lished the event, an interaction occurs.

Definition 7 (interaction). Let the connector γ ∈Γ and b∈ Sub.
Consider the following events:

• There exists eo ∈ EO such that N(eo ∪ env) = γ .

• There exists ei ∈ EI
γ such that P(ei) = OOU and

OOU ⊆ {OOU{bi}n
i=0

∪ env}.

Then, the set of interactions Π contains a finite number of
interactions π , where π = (eo,γ,ei) such that γ ∩Γ = 1. This
research uses (eo,ei)γ or e−→Γ instead of π = (eo,γ,ei) ∈ Π.
Interactions can occur only when specific conditions are met
which it is called admissible events.

Definition 8 (admissible interaction). An interaction is admis-
sible only if the following rules are satisfied:

1) ∀e ∈ Π, e is admissible,
2) e−→Γ∈ Π |= GΓ. It means e−→Γ satisfies the set of

conditions of connector Γ for publishing.

Based on the definitions provided, we can establish that
composite components form the foundation for creating effi-
cient and scalable systems within the PUTRACOM framework.

Definition 9 (composite components). A composite compo-
nent in PUTRACOM is a tuple compos = {CU,OOU,G,Π}.
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V. INCREMENTAL CONSTRUCTION

Incremental construction in PUTRACOM consists of a
finite set of increments denoted by INC. Each inc ∈ INC
represents a component or composite component, with the
first increment serving as a foundational touchstone for the
incremental composition, termed "basic," which connects other
increments via a connector.

Definition 10 (Basic and Next Increments). Let C =
{c0,c1, . . . ,cn} be a set of all required components or compos-
ite components needed to construct the target system Target.
The term trail refers to the composite component currently
being built at the current construction level of the system
Target. The definitions of basic and next increment are as
follows:

basic = {c ∈C | trail = /0 and c.trail ⊆ Target}

incnext = {c ∈C | trail ̸= /0 and c.trail ⊆ Target}

Each increment consists of both CUs and OOUs, making
it crucial to understand their behavior for effective component
composition and system construction. To facilitate this under-
standing, a trace function is employed to extract the behavior
of the CU, formally defined as a recursive function that returns
a sequence of events originating from the initial state s0.

Definition 11 (trace). A transition trace of a RTS,
denoted by ζ , is a sequence of events e0,e1, . . . ,ei such
that for all i ≥ 0, there exist states s0,s1, . . . ,si+1 ∈ S
and guards gi ∈ G satisfying the conditions: ζ =
(si,ei,gi,si+1),(si+1,ei+1,gi+1,si+2), . . . ,(sn,en,gn,sn+1) ∈ ∆

or equivalently, ζ = si
ei,gi−−→ si+1,si+1

ei+1,gi+1−−−−−→ si+2, . . . ,sn
en,gn−−−→

sn+1. A trace function ε generates a sequence of transitions
from an initial state s0 based on admissible transitions.

A connector is defined by a set of types T that repre-
sent synchronization among subscribed increments and their
interactions, highlighting the necessity of composing multiple
increments. The following definitions describe the n-way com-
position capability of increments in PUTRACOM connectors.

Definition 12 (n-way sync composition). Let Ci and Ei in-
dicate the set of increments and their corresponding events
respectively. The n-way sync composition of n increments is
defined as follow:

∥n
i=0 (Ci,Ei) =C1 E1

∥{E2∪E3∪...∪En}
(...(Cn−1 En−1

∥En
Cn))

(1)

Definition 13 (n-way asynchronous composition).
Let Ci indicates the sets of components. The
n − way asynchronous composition of n components are
defined as follow:

|||ni=0 (Ci) =C1 ||| C2 ... ||| Cn (2)

In PUTRACOM, components encapsulate computation and
are not called by other components. The CU exhibits fixed
behavior without the environment’s involvement. The only
shared aspect is the OOU, which is involved in composition.
Consequently, the hidden part can be omitted in traces, result-
ing in what is known as an Observable trace.

Definition 14 (observable trace). An observable trace is a se-
quence of events over a component or a composite component
defined by: ζ Obs = {(e1),(e2), ...,(ei) | e ∈ E\EH}.

To obtain an observable RTS (ORTS) from an original RTS,
a zoom-out function is presented. Let ∃e ∈ EH and s,s′ ∈ S,
then, the zoom-out function omits the arc s e−→ s′. If s

ei,e j−−−−→
s′such that i ̸= j and e j ∈ EObs and ei ∈ EH , the zoom-out
function will only omit s

ei−−→ s′. The ORTS of the component
is shown in Fig. 2.

{{input event?},
{out put event!}}

OOU

A

C

t3 : out put
event?/[data]

t1 : input
event?/[data]

Fig. 2. An ORTS example of a component.

Observable RTS focuses on noticing, publishing, and inter-
actions through connectors and will later help calculate pos-
sible component interactions. It also introduces an important
aspect: the conformance between ORTS and RTS, defined
using the refinement relation (RR) [11]. Refinement relations
indicate that every behavior of system A is allowed by system
(or specification) B.

Definition 15 (refinement relation). Consider a RTS R and its
corresponding ORTS S such that EI

S = EI
R and EO

S = EO
R . S

conforms to R, written S ⪯ R, there is an RR between R and
S, if the following conditions hold:

• s0 = r0, thus s0 ⪯ r0 where s0 and r0 are the initial
states of S and R respectively.

• For every transitions of R such that ∀e∈EH there exist
a successor of r indicates by r′ (where r′ ̸= r) and a
RR between r′ and s, written by s ⪯ r′.

• For every transitions of R such that ∀ei ∈ EI , ∃r
ei−→ r′

there exist a successor of s, written by s
ei−→ s′, such

that s′ ⪯ r′.

• For every transitions of R such that ∀eo ∈ EO, ∃r eo−→ r′
there exist a successor of s, written by s eo−→ s′, such
that s′ ⪯ r′.

Fig. 3 shows the composition of ORTSs from two incre-
ments, with the first component as basic and their combination
as trail. Adding any increment signifies the next construction
level, incnext . Connectors are exogenous, defining connection
and communication between increments. The initial increment
serves as the touchstone for the incremental composition,
referred to as incbase, connected by a connector Γ.
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{{read1?, [barcode1]},{ f ound1!, [proIn f o1]}}

OOU1

{{read2?, [barcode2]},{ f ound2!, [proIn f o2]}}

OOU2

Connector

Fig. 3. Composition of two increments.

Incremental construction in PUTRACOM can be summa-
rized in one definition:

Definition 16 (incremental construction). An incremental
construction in PUTRACOM could be a tuple PCMinc =
(INC, basic, Γ, trail, incnext), where:

• INC. It is a finite set of components or composite
components.

• basic. The first inc ∈ INC of construction is basic.

• Γ is a set of connectors.

• trail. is a non-empty set of synthesized increments at
the current level of construction.

• incnext ∈ INC. Is a component or a composite compo-
nent to be added to trail for building the next level of
construction.

In composing increments, preserving interaction behavior
is essential for adding new increments without defects. To
ensure this, the sets of EObs must be disjoint, and both the
trail and new increments must be free of event collisions before
integration. Once confirmed, we can check the conditions for
preserving behavior and synchronization.

Definition 17 (behavior preservation). Consider that basic is
the first step and trail is the next level of construction of
system S. Let the relation between these two be basic ⊆ trail.
Then, incnext is allowed to be added into the system S as
an increment if and only if basic ⊆ trail ⊆ incnext where
incnext ∈ INC.

The definition states that at each construction level, be-
havior and enforced synchronization must remain unchanged.
To ensure this, we use the concept of isolated interactions,
which clarify which interactions will be checked for preserving
system behavior. An isolated interaction is defined based on
the concept of a neighborhood.

Definition 18 (neighborhood). Let Π represent a set of pos-
sible interactions, and let π be an interaction (or a set of
interactions) within Π. The neighborhood of π , denoted by Dπ ,
is defined as a subset of Π that includes all possible interactions
containing π . Formally, this can be expressed as:

Dπ = {U ⊆ Π | π ∈U}

where U represents any subset of Π that includes the interac-
tion π . A neighborhood includes a group of interactions that

are similar to a specific interaction but still belong to the larger
set of all interactions.

Definition 19 (isolated interaction). Let π ∈ Π represent an
interaction (or π ⊆ Π denote a subset of interactions), and
let Dπ be the neighborhood of the interaction π . An isolated
interaction, denoted by isltπ , is defined as a subset of Dπ that
contains no other interactions from Π. Formally, this can be
expressed as:

isltπ = {d ∈ Dπ | (Π∩d)\{π}= /0}

This means that the set isltπ includes only those elements d in
Dπ for which there are no other interactions from Π present.

A trace function is employed to generate potential interac-
tions and simulate transitions between traili and incnext .

Definition 20 (local interactions). Consider a target system
Target such that {trail, incnext} ∈ Target. If incnext can be
incremented to trail, denoted by trail ⊗ incnext , to facilitate
the next level of construction, then the set of local interactions
for trail ⊗ incnext , denoted by Πloc, is defined as:

Πloc = {πislt⟨trail⟩∪πincnext ∪{πislt⟨trail⟩⊗πincnext}}

To check whether the next level of increment contains
the enforced synchronization over the transition of the trail,
trace containment checking (TCC) [11] has been adopted.
Especially, adding a new increment leads to more interaction
than what the trail has already enforced. By adopting TCC, the
set of interactions that have been added will be checked. The
following TCC is extended to accommodate the requirements
of this research.

Definition 21 (trace containment). Consider a target system
Target such that {trail, incnext}∈ Target. The increment incnext
can be integrated into trail, denoted by trail ⊗ incnext , to
facilitate the next level of construction if there exists a TCC
satisfying the following conditions:

• For all π ∈ Π{trail⊗incnext}, it holds that ▷◁/∈ π .

• For all π ∈ Π{trail⊗incnext}, there exists a πislt ∈ Π such
that πislt ≾ π .

The first condition states that all interactions lack collision
events, while the second ensures that isolated interactions
remain unchanged from the trail.

In the following, Theorem 1 presents a preservation check-
ing method for traili in incremental PUTRACOM. Both suf-
ficient and necessary conditions are presented.

Theorem 1. Consider the target system Target such that
{trail, incnext} ∈ Target. Let incnext incremented to trail as
defined in definition 21, L = trail ⊗ incnext . Suppose Πloc be
the local interaction of L as defined in the definition 20. Then,
adding incnext to trail preserves the enforced synchronization
on the interactions if and only if the following proposition is
hold ∀π ∈ Πloc, ▷◁ /∈ π and πislt ⊑ π .

proof of sufficiency. Let an interaction ℓ= {π | π ∈ Πloc}.
Then, ℓ is proven to be a trace containment of local interactions
over L by induction. First, we know π = (n, p), thus:
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• For n ∈ N, we have N ⊆ (Eobs \EI) = EO. Then, from
condition 2 of the definition 21, we have ▷◁ /∈ EO

L .
Hence ▷◁ /∈ ℓ.

• For p ∈ P, we have P ⊆ (Eobs \EO) = EI . Then, from
condition 2 of the definition 21, we have ▷◁ /∈ EI

L.
Hence ▷◁ /∈ ℓ.

Second, based on definition 20, we know Πloc =
{πislt⟨trail⟩ ∪ πincnext ∪ {πislt⟨trail⟩⊗ πincnext}}. Then, for
π ∈ Πloc,∃πislt ∈ Πloc such that πislt ⊑ π . Hence πislt ⊑ ℓ.

Therefore, ℓ is a trace containment, and adding incnext to
trail preserves the enforced synchronization on the interac-
tions.

proof of necessity. Let ϒ is an alternating trace containment
over the local interactions of Πloc. Consider ξ be an observable
trace over L from sinitial and sreach is a reachable state via
interaction (n, p) on ξ . The set of interactions that leads to
sreach called (n, p)reach. Then, we prove ▷◁ /∈ (n, p)reach and
πislt ⊑ (n, p)reach by induction on the trace ξ . Firstly, when
ξ = λ , the two conditions of the theorem hold. Next, suppose
the conditions ∀(n, p)reach ∈ Πloc, ▷◁ /∈ (n, p)reach and πislt ⊑
(n, p)reach hold for any ξ .

For checking the first condition of the theorem:

For n∈ {env∪EO
L } and p∈ {env∪EI

L}, if ∃AL
(n,p)−−−→ BL is a

(n, p)reach by ξ , then ▷◁ /∈ (n, p)reach, (Definition ??, Condition
1) Because (n, p) = π , then we have ▷◁ /∈ πreach.

For checking the second condition:

• For ∀n ∈ {env ∪ EO
trail} and ∀p ∈ {env ∪ EI

trail}, if
∃AL −→ BL which is reachable by (n, p)reach in ξ ,
then (n, p)reach ∈ Πislt⟨trail⟩. Hence, we have πislt ⊑
(n, p)reach.

• For ∀n ∈ {env ∪ EO
incnext

} and ∀p ∈ {env ∪ EI
incnext

},
if ∃AL −→ BL which is reachable by (n, p)reach in
ξ , then (n, p)reach ∈ Πincnext . Hence, still we have
πislt ⊑ (n, p)reach.

• For ∀n ∈ {env ∪ EO
{πislt ⟨trail⟩⊗ πincnext }

and ∀p ∈
{env ∪ EI

{πislt ⟨trail⟩⊗ πincnext }
}, if ∃AL −→ BL which

is reachable by (n, p)reach in ξ , then (n, p)reach =
{πislt⟨trail⟩ ⊗ πincnext}. Hence, we have πislt ⊑
(n, p)reach.

Therefore, applying ϒ over L implies ∀π ∈ Πloc, ▷◁ /∈ π

and πislt ⊑ π for any reachable trace over L.

VI. INCREMENTAL VERIFICATION

Verification is essential in system construction for identify-
ing design obstacles and providing counterexamples to locate
errors. It begins with generating the system’s state space (SS),
followed by checks for local properties, global properties, and
deadlock-freeness.

1) Verification Process: The verification process checks the
system’s required properties and generates counterexamples for
violations. In PUTRACOM, verification is integrated into the
construction process, allowing the next increment only after
verifying the previous one. However, model-checking faces

limitations in industrial contexts due to the exponential growth
of SS with the number of processes and states (SSE). This
research proposes a technique to mitigate SSE’s impact:

• Incremental verification after each addition, avoiding
rechecking already verified parts.

• Eliminating hidden parts of increments and focusing
on external behavior to reduce SS size.

2) State space generation: The system’s SS must be gen-
erated before verification. PUTRACOM supports global and
local SS generation, which resembles that in CPN [12] as
a directed graph of reachable states and events. Detailed SS
generation is omitted due to space constraints.

3) Verifying local properties in PUTRACOM: Each compo-
nent in PUTRACOM must verify its local properties without
assumptions due to their fixed behavior. Properties must be
maintained during composition and when adding increments.
The following theorem specifies how to prove the properties
ϕ of inci in the trail.

Theorem 2. Given that inci is an increment in trail with
respect to behavior preservation, local properties ϕ of inci hold
on trail if firstly they hold on the local SS of inci.

Proof. Let Llocal is the local SS of trail. Consider that
s ∈ Strail is a reachable state in trail via trace sequence ζ

such that s does not satisfy the set of local properties ϕ . It
can be shown by ζs ̸|= ϕ. We know the observable trace is
consistent with trace sequence ζ Obs ⪯ ζ . Therefore, if any
violation against the properties is detected in ζ then its ζ Obs

has violation as well. Let ζtrail = ε(trail) be a trace sequence
over Llocal(trail) produced by the trace function ε(trail). Since
the trace sequence on trail includes the observer trace of all the
composed increments {inc1, ..., incn} in trail, then ζtrail may
consist of ζ Obs

inci
and the violation appears in the Llocal(trail) as

well. As a conclusion, a satisfying ϕ in trail can be detected
in local SS inci, thus the theorem holds.

The theorem indicates that a set of local properties ϕ of
inci is preserved in the trail that includes inci. Thus, in order
to check and prove such propert in the trail, it must first be
proven in the local SS of inci.

4) Verifying global properties in PUTRACOM: System-
global properties are the set of properties that are related to
the global SS of the system. Generally, it involves observable
events with multiple increments in trail. Essentially, the global
properties of the trail should be checked over a clausal normal
form, in which clauses are disjunctions of observable events
of increment in the trail through the set of connectors Γi. Its
formal definition is given below.

Definition 22. Consider trail as the current level of a given
system with a set of increments inci and Γ j, 1 ≤ i, j ≤ k, a
global property of trail check over conjunction of following
disjunction:

eobs
1 ∨ eobs

2 ∨ ...∨ eobs
k

such that eobs
k is an observable event of an increment inci ∈

trail and ∀n,m : 1 ≤ n,m ≤ k,n ̸= m implies incn ̸= incm.

This definition restricts each increment to at most one
observable event, simplifying the integration of events from
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other increments. Since the equation uses a conjunction of
Eobs clauses, each can be proven independently and reused
for future verification if no new events are introduced.

To verify global properties of a composite component,
it is common to check each state and construct the SS as
the Cartesian product of component states, which risks SS
explosion. Instead, hidden events are eliminated, focusing on
the SS without states hidden from other components or the en-
vironment. Local property violations impact global properties
through observable events, which are critical for interactions
in trail. Thus, the relevant part for global properties is the set
of interactions Π, as proven in the theorem below.

Theorem 3. Given inci is an increment added to trail with
respect to behavior preservation, and a set of local properties
called ϕ . Let w is a derived global SS of trail with respect to
the elimination of the hidden events. Then ϕ holds on the w
if for all π ∈ Pitrail, ∃i : 1 ≤ i ≤ k,πi |= ϕi.

Proof. Suppose an interaction π ∈ trail is reachable via
trace sequence ξ such that π ̸|= ϕ . We know that an interaction
in PUTRACOM can be simply denoted by π = eo∨EI and can
be extended by eo

i ∨ei
1∨ei

2∨ ...∨ei
k for j : 1 ≤ i ≤ k. If at least

one of these events violates the properties ϕ , the trail does not
holds the global properties ϕ , trail ̸|= ϕ . Therefore, to check
the global properties of trail its interactions must be checked.

This theorem, together with Theorem 2, facilitates the sepa-
ration of concerns between proving local and global properties.
By encapsulating and removing hidden events of increments, it
reduces the potential SS of the system. Furthermore, due to the
fixed behavior of components, the composition and verification
of increments are assumption-free.

5) Deadlock-freeness preservation: Deadlock-freeness ver-
ification checks for the presence of activities in any reachable
trace of the system. A deadlock indicates that parts or the entire
system cannot progress. In PUTRACOM, a deadlock occurs
when no admissible events exist for a state or a set of states,
halting progress in an RTS or network of RTSs. The formal
definition of deadlock-freeness in PUTRACOM is given below.

Definition 23. Let C is considered as a set of RTSs and
Comp = {c0,C,E,∆} is a composition of C through a connec-
tor where E is a set of events and ∆ is a set of transitions. Then,
Comp is deadlock-free for all c ∈C∨Comp, Eadmis(c) ̸= /0.

Definition 24. Consider Comp= {c0,C,E,∆} is a composition
of a set of components C through connector Γ. Let ξ be a given
trace of Comp and s ∈ S is a reachable state via ξ . A state s
is considered a deadlock state if Eadmis(s) = /0. Comp can be
said to be deadlock-free if, in any possible trace in the Comp,
no deadlock has been reached.

Once all states in the component have an admissible event,
it means that there is progress in the component. However,
if there is any state in the component that does not have at
least one admissible event to make progress on it, deadlock
happens.

VII. EXPERIMENTAL RESULTS

This section evaluates the proposed approach for feasibility
in incremental construction, verification, efficiency in reducing

SS, and addressing the SSE problem. It includes subsections on
the case studies and tools, followed by implementation details
and evaluation results.

A. Case Studies

a) Common Component Modeling Example (CoCoME):
is a supermarket trading system model for sales, purchases,
and inventory management, and widely used for evaluating
component models [13], [14]. CoCoME has a cash desk
line which processes payments with subcomponents like cash
boxes, cash desk controller, cash desk app, Cah desk GUI, print
controller, PoS terminal, and interface named connectorIf )
facilitate communication among the cash desk, store, and
enterprise. A store can manage multiple cash desks through
a store server that oversees inventory.

b) Dining Philosophers Case Study: It shows how
state space can expand exponentially with more philosophers.
Seated around a table, each philosopher alternates between
thinking and eating, using two shared forks. If all philosophers
pick up the left fork at once, a deadlock occurs.

c) Automatic Machine Teller case study (ATM): enables
banking transactions without needing human assistance. The
system includes three main components: the user, the ATM,
and the bank network, with subcomponents like authentication,
balance check, cash withdrawal, deposit, help, and mainte-
nance.

B. Implementation Tool

CPN Tools is a graphical platform for simulating CPNs,
offering features such as the Create and Simulate Palette for
implementing various systems and interactions, the Hierarchy
Palette for constructing systems incrementally, and the State-
Space Palette to calculate, check, and analyze the state space
for properties like deadlock freedom while generating reports.
CPNs are a formal modeling language for describing systems.
They have been applied in various fields, including robotics
[15], or communication networks [16]. A CPN includes places
(representing states), transitions (actions or events), and arcs
(connections between places and transitions). Each place is
assigned a color, indicating the type of resources or objects it
represents. Tokens represent the system’s state and are placed
in the CPN’s places. Transitions fire when input places have
enough tokens, moving them to output places and changing
the system’s state. CPNs can include guards and invariants to
constrain transition firing, using an inscription language.

CPN is defined as a tuple cpn =
(P,T,R,C,Σ,EXPR,W,G, Init) where:

• P is a finite set of places;

• T is a finite set of transitions, where T ∩P = /0;

• R is a finite set of directed arcs, where R ⊆ (P×T )∪
(T ×P);

• C represents a set of colors (types), and Σ is a function
that maps places to color sets, i.e., Σ : P →C. Colors
in CPNs represent the types of tokens that places can
hold;
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• EXPR defines net inscriptions, such as guards, arc
expressions, and initial markings, typically specified
using an inscription language like CPN ML;

• W is the arc expression function W : R → EXPR,
assigning an expression to each arc r ∈ R;

• G is the guard function G : T → EXPR, assigning a
guard to each transition t ∈ T ;

• Init is the initial marking function Init : P → EXPR,
specifying the initial distribution of tokens in each
place.

Both non-incremental and incremental constructions of
PUTRACOM can be modeled in this tool.

C. Simulation PUTRACOM by the CPN model

To simulate PUTRACOM using CPN, we start by listing all
states, events, guards, and transitions in the model, facilitated
by the trace function ε . Once the model elements are identified,
we translate them into corresponding elements in the CPN
tool, as outlined in Algorithm 1 (Fig. 4). The variable steps
in Algorithm 1 represents traces of states, events, guards, and
transitions from the trace function. Each state s∈ S corresponds
to a place p ∈ P, and each transition ∆ maps to a transition
t ∈ T in the CPN model with two directed arcs. Events e ∈ E
act as tokens, while guards g∈G are conditions for each place.
The variable EXPR holds expressions for guards, color sets,
and markings, differentiating input, output, and internal events,
which are then added to transitions. The OOU handles external
interactions. Each CU must be encapsulated. Transitions that
produce output events generate tokens for the OOU. Trace
containment checking (TCC) is simulated in CPN Tools using
the ASK-CTL library and SML, enabling CTL-like logic.

D. Evaluation

This section presents experimental results for the aforemen-
tioned case studies implemented using the proposed construc-
tion technique in CPN Tools. Evaluations were conducted on
a Core(TM) i5-3337U CPU @ 1.80 GHz with 4GB of RAM.

a) CoCoME: In the evaluation of CoCoME, firstly
the local SS of each component is generated, and then the
global SS of the composite components will be calculated
incrementally. We firstly verified each component mentioned
in VII-A separately. the cash boxes and cash desk controller
into a composite component named Composite Component 1,
which we verified. Subsequently, we incrementally added the
remaining components, resulting in Composite Components
2 through 4. The tables in this section report the number of
states, indicating the amount of saved SS in memory. The
status reflects whether the verification was fully completed or
if a partial SS explosion occurred for both non-incremental
and incremental approaches.

The system was verifiable with up to 20 cash desk lines and
stores, but non-incremental verification failed early, as shown
in Table I, with most results being partial and indicating an
SSE. This was due to the need to generate all state spaces
(SS) of atomic components and their compositions in memory,
causing early SSE as the number of components increased.

Fig. 4. Algorithm 1: Simulation of PUTRACOM with CPN

In contrast, incremental construction successfully generated
the SS by omitting the component’s CU, verifying only the
newly added increments. The PUTRACOM approach simpli-
fies this by allowing fixed-behavior CUs, which are decoupled
from other components, to be excluded. With reduced SS, the
verification process is faster and less labor-intensive, making
incremental construction more efficient. CPN Tools can pro-
duce counterexamples at each verification level, enabling early
error detection and enhancing system safety.

b) Dining philosophers: Table II compares the verifi-
cation results for the dining philosophers problem using the
proposed method, CPN Tools, and NuSMV. In this experiment,
we assess the amount of memory utilized. Incremental verifi-
cation completes with lower time and memory consumption,
while CPN and NuSMV face the SSE problem. Verification
time is longer for dining philosophers due to substantial SS in
interaction components (philosophers and forks). Omitting hid-
den parts did not significantly reduce SS. In CoCoME, diverse
components interact through OOU and connectors, allowing
hidden parts to be omitted, resulting in faster verification times.

c) Automatic machine teller: Table III shows the ATM
case study results using three verification methods. In this
experiment, we assess the amount of memory utilized. The
enumerative CPN and NuSMV methods could not verify even
50 ATMs, while the proposed incremental method achieved
nearly linear performance. The ATM case study outperformed
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TABLE I. RESULTS OF COCOME LINE SIMULATION

Component No. of States (CDL=1) Status No. of States (CDL=5) Status No. of States (CDL=10) Status No. of States (CDL=20) Status

Cash box ≈ 104 full/full ≈ 106 partial/full ≈ 107 partial/full ≈ 1017 partial/full

Cash box controller ≈ 102 full/full ≈ 103 partial/full ≈ 102 partial/full ≈ 104 partial/full

Cash Desk App ≈ 102 full/full ≈ 103 partial/full ≈ 102 partial/full ≈ 104 partial/full

Print Controller ≈ 102 full/full ≈ 103 partial/full ≈ 102 partial/full ≈ 104 partial/full

Cash Desk GUI ≈ 102 full/full ≈ 103 partial/full ≈ 103 partial/full ≈ 105 partial/full

POS ≈ 102 full/full ≈ 103 partial/full ≈ 102 partial/full ≈ 105 partial/full

connectorIF ≈ 102 full/full ≈ 103 partial/full ≈ 102 partial/full ≈ 103 partial/full

Composite Component 1 ≈ 104 full/full ≈ 107 partial/full ≈ 103 partial/full ≈ 1018 partial/full

Composite Component 2 ≈ 105 full/full ≈ 109 partial/full ≈ 1010 partial/full ≈ 1020 partial/full

Composite Component 3 ≈ 105 full/full ≈ 109 partial/full ≈ 1010 partial/full ≈ 1020 partial/full

Composite Component 4 ≈ 107 full/full ≈ 1010 partial/full ≈ 1010 partial/full ≈ 1020 partial/full

TABLE II. RESULTS OF DINING PHILOSOPHERS

Time (min) Memory (MB)
Scale Incremental Num CPN NuSMV Incremental Num CPN NuSMV
40 6 47.15 28 13 500 60

100 33 NA 644 29 NA 498

500 209 NA NA 64 NA NA

1000 349 NA NA 112 NA NA

1500 514 NA NA 194 NA NA

the dining philosophers due to having three main components
(user, ATM, and bank) with sub-components, whereas the din-
ing philosophers have only two. The hidden parts of each ATM
could be omitted after verification, unlike the philosophers’
problem, where most state space is tied to interactions. The
ATM study results were similar to CoCoME, due to the number
of evaluated ATMs and interactions.

VIII. RELATED WORKS

Addressing SSE is a critical challenge in model-checking
for CBSD. While model-checking is a valuable tool for
verifying system properties like deadlock-freedom, it faces
significant scalability issues due to the exponential growth in
the number of states to be analyzed [17]. This challenge has led
to the development of various techniques aimed at mitigating
SSE, which can be categorized into five main approaches:
heuristics and probabilistic methods [17], [18], state space
reduction techniques [19], compositional verification [20],
memory optimization [21], and bottom-up verification [22]. A
particular subset of the aforementioned verification methods is
more suitable for addressing the SSE problem in CBSD, such
as compositional verification and bottom-up approaches.

The compositional verification, particularly the assume-
guarantee reasoning approach, decomposes a system into
smaller subcomponents and verifies them independently [3].
However, compositional verification introduces new chal-
lenges, such as finding optimal ways to decompose sys-
tems and deriving accurate assumptions [23]. Additionally,
circular dependencies between components can complicate
verification, as addressing mutual interdependencies requires
defining sound and complete rules, which is often difficult
[24]. These limitations reduce the applicability of composi-

tional approaches, especially in complex CBSD systems where
component interactions are tightly coupled. Our work tackles
these challenges with a bottom-up, incremental approach using
a fully decoupled component model. This eliminates depen-
dencies between components, removing the need for system
decomposition, assumptions, or managing circular dependen-
cies, making our method more practical for CBSD.

Bottom-up approach, which includes techniques like on-
the-fly model-checking and incremental verification. On-the-
fly model-checking verifies system properties by generating
and checking individual paths one at a time, thereby reducing
memory usage by not storing the entire state space [25].
However, this method can lead to inefficiencies, as previously
verified paths might need to be regenerated if deleted, resulting
in redundant checks and longer counterexamples. In contrast,
our technique leverages the event-hiding feature of PUTRA-
COM to retain essential verification information, avoiding the
need to regenerate paths and thereby improving efficiency.

Incremental verification, which verifies systems as they
are constructed, offers another solution for handling SSE. It
has been explored in several domains, including rule-based
systems, expert systems, and embedded systems [26]. How-
ever, most incremental techniques have been developed for
non-component-based systems, and those tailored for CBSD
remain rare. For example, Bensalem et al. [22] proposed
an incremental construction and verification framework for
component-based systems, using the BIP (Behavior, Interac-
tion, Priority) model. While their work presents a valuable
incremental construction approach, its reliance on symbolic
methods (e.g., binary decision diagrams) and extremely relies
on the variables ordering, which may limit the verification
process. Our work is based on explicit verification methods,

www.ijacsa.thesai.org 829 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

TABLE III. RESULTS OF ATM

Time (min) Memory (MB)
Scale Incremental Num CPN NuSMV Incremental Num CPN NuSMV
50 8 NA NA 28.4 NA NA

100 23 NA NA 67.2 NA NA

200 54 NA NA 96.9 NA NA

500 206 NA NA ≈ 1G NA NA

which are more scalable and easier to apply to large systems.

IX. CONCLUSION AND FUTURE WORK

This research introduces a novel technique for incremental
construction and verification in CBSD, aimed at early detec-
tion of deadlocks during system development. The approach
ensures behavior preservation and synchronization at each
increment, verifying safety properties like deadlock freedom
and promptly generating counterexamples. The method ef-
fectively handles complex CBSD systems, avoiding the SSE
problem by excluding previously verified computation units
with fixed behavior. This reduces the state space, memory
use, and verification effort. Results confirm the method’s
ability to lower verification complexity and identify potential
issues early. Future work includes developing a standalone
PUTRACOM application and conducting experiments on real-
world systems with larger state spaces for deeper analysis
and comparison, enhancing understanding of the method’s
strengths and limitations.
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