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Abstract—This paper proposes a scalable and hardware-
adaptable approach to automatic video caption generation by
comparing two architectures: a traditional encoder–decoder
framework combining InceptionResNetV2 with GRU and a
transformer-based model integrating TimeSformer with GPT-
2. The system supports CPU and GPU deployment through
a unified pipeline built on FFmpeg and ImageMagick for
keyframe extraction and subtitle embedding. Experimental eval-
uations on the MSVD and VATEX datasets demonstrate that
the TimeSformer–GPT-2 architecture significantly outperforms
baseline models, particularly in GPU settings, achieving top
results across BLEU, METEOR, ROUGE-L, and CIDEr metrics.
This superiority is attributed to its capacity to model spatiotem-
poral dependencies and generate contextually rich language.
Designed for real-time operation, the system is also suitable
for low-resource devices, enabling impactful applications such
as assistive tools for the visually impaired and intelligent video
indexing. Despite high computational demands and sequence-
length limitations, the system presents promising directions for fu-
ture development, including multilingual captioning, multimodal
audio–visual integration, and lightweight models like TinyGPT
for enhanced portability.
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I. INTRODUCTION

Automatic descriptions of visual content play a crucial
role in improving accessibility, information retrieval, and the
generation of multimedia content [1]. While this task may
seem natural to humans, it remains complex for artificial
intelligence, which has to transform visual data into rele-
vant linguistic representations [2]. The generation of natural
language descriptions for videos, known as video subtitling,
thus represents a major challenge in computer vision and
multimedia processing [3]. Advances in deep learning have
enabled significant progress, but conventional encoder-decoder
architectures still suffer from redundancies and a lack of
semantic consistency. Modern approaches, such as sequence-
to-sequence models [4] combined with attention mechanisms,
improve the alignment between vision and language, but
their results sometimes remain insufficient. To overcome these
limitations, large-scale language models (LLMs) [5] enhance
the ability to generate accurate and consistent descriptions.

Video subtitling is the demanding task of transforming
visual sequences into accurate, coherent textual descriptions.
Among recent approaches, encoder-decoder architectures have

demonstrated their effectiveness by combining networks such
as InceptionResNetV2 for feature extraction and GRU for
sequence generation. In parallel, large-scale language models
(LLMs) have distinguished themselves by their ability to
reason and generalize, opening up new opportunities for this
application. In this context, GPT-2 [6], a lightweight, high-
performance model compatible with non-GPU environments
[7], was integrated.

With this in mind, a module optimized for video subtitling
was designed, combining the TimeSformer-base-finetuned-
k600 encoder with GPT-2 as decoder, in an architecture based
on large-scale language models (LLM). This solution has
been adapted to run efficiently on CPU-equipped systems,
facilitating its deployment on modest hardware configura-
tions. This study aims to evaluate the benefits of this LLM
approach compared with conventional sequence-to-sequence
architectures. The system, capable of processing videos in
real time, relies on FFMPEG [8] for sequence fragmentation
and ImageMagick [9]-[10] for automatic subtitle integration.
A final evaluation confirms the robustness and relevance of the
proposed solution in the field of video captioning.

This paper is structured into five main sections, each
addressing a key aspect of the study. Section 2 reviews
existing work on video captioning for the visually impaired,
highlighting its limitations and presenting two approaches to
improvement based on advanced video processing techniques.
Section 3 describes the methodology used to develop the
system’s key modules, highlighting the technical choices made
to enhance the user experience. Section 4 presents the ex-
perimental results, together with an analysis demonstrating
the effectiveness of the proposed solutions. Finally, Section 5
summarizes the study’s contributions and suggests directions
for future research.

II. RELATED WORK

In recent years, assistive technologies for the visually im-
paired have advanced considerably, particularly in navigation,
access to environmental information, and video caption gener-
ation. M. Chen et al. [11] propose the TVT model, based on
a Transformer architecture combining visual information and
motion to produce textual descriptions. Although it performs
well on MSVD and MSR-VTT sets, its use in real time remains
limited due to its complexity.

Kevin et al. [12] introduced SWINBERT, which can cap-
ture complex spatiotemporal representations using a sparse
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attention mask, reducing image redundancy. However, pro-
cessing long, dense sequences generates a high computational
cost, restricting their effectiveness in real time. L. Zhou et
al. [13] conceive a model generating dense descriptions for
non-truncated videos, relying on differentiable masking and
attention mechanisms. Despite good textual consistency, the
computational load associated with the use of Transformers
compromises its real-time deployment. For their part, M.
Amaresh and S. Chitrakala [14] are exploring encoder-decoder
architectures combining CNN and LSTM, integrating attention
mechanisms and spatiotemporal analysis, but oriented towards
offline processing. Finally, L. Gao et al. [15] present the
aLSTMs model, combining attention and LSTM to generate
coherent descriptions. Although performing well on MSVD
and MSR-VTT bases, this model remains limited by its com-
putational complexity.

III. PROPOSED METHOD

This section describes the design and implementation of the
two video subtitling architectures evaluated: a classic encoder-
decoder model (InceptionResNetV2-GRU) and a transformer-
based model (TimeSformer-GPT2). It details the visual and
textual modules, the datasets used (MSVD and VATEX), and
the technical optimizations (FFmpeg, ImageMagick), ensuring
real-time processing on CPU and GPU.

A. Video Captioning Based on Encoder–Decoder Architec-
tures

An automatic video captioning system is proposed based
on an encoder-decoder architecture. It uses the Inception-
ResNetV2 pre-trained CNN model to extract visual features,
combined with a GRU (Gated Recurrent Unit) decoder to gen-
erate natural language text descriptions. The pipeline includes
the encoding of videos as feature vectors, followed by the
sequential generation of captions by the GRU. Developed with
TensorFlow and Keras, the system is trained on the MSVD
(Microsoft Video Description Corpus) dataset. It improves on
previous approaches based on VGG16 and LSTM, offering
a richer visual representation and more efficient sequence
production. This model is particularly well suited to applica-
tions such as accessibility for the visually impaired, indexing
of video content, and metadata creation. How it works is
illustrated in Figure 1.

Fig. 1. General architecture of the encoder-decoder model for video
captioning.

1) Visual feature extraction with InceptionResNetV2:
Inception-ResNet-v2 is a neural network architecture that
combines the advantages of Inception modules and residual
connections [16], enabling efficient visual feature extraction
while simplifying deep model training. It is based on three
successive blocks - Inception-ResNet-A, B, and C - designed
to process feature maps of decreasing dimensions. Block A
operates on larger maps using convolutions of various sizes
(1×1, 3×3) to capture information at different scales [16]-
[17]. Block B continues this processing on intermediate maps,
with controlled complexity, while Block C refines the repre-
sentations on the most compact maps for final classification.
Each of these blocks incorporates residual connections, which
improve gradient propagation and stabilize learning, notably
by alleviating the vanishing gradient problems encountered
in very deep networks. The following figure illustrates the
organization of these blocks. How it works is illustrated in
Figure 2.

Fig. 2. Internal structure of the InceptionResNetV2 network.

2) Sequential text generation using GRU decoder: The
decoder transforms visual representations into descriptive sen-
tences, based on an RNN-type architecture. While conventional
recurrent networks can model short-term dependencies, they
run into difficulties with long sequences, notably due to the
disappearance or explosion of the gradient. To overcome these
limitations, we use gated recurrent units (GRUs) [18], which
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control sequential learning using internal update, reset, and
hidden memory mechanisms, as illustrated in figure 3. The
decoder comprises three main components: an integration layer
that encodes words in vector form, a multilayer GRU for
temporal modeling, and a final linear layer that projects the
hidden state into vocabulary space to predict the next word.

Fig. 3. Internal GRU mechanism (Gated Recurrent Unit).

In these equations (1, 2, 3, and 4) [19], xt represents the
input, and ht is the hidden state at time t. The weights associ-
ated with the reset, update, and new information creation gates
are denoted as Wr, Wz , and Wu, respectively. The hyperbolic
tangent and sigmoid activation functions are symbolized by
tanh and σ, respectively.

rt = σ(Wxrxt + Uhrht−1) (1)
zt = σ(Wxzxt + Uhzht−1) (2)
ut = tanh(Wxuxt + Uhu(rt ⊙ ht−1)) (3)
ht = (1− zt)ht−1 + ztut (4)

3) Parameters for the encoder-decoder video captioning
model: Table I shows the main hyperparameters of a video
caption generation model, combining InceptionResNetV2 for
the extraction of visual representations and a GRU-based
sequential decoder. The model processes 80 frames per video,
from which it extracts vectors of dimension 1536. The text
sequences produced are limited to 10 words, with a vocabulary
of 1,500 tokens. Learning is performed over 3 epochs, with a
learning rate of 0.0007 and a batch size of 8. 15% of the data
is reserved for validation to control overlearning.

4) Dataset used: Microsoft Video Description Corpus
(MSVD): As part of the experiment, the MSVD (Microsoft
Video Description Corpus) dataset was selected for training
and evaluation of the model. It consists of YouTube videos
selected via Amazon Mechanical Turk and annotated with one-
sentence descriptions. Only English captions are retained, after
light pre-processing including lowercase casing, tokenization,
and punctuation removal. The data follow the standard distri-
bution proposed in [4]-[20], with 1,200 videos for learning,
100 for validation, and 670 for testing [21]. For each video,
an image is extracted every ten frames, providing balanced
temporal coverage. The set comprises 1,970 clips, each around
10 seconds long, and associated with around 40 descriptions,

providing a linguistic diversity useful for training the genera-
tion system.

B. Caption Generation with Large Language Models (LLMs)

1) GPT-2 Integration for descriptive text generation: This
model is an adaptation of the Vision Transformer (ViT) [22],
[23] to video data processing, enabling the simultaneous cap-
ture of spatial and temporal dynamics. Unlike conventional
ViTs designed for still images, ViViT segments a video into a
sequence of images, converted into tokens enriched by posi-
tional and identity embeddings. These representations are then
processed successively by a spatial encoder and a temporal
encoder to model the structural and evolutionary relationships
between images.The architecture retains the structure of the
ViT encoder, with adjustments to exploit dependencies be-
tween successive images. The overall operation of the model
is shown in Figure 4.

Fig. 4. TimeSformer + GPT-2 global architecture for video description
generation.

2) Spatio-temporal analysis with timesformer encoder:
The basic model is based on the “Base” structure of the
Vision Transformer (ViT) and uses sequential spatio-temporal
attention, applying attention first to the temporal axis, then
to the spatial axis. This method, fitted to the Kinetics-600
dataset - comprising 392,000 videos for training and 30,000 for
validation, spread over 600 human action categories - outper-
formed alternative approaches exploiting parallel or inverted
attention. The TimeSformer model adopts this principle, illus-
trated in Figure 5, by dividing processing into two successive
stages: temporal attention followed by spatial attention. This
separation enables more efficient extraction of spatio-temporal
features from videos.

Fig. 5. Sequential spatial-temporal attention mechanism in timesformer.

At each layer, temporal attention is applied, followed by
spatial attention and an MLP block, all integrated into a resid-
ual connection. This structure improves learning efficiency
while reducing computational complexity, as shown by the Z(l)

output described in equation 5.
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TABLE I. CONFIGURATION PARAMETERS OF THE ENCODER-DECODER VIDEO CAPTIONING MODEL

Parameter Value Description
video None Name of the video file to process
keep temp False Keeps the extracted images if set to True
train path data/training data Folder containing the training videos
test path data/testing data Folder containing the testing videos
max length 10 Maximum length of the text captions
batch size 8 Number of samples per training batch
lr 0.0007 Learning rate for the optimizer
epochs 100 Number of training epochs
latent dim 512 Latent dimension size of the GRU layer
validation split 0.15 Proportion of data used for validation
num encoder tokens 1536 Dimension of the video feature vectors
num decoder tokens 1500 Number of words in the output vocabulary
time steps encoder 80 Number of frames extracted per video

Z(l) = Z(l−1)+TimeAtt(Z(l−1))+SpaceAtt(Z ′)+MLP(Z ′′)
(5)

with :

Z ′ = Z(l−1) + TimeAtt(Z(l−1))

Z ′′ = Z ′ + SpaceAtt(Z ′)

The labels “Frame t − δ”, “Frame t”, and “Frame t + δ”
denote the previous, current, and next frames in the video
sequence. These serve as key inputs for spatio-temporal at-
tention, enabling the model to capture temporal and spatial
dependencies, as shown in Figure 6.

Fig. 6. Sequence of frames used for spatio-temporal attention.

3) Unified decoder for contextual language generation: It
acts like a decoder, progressively generating a textual descrip-
tion. Each word is predicted by taking into account the words
already produced, as well as the visual context extracted from
the video. This mechanism ensures the harmonious integration
of visual and linguistic information, resulting in an accurate
and fluid description [23], [24].

Video subtitling begins by extracting visual features using
pre-trained models such as ResNet, TimeSformer [23], [24]
or I3D, which transform images into representative vectors.
These vectors are then adapted to the GPT-2 input by adding
special tokens (e.g., [CLS] for onset and [SEP] for separation).
Trained on video-text corpora such as VaTeX [25], GPT-2
learns to generate relevant and coherent descriptions from
visual content.

The unified video captioning framework based on GPT-2
models the conditional probability P (C | V ), where C is the
caption and V the input video. It predicts each word in the
output sequence based on the visual features extracted from
V , as shown in Equation 6.

P (C | V ) =

N∏
t=1

P (ct | c<t,VideoEmbed(V ), θ) (6)

where ct represents the t-th token of the caption,
VideoEmbed(V ) denotes the visual features mapped to GPT-
2’s embedding space, and θ refers to the model’s parameters.

The training objective consists of minimizing the negative
log-likelihood of the predicted caption sequence conditioned
on the video features, as shown in Equation 7.

L = −
N∑
t=1

logP (ct | c<t,VideoEmbed(V ), θ) (7)

This fine-tuning process adapts GPT-2’s language gen-
eration capabilities to the video-text domain, enabling the
production of captions that are both semantically precise
and aligned with visual content. As illustrated in Figure 7,
each frame is divided into 2D patches—typically 7×7—then
transformed into visual tokens by a Vision Transformer such
as TimeSformer or CLIP. These tokens, enriched with spatial
and temporal context, are structured using special markers like
[CLS] and [SEP], then passed to a late fusion module that
prepares them for decoding. GPT-2, operating autoregressively,
generates one word at a time by leveraging both prior textual
outputs and the embedded video information. It produces a
sequence of logits that guide the selection of the most probable
next token at each step. This integrated architecture ensures a
smooth fusion of visual cues and language modeling, yielding
accurate and naturally flowing captions.
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Fig. 7. Video subtitle generation pipeline via TimeSformer and GPT-2.

4) Performance optimization on CPU vs. GPU: A [26]-
compatible GPU is an ideal solution for training video sub-
titling models such as TimeSformer and GPT-2, thanks to
its ability to handle high resolutions, large batches of data,
intensive spatio-temporal processing, as well as the use of
mixed precision. Conversely, a CPU [26], although more
affordable and accessible, is more suited to tasks of lower
complexity due to its limited performance. The following
table II compares learning parameters across CPU and GPU
environments, detailing batch sizes, image resolutions, number
of threads, and training schemes, to optimize performance
according to available hardware resources.

During inference, a time clip is extracted from the center
of the video. On a processor (CPU), the image is resized to
112 pixels on its shortest side, followed by a 112 × 112 center
crop, to limit computation. A single softmax score is then used
to generate the prediction. On a GPU, the TimeSformer-HR
model exploits a higher resolution: resizing is performed at
224 pixels, with three 224 × 224 cuts analyzed to enrich the
spatial information. The final prediction, obtained by averaging
the softmax scores, thus benefits from the GPU’s ability to
process high-resolution data, enhancing the model’s accuracy
and robustness. Figure 8 compares two architectures designed
for real-time caption generation. Sub-figure 8(a) illustrates
the GPT-2 architecture, responsible for encoding the data and
producing the textual descriptions. Sub-figure 8(b) shows the
optimized version of TimeSformer, trained on Kinetics-600,
capable of efficiently capturing spatio-temporal relationships
in video sequences.

5) Dataset used (VATEX): VATEX is a large-scale dataset
comprising around 41,250 10-second video clips, each accom-
panied by 10 manually annotated English captions. Learning
is based on the official set, while performance is measured
using the public test set [21], [25].Three Vision Transformer
encoders are used for visual feature extraction, including an
I-frame encoder initialized with the CLIP model [27], trained
on the LAION-400M image-text corpus [28]. In comparison,
SwinBERT [12] relies on the VidSwin architecture, trained
on the video-oriented Kinetics-600 [29] dataset. It should be
noted that LAION-400M is an image-text corpus, Kinetics-
600 targets videos, and VATEX serves here as a reference
for experimentation. SwinBERT outperforms the proposed
method, thanks in particular to the effectiveness of its pre-
training phase on Kinetics-600.

(a)

(b)

Fig. 8. Illustration of video captioning components: (a) GPT-2 used for text
decoding, and (b) TimeSformer for encoding video frames into visual

embeddings.

C. System Optimization Using FFmpeg and ImageMagick

To train the models, FFmpeg [8] was used, integrated
via MoviePy [30], to facilitate the manipulation of complex
video content and to optimize the use of large language
models (LLMs). This free software supports a wide variety
of multimedia formats, including video and audio, and
includes a library dedicated to keyframe extraction. These
keyframes generally represent significant visual changes.
However, FFmpeg does not detect more subtle variations,
often referred to as interesting images, which may nonetheless
contain information relevant to analysis. MoviePy [31]
simplifies the addition of text to videos by automating its
generation and positioning using the TextClip class, then
embedding it in the video via CompositeVideoClip, with
FFmpeg support in the background. Once the text has
been merged, it is encoded using standard codecs such as
libx264 for video and AAC for audio, ensuring optimum
compatibility with the majority of media players. In addition,
key frame extraction aims to identify representative frames
in a video sequence. This process can be carried out using
a variety of tools, including FFmpeg, OpenCV’s absdiff()
function or the DMD algorithm [32]. Figure 9 illustrates
the images extracted from a video file in MP4 format using
the following FFmpeg command: ffmpeg -i file.mp4
-vf "select=’not(mod(n,4))’,scale=320:240"
-vsync vfr -frames:v 4 frame_%03d.png.

ImageMagick is currently used to integrate full descriptions
into videos as part of the subtitling process. An integrated
tool [32], combined with a command-line routine, automates
the cropping of images by removing 8 pixels at the left and
40 pixels at the top, reducing their size by around 20%. In
addition, partial conversion of PPM files to JPEG is performed
by a batch script. Interstitial spaces between mosaic segments
were also corrected for archiving purposes. In all, the 67
selected mosaics and still images occupy 764 Kb.
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TABLE II. HARDWARE CONFIGURATION COMPARISON FOR TRAINING CAPTIONING MODELS ON CPU VS. GPU

Parameter CPU GPU Description
Device ”cuda” if GPU available, else ”cpu” ”cuda” if GPU available, else ”cpu” Automatic device detection
Encoder Model facebook/timesformer-base-

finetuned-k600
facebook/timesformer-base-
finetuned-k600

Model used for encoding

Decoder Model Gpt-2 Gpt-2 Model used for decoding
Video Frames 4 16 Number of frames used per video
Image Resolution 112×112 224×224 Size of the images used
Batch Size 2 6 Batch size for training
Batch Learning Disabled Enabled Use of GradScaler for AMP
Learning Rate 1e−5 5e−7 Learning rate for the optimizer
Epochs 100 100 Number of epochs for training
Scheduler linear linear Learning rate scheduler
Num Workers 1 8 Number of workers for DataLoader
Collate Function custom.collate.fn default.data.collator Data collation method
Pin Memory False True Memory management in

DataLoader

Fig. 9. Extracting key frames from video using FFmpeg.

IV. EXPERIMENTAL RESULTS

The Experimental Results section provides an in-depth
analysis of the system’s performance, examining each of its
key modules. Subsection A outlines the evaluation criteria
and the fundamental components of the system. Subsection B
presents the results obtained by the video subtitle generation
models developed according to the two approaches explored.

A. The Evaluation Metrics

To assess the quality of the trained model, four metrics
are used. Among these, the BLEU (Bilingual Evaluation Un-
derstudy) metric quantifies linguistic similarity by comparing
the n-grams shared between the generated sentences and the
reference sentences. The calculation of the BLEU score is
presented in equation 8.

BLEU −N(ci, Si) = b(ci, Si) exp

(
N∑

n=1

ωn logPn(ci, Si)

)
(8)

where

b(ci, Si) =

{
1 if lc > ls

e1−
ls
lc if lc ≤ ls

is a brief penalty; lc is

The total length of the sentences generated (candidates) is
noted as lS , while lc designates the optimal reference length
of the corpus. When a candidate sentence is associated with
several references, the one whose length is closest to that of the
candidate is selected. In addition, the weights ωn, assigned to
the n-grams, are generally set to a constant value, as indicated
in [18]-[33], as illustrated in the equation 9.

Pn(ci, Si) =

∑
k min(hk(ci),max(hk(Sij)))j∈M∑

k hk(ci)
(9)

B-N, short for BLEU-N, is a precision measure that evalu-
ates the quality of generated sentences by focusing on short n-
grams, generally up to 4 words. It calculates the proportion of
linguistic units (n-grams) shared between a candidate sentence
and one or more reference sentences.

METEOR is an evaluation metric that measures both
precision and recall at the unigram level. It takes into account
not only exact matches, but also synonyms from WordNet and
partial matches based on word fragments (truncated tokens).
The METEOR score is given by the equation 10 [18]-[33].

METEOR = (1− Pen)× Fmean (10)

The term Pen = γ
( ch
m

)m
represents a penalty factor. In this

expression, m corresponds to the total number of alignments
between the candidate sentence and the reference sentence,
while ch designates the number of contiguous segments cor-
rectly aligned (words identical and in the same order), as
specified in equations 11, 12, and 13.

Pm =
|m|∑

k hk(ci)
(11)

Rm =
|m|∑

k hk(Sij)
(12)

Fmean =
Pm ·Rm

αPm + (1− α)Rm
(13)
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METEOR is a measure based on the harmonic mean
between precision and recall, calculated between a reference
sentence and the best-aligned candidate.

ROUGE-L is based on the longest common subsequence
(LCS) identified between two sentences. The length l(ci, sij)
of this LCS forms the basis of its evaluation, as shown in
equation 14.

ROUGE-L(ci, Si) =
(1 + β2) ·Rl · Pl

Rl + β2 · Pl
(14)

where:

Rl = max
j

(
l(ci, Sij)

|Sij |

)
(recall based on LCS)

Pl = max
j

(
l(ci, Sij)

|ci|

)
(precision based on LCS)

The ROUGE-L metric evaluates precision based on the
longest common subsequence (LCS), while the parameterE is
a constant to reinforce the importance of recall in the calcula-
tion. Other variants of the RED metric, such as ROUGE-N and
ROUGE-S, are also used for finer comparisons [18]. For its
part, CIDEr-D measures the average cosine similarity between
the n-grams of a candidate sentence and those of references,
taking into account both precision and recall. Its mathematical
formulation is given by equation 15 [18]-[33].

CIDEr −Dn(ci, Si) =

N∑
n=1

ωnCIDEr-D(ci, Si) (15)

This formula aggregates the CIDEr-D scores calculated
for different levels of n-grams (from 1-gram to N -gram),
assigning them a specific weight ωn. This enables us to assess
the similarity between the generated legend ci and reference
legends Si at several levels of linguistic granularity, while
incorporating a weighting mechanism that mitigates the impact
of excessive repetition and too-frequent n-grams.

B. Quantitative Results

The proposed method was evaluated using the BLEU,
ROUGE-L, METEOR, and CIDEr metrics to measure its effi-
ciency. Tests were carried out on two Seq2Seq models based on
LSTM and GRU, respectively, as well as on the Timesformer-
base fine-tuned on Kinetics-600 with GPT-2, evaluated on both
CPU and GPU.

The Neleac/timesformer-gpt2-video-captioning pre-trained
model [22], [23] is based on a modular architecture built
around three components. A visual preprocessor (MCG-
NJU/videomae-base) adapts images extracted from videos, a
tokenizer (GPT-2) encodes text sequences, and an encoder-
decoder model combines a Vision Transformer with a GPT-2
decoder to automatically produce subtitles. This configuration,
illustrated in figure 10, enables efficient, context-sensitive
generation of descriptions from video content.

The results, presented in Table III, show the best perfor-
mances in bold. Three modules were evaluated, including the

Fig. 10. Example of generated video captioning from the TimeSformer-Gpt2
pre-trained model.

pre-trained Timesformer-GPT2 subtitling model, as well as two
encoder-decoder architectures designed for video description
generation. Compared with previous methods, the proposed
approach outperformed across all considered metrics, including
BLEU-1 to BLEU-4, METEOR, CIDEr, and ROUGE-L.

The models compared in the table fall into two categories:
on the one hand, classic encoder-decoder architectures based
on InceptionResNetV2 coupled with GRU; on the other, those
based on the combination of TimeSformer and GPT-2. The lat-
ter captures spatio-temporal relationships more effectively and
produces more accurate descriptions. Although they perform
well on the CPU, they reach their full potential on the GPU,
particularly in their pre-trained version, which considerably
accelerates inference. Overall, this architecture outperforms
encoder-decoder approaches, but at the cost of higher hardware
consumption.

V. COMPARATIVE ANALYSIS AND INTERPRETATION

This study compared two architectures for video caption-
ing: a traditional solution based on an encoder-decoder frame-
work combining InceptionResNetV2 and GRU, and a more
advanced approach integrating a pre-trained TimeSformer en-
coder with a GPT-2 decoder. Experimental results demonstrate
that the TimeSformer-GPT2 configuration, when executed on
a GPU, achieves superior performance, notably with a BLEU-
4 score of 0.276, compared to only 0.058 for the baseline.
Improvements were also recorded in METEOR (0.821) and
CIDEr (0.889), highlighting the effectiveness of combining
a spatio-temporal attention mechanism with a generative lan-
guage model for producing coherent and accurate outputs.

In particular, while the pre-trained Neleac/timesformer-
gpt2-video-captioning model proved highly effective, the op-
timized Timesformer-base fine-tuned (GPU) version demon-
strated superior performance on the majority of evaluation met-
rics, validating the effectiveness of the implemented adaptation
process.

These findings emphasize the strength of TimeSformer in
capturing complex temporal and spatial dependencies within
video sequences. Coupled with GPT-2’s capacity to generate
contextually appropriate language, this synergy allows for a
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TABLE III. QUANTITATIVE EVALUATION OF VIDEO CAPTIONING MODELS USING BLEU, METEOR, ROUGE-L, AND CIDER METRICS

Model B-1 B-2 B-3 B-4 ROUGE-L CIDEr METEOR
GRU-based Encoder–Decoder (our model) 0.685 0.331 0.250 0.058 0.241 0.372 N/A
Timesformer-base finetuned (CPU) (our model) 0.803 0.492 0.370 0.182 0.567 0.765 0.714
Timesformer-base finetuned (GPU) (our model) 0.887 0.571 0.498 0.276 0.687 0.889 0.821
Timesformer-GPT2 video captioning (GPU) [22], [23] 0.872 0.562 0.475 0.259 0.672 0.884 0.812

deeper understanding and expression of visual content. The
architecture relies on a divided attention mechanism—applying
temporal and then spatial attention—to enhance the quality of
feature extraction. GPT-2, in turn, adapts its linguistic output
based on these extracted patterns, resulting in semantically rich
and logically structured narratives.

Compared to models such as SWINBERT and TVT, the
proposed method demonstrates a notable reduction in com-
putational overhead, especially during inference on CPU-
based systems. While many transformer-based solutions are
primarily designed for offline processing, the presented system
remains compatible with lower-resource environments without
compromising output quality. These results align with the
contributions of Bertasius et al. and Radford et al. [22]-
[23], while offering a more scalable alternative for practical
deployment.

From a conceptual standpoint, this work supports the
hypothesis that coupling a high-performance visual encoder
with a Large Language Model (LLM) improves the generation
of multimodal language. Practically, it illustrates the feasibility
of integrating sophisticated captioning mechanisms into mobile
or embedded systems, particularly for assistive technologies
aimed at the visually impaired or for intelligent indexing of
audiovisual content.

Despite encouraging results, the proposed approach
presents some limitations. The training phase, especially when
involving the TimeSformer component, requires considerable
computational resources. Furthermore, the fixed-length format
(limited to 10 words) imposes constraints on expressive capac-
ity, particularly in visually complex scenes. Additionally, the
evaluation was limited to two datasets (MSVD and VATEX);
further validation on diverse, especially multilingual, corpora
would be beneficial to assess the generalizability of the system.

Analysis of the videos in the MSVD and VATEX datasets
reveals limitations specific to each model. The GRU model
favors static elements, sometimes neglecting the main action,
while the Timesformer-base finetuned (GPU) model, while
effective at capturing movement, can confuse context or over-
interpret complex scenes. These errors highlight the difficulty
of accurately understanding a scene and underscore the value
of multimodal approaches that combine visual, sound, and
temporal signals.

Potential enhancements include the incorporation of com-
pact architectures such as TinyGPT and the use of knowledge
distillation techniques to reduce training complexity. Another
promising direction involves exploring multimodal pipelines
that combine audio and visual data to further enrich the
generated outputs. Moreover, extending the system to handle
real-time processing of long-form video content or deploy-
ment in unstructured environments remains a key challenge

for improving portability and robustness. Figure 11 shows
the final results of the proposed system, illustrating optimal
performance in terms of video captioning. It highlights the
model’s ability to produce accurate and consistent descriptions,
demonstrating its effectiveness.

Fig. 11. Video captioning: key frame extraction with FFmpeg and caption
insertion using ImageMagick.

VI. CONCLUSION AND FUTURE WORK

This paper has proposed a comparative study be-
tween classical video captioning architectures, such as
InceptionResNetV2-GRU, and advanced approaches combin-
ing TimeSformer and GPT-2. Experiments on MSVD and
VATEX datasets demonstrated the clear superiority of the
TimeSformer-GPT2 model, particularly on GPUs, with high
scores according to the BLEU, METEOR, ROUGE-L, and
CIDEr metrics. This performance is explained by the model’s
ability to capture spatio-temporal dependencies while generat-
ing linguistically consistent descriptions efficiently. The pro-
posed pipeline, integrating FFmpeg and ImageMagick tools,
demonstrates the feasibility of a robust and adaptable auto-
mated subtitling system, compatible with different hardware
environments. This flexibility opens up concrete prospects,
notably in assistive technologies for the visually impaired
and intelligent indexing of audiovisual content. Despite the
promising results, there are several avenues for improvement
worth exploring. Adopting lighter models such as TinyGPT or
DistilGPT would reduce the computational load and facilitate
deployment on mobile devices. The addition of audio modality
could enrich the descriptions generated, particularly for com-
plex scenes.

Furthermore, adaptation to specific multilingual corpora
(educational, medical) would reinforce the system’s general-
izability. Finally, the processing of long continuous videos
with dynamic generation of summaries or subtitles would
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pave the way for more advanced applications, notably in
visual assistance or intelligent streaming. This work paves
the way for a new generation of intelligent video subtitling
systems, capable of reconciling performance, accessibility, and
lightness, and designed for concrete applications on mobile and
embedded platforms.
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