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Abstract—In resource-limited settings, assisting physicians
with disease identification can significantly improve patient
outcomes. Early diagnosis is crucial, as many patients could
remain healthy with timely intervention. Recent advancements
in deep learning models for medical image processing have
enabled algorithms to achieve diagnostic accuracy comparable
to that of healthcare professionals. This research aims to develop
a comprehensive system for the rapid and precise detection
of endometriosis lesions. We explore the several deep transfer
learning architectures, specifically MobileNetV2, VGG19, and
InceptionV3, on the Gynecologic Laparoscopy Endometriosis
Dataset (GLENDA). Through extensive literature review and
parameter optimization, we find that MobileNetV2 outperforms
the other models in terms of accuracy. However, challenges
remain, as healthcare imaging datasets often suffer from limited
sample sizes and uneven class distributions. Collecting additional
samples can be costly and time-consuming, which is a prevalent
issue in medical imaging. To address this, we employ Deep Convo-
lutional Generative Adversarial Networks (DCGAN) to enhance
the dataset by generating synthetic images, thus improving class
balance. This image augmentation strategy not only boosts model
performance but also reduces the manual effort required for
image labeling. We evaluate our proposed model using metrics
such as accuracy, precision, recall, and F1-score. Initially, our
model achieves an accuracy of 95%. The introduction of synthetic
samples results in an increased accuracy of 99 %, reflecting a 4%
improvement and enhancing the model’s overall efficacy.

Keywords—Endometriosis classification; lesion detection; med-
ical image classification; deep learning; transfer learning; DCGAN

I. INTRODUCTION

Endometriosis is a medical condition in which endometrial
cells, naturally found within the uterus, begin to grow outside
the uterine cavity [1], [2]. The preliminary hypothesis describ-
ing this is retrograde menstruation, where menstrual tissue
pursues a distinctive path. Rather than being expelled during
the menstrual cycle, the tissue flows in reversal, traveling
up through the fallopian tubes and potentially implanting
in the ovary or within the abdominal cavity, resulting in
lesion construction. These lesions are differ in size, with
classification based on dimensions critical to diagnosis and
treatment. Mainly, lesions measuring five millimeters or more
are typically classified as deep-seated endometriosis [3], [4].

Endometriosis is frequently associated with significant
diagnostic delays [5], [6]. Endometriosis disorder has a
broad spectrum of symptoms, such as menstrual pain, acute
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pelvic pain, infertility, and pain during intercourse. Non-
gynecological symptoms can also appear, including pain while
urinating, discomfort during bowel movements, flank pain,
fatigue, and blood in the urine, among others. Furthermore,
the biological exams are complicated, and results can differ
widely, even in examinations conducted by professionals in
the field [7], [8].

Endometriosis is a severe gynecological problem impacting
an estimated 190 million women internationally [9], [10]. The
disease is prevalent among women of different age class, from
infant women to those who are post-menopause. Studies esti-
mate that approximately 10 percent of women of reproductive
age are affected by endometriosis [11], with a prevalence
of 2 percent to 4 percent among postmenopausal women
[12]. Additionally, The disease’s influence on young women
is significant, with nearly 50 percent of those undergoing
persistent pelvic pain occurring before the age of 20 being
diagnosed with endometriosis [4].

Endometriosis can be diagnosed through various pro-
cedures, including ultrasound, magnetic resonance imaging
(MRI), and laparoscopy [13], [14]. Laparoscopy is the gold
benchmark, as it permits explicit examination of the abdominal
and pelvic areas through a camera inserted via a small incision.
MRI, a non-invasive imaging method, uses magnetic areas to
create detailed images of the body’s internal structures, making
it beneficial in recognizing deep lesions or more extensive
cysts associated with endometriosis. Ultrasound, generally per-
formed transvaginally, is usually utilized for initial screening
and assists in detecting ovarian cysts or other abnormalities
[15], [16], [17], [18].

In recent years, computer-aided methodologies have be-
come essential in medical fields for disease diagnosis, in-
cluding identifying conditions such as heart disease [19],
endometriosis lesions detection [20], and classifying breast
cancer [21]. However, Healthcare imaging datasets frequently
suffer from insufficiency and uneven class distributions. More-
over, acquiring additional samples is both expensive and time-
intensive. This is a common problem in the medical image do-
main. Researchers endeavor to conquer this problem by utiliz-
ing data augmentation. Image augmentation methods typically
fall into two main categories: conventional approaches and
deep learning techniques. Conventional image augmentation
methods apply simple manipulations like translation, cropping,
flipping, or resizing. Deep learning-based augmentation uti-
lizes state-of-the-art neural networks to create more adaptive,
data-rich transformations. These two techniques enhance data
diversity, helping models to generalize more effectively [22],
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[23].

A promising deep-learning technique for image synthesis
inspired by the game hypothesis is the Generative Adversar-
ial Network (GAN) [24], [25]. In GANs, two networks are
learned in an adversarial manner: one network, the generator,
constructs artificial images, while the other, the discrimina-
tor, learns to distinguish between real and synthetic images.
By repeating this adversarial approach, GANs enhance both
networks’ abilities, allowing the generation of high-quality,
realistic images. The computer vision community has adopted
GAN:S, directing to various variations developed for photore-
alistic image generation [26], [27].

Deep learning has attracted significant attention in many
fields (for more detail, see [28], [29], [30], [31], [32]) such
as the medical domain because of its efficacy in image
analysis. It is employed for classification, enhancement of
image quality, and segmentation of medical images. In recent
years, deep learning techniques have rapidly evolved, with
MobileNetV2 attaining popularity due to its compact archi-
tecture, which makes it perfect for various applications [33].
The MobileNetV2 architecture contains an internal structure
with a linear bottleneck, an element that minimizes memory
requirements for better processing. Therefore, to provide an
accurate and efficient classification of endometriosis lesions,
in this study, we propose an endometriosis image classifica-
tion founded on the MobileNetV2 architecture. The proposed
method uses MobileNetV2 as the base model for the transfer
learning process. We add a global pooling layer and two fully
connected layers to enhance the model’s performance and
refine classification outcomes [34]. The primary contributions
of this research are as follows.

e  We propose a synthesis of high-quality endometrio-
sis lesions from laparoscopy images employing deep
convolutional generative adversarial networks (DC-
GANS).

e Several state-of-the-art deep learning architectures,
such as VGG19, InceptionV3, and MobileNetV2, are
analyzed for this research. These architectures are fine-
tuned on the laparoscopy images dataset to obtain
efficient and accurate endometriosis lesion detection.

e We improve the training set of our deep learning
model by including synthetic data, a technique that
guides to enhanced classification results.

The remainder of the article is organized as follows: Sec-
tion 2 explains the literature review on utilizing deep learning
to analyze endometriosis lesions. Sections 3 and 4 present
the proposed methodology and experimental result analysis.
Consequently, Sections 5 and 6 provide the discussion and
conclusion of the study, respectively.

II. LITERATURE REVIEW

Detecting endometriosis through laparoscopy imaging is
challenging due to the disease’s complex and varied presen-
tation. Its lesions usually have subtle or indistinct characteris-
tics, making them challenging to identify accurately, even by
specialists. Machine learning applications aimed at diagnosing
endometriosis through laparoscopy imaging still need to be
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developed, partially due to the limited access to labeled, rep-
resentative datasets. This section summarizes recent research
in machine learning for endometriosis diagnosis, focusing on
techniques, methodologies, and the insights they provide.

Zaidi [5] employed a deep-learning based approach to
detect endometriosis lesions from laparoscopy images.The
team achieved a accuracy of 0.93% by applying Inception V3
model with 5-fold cross-validation techniques. Deep convolu-
tional networks, exemplified as GoogLeNet [35], have been
effectively employed across various applications, showcasing
their versatility and robust feature extraction capabilities. These
networks serve as robust backbones for many state-of-the-art
deep-learning architectures used in image and video research
analysis. By leveraging hierarchical layers of convolutional
filters, they can capture complicated patterns and attributes,
making them ideal for object recognition, classification, and
segmentation tasks. Visalaxi [36] employed a deep-learning
approach to categorize laparoscopy images associated with
endometriosis. They employed the dataset for gynecologic
laparoscopy related to endometriosis [37], comprising about
6,000 images from laparoscopy videos. Sixty percent of this
dataset was used for training, and several architectures were
tested to determine the model with the best performance. The
ResNet50 architecture [38], loaded with ImageNet pre-trained
weights [39], achieved the highest accuracy at 90 percent,
with sensitivity and precision scores of 82 percent and 83
percent, respectively.Leibetseder’s study used transfer learning
and the Faster R-CNN [40] and Mask R-CNN [41] models to
accurately detect endometriosis in laparoscopic images, getting
a 32.4 percent precision. In addition, the research investigated
different data augmentation methods, revealing that a blend of
cropping and rotation yielded optimal results. The GLENDA
dataset was employed as the primary data source in this
research.

In 2021, Yun [42] and colleagues introduced a neural
network model specifically designed to aid in classifying
endometriosis. This study employed a convolutional neural net-
work (CNN) architecture called VGGNet-16. Using a dataset
of 6,478 histopathology images for training. The researchers
aimed to develop a highly accurate system that could sup-
port and potentially enhance the diagnostic work performed
by radiologists. In their research, Takahashi and colleagues
[43] explored how computer vision techniques can support
detecting endometriosis cancer in laparoscopic images. The
team achieved a prediction accuracy of 90.29% by applying
advanced neural network techniques. Sudalaimuthu [44] pro-
posed an innovative approach recognized as Structural Similar-
ity Analysis of Endometriosis (SSAE). This approach evaluates
endometriosis progression in areas such as the ovaries, uterus,
rectum, and peritoneum founded on laparoscopy images from
the GLENDA image dataset. To enhance the model’s robust-
ness, images were subjected to data augmentation techniques,
including horizontal and vertical shifts, rotation, shear, and
zoom. The data was split, with 70 percent allocated for training
purpose and the 30 percent for testing purpose. The U-Net
architecture was utilized to explore factors like filter sizes and
optimization methods. The highest results recorded were dice
coefficient is 0.74 and an IoU is 0.72, though it is unclear
if these metrics were specific to the test set.The literature on
automated identification and segmentation of endometriosis re-
mains limited, with few works addressing these areas. Among
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the existing studies, most rely on images from laparoscopy
procedures, which, while invasive, are the gold benchmark for
diagnosis. Despite using these high-quality images, automated
approaches are still being developed with the aim of improving
accuracy and performance.

Our research differentiates itself from the abovementioned
research by suggesting a data augmentation approach to
conventional and deep learning approaches that encompass
detection and classification tasks for analyzing deep or deep-
seated endometriosis. Additionally, it focauses on laparoscopy
images, seeking at premature examination beyond the essential
for invasive procedures.

III. MATERIALS AND METHODS

This section provides a detailed description of the materials
used and the approach taken for classifying endometriosis
lesions, including an overview of the image collection process,
a summary of the overall methodology, and a discussion of the
proposed methodology. Figure(1) provides a flowchart of the
methodology followed in this research.

Input
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Fig. 1. A Flowchart of proposed methodology.
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A. Data Collection

The Gynecologic Laparoscopy Endometriosis Dataset
(GLENDA) is a comprehensive dataset derived from more
than 400 gynecologic laparoscopy video recordings, a signifi-
cant number of which depict instances of endometriosis with
varying phases of severity. GLENDA comprises over 25,000
images, including more than 12,000 positive pathological
photographs related to endometriosis and over 13,000 negative
non-pathological images devoid of prominent endometriosis.
The dataset is intentionally designed for various artificial
content analysis tasks related to endometriosis recognition. The
dimensions of the images are 640 by 360 pixels.

B. Image Pre-processing

Image preprocessing is a collection of procedures used
on raw images to prepare them for additional examination
or processing. The primary aim is to improve the image
by identifying pertinent information while reducing artifacts,
noise, and extraneous features that might interfere with fur-
ther analysis. Prevalent preprocessing tasks include resizing,
filtering, cropping, noise attenuation, color modification, and
image enhancement. The phases are chosen according to the
image properties and the particular application’s requirements.
In this research work, All images were resized to 224x224
pixels. We also applied image sharpening to the entire dataset
to improve the quality of the images. Furthermore, the images
are processed in RGB format. We implemented many rescaling
methods, including multiplying each pixel by 1/255. This
generalizes the input, conserves memory, and reduces the
computational expense of applicable procedures. Moreover, it
also facilitates the understanding of the ideal function.

C. Data Augmentation Using Image Data Generator Methods

This approach is used to generate data examples from the
current samples. It is beneficial when the dataset contains
a limited number of instances or exhibits class imbalance.
We may use many geometric techniques to generate aug-
mented data. This approach facilitates the learning of a class-
imbalanced dataset and enhances the model’s generalization,
reducing overfitting. The model acquires the ability to handle
unexplored versions of training samples. We used the Image
Data Generator package from Kera’s to do image augmenta-
tion. The following are the approaches that were executed for
this objective:

1) Random zoom: It dynamically zoomed into the provided
image. In this work, the zoomed value is fixed to 0.1 percent.

2) Random rotation: It dynamically rotates the provided
image based on the specified value. The rotated value is fixed
at 30 degrees.

3) Horizontal flip: This option randomly inverts the image
horizontally to alter the positioning of its sides.

4) Width shift: It horizontally alters the image’s width, with
a value established at 0.2 percent of its overall width.

5) Height shift: It vertically alters the image’s height, with
a value established at 0.2 percent of its overall height.
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D. Data Augmentation Using DCGAN Method

Deep Convolutional Generative Adversarial Networks (DC-
GANs) are a class of generative models that utilize deep
convolutional layers to generate realistic images from random
noise. They are built upon the framework of traditional GANSs,
which consist of two neural networks: a generator and a
discriminator. Figure ( 2 and 3) illustrates its architecture.
The generator learns to produce synthetic images, while the
discriminator evaluates their authenticity. Both networks are
trained simultaneously in an adversarial process, where the
generator aims to create images that can deceive the discrim-
inator, and the discriminator strives to distinguish between
real and generated images.The generator creates progressively
more naturalistic pictures throughout the training to deceive the
discriminator. This adversarial strategy incrementally enhances
the quality of the produced pictures. The generator learns
explicitly to translate random noise vectors into picture spaces
that mimic the distribution of authentic endometriosis images.
At the same time, the discriminator acquires the ability to
differentiate between actual and faked images. Ultimately,
this leads to the generator creating high-fidelity synthetic
endometriosis pictures that closely mimic authentic ones.

DCGANSs introduce specific architectural enhancements,
including the use of convolutional layers instead of fully
connected layers, which improves spatial structure preserva-
tion in the generated images. Additionally, techniques like
batch normalization and the use of Leaky ReLU activation
functions enhance training stability and convergence. These
improvements enable DCGANSs to generate high-quality and
coherent images across various domains, such as medical
picture classification, and objects.

The structured use of convolutional layers helps the model
learn hierarchical representations, which are crucial for pro-
ducing realistic outputs. Furthermore, the adversarial training
approach encourages the generator to refine its outputs itera-
tively, leading to visually convincing results. Due to their effec-
tiveness and simplicity, DCGANs have become a foundational
model in the field of generative image synthesis and serve as a
basis for more advanced architectures in related applications.

DCGANSs can generate data from existing samples. In sit-
vations like medical picture classification, gathering sufficient
data to build a big deep learning model is crucial, which might
be arduous. Utilizing presently accessible data, we may pro-
duce new samples with DCGANSs; these synthetic samplings
do not directly correspond to actual patients. This technology
has expedited the use of deep learning in medical imaging;
nonetheless, it requires significant improvement in accurately
collecting delicate tissues from images. In this study employs a
deep convolutional GAN (DCGAN) [46] to generate synthetic
endometriosis images featuring pathologies diseases in the
used dataset. A deep generative model of around five layers
was used with a relatively slight discriminator network. The
complex architecture assists in detecting subtle tissues within
the endometriosis images. DCGAN was used for this analysis
because of its stability in terms of simplicity and efficacy in
producing high-quality pictures. In contrast to more intricate
GAN variations like CGAN, BEGAN, WGAN, and DCGAN,
it offers a simple architecture that is easy to build and tune,
rendering it appropriate for our application in medical image
creation. Moreover, DCGAN has been extensively evaluated
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across many image synthesis tasks, showing its reliability and
effectiveness in creating realistic images, which coincides with
our objective of enhancing medical datasets.

We trained DCGANS to synthesize images of endometrio-
sis lesions, with separate models developed for each lesion
category. The training process involved alternating updates
to the generator and discriminator networks in an iterative
manner, allowing both networks to improve their performance
progressively. A learning rate of 0.0002 was employed, and
training was conducted for 200 epochs for each lesion category
to ensure adequate learning of the underlying data distribution.

The input dataset consisted of original images with a res-
olution of 224 x 224 pixels, and a batch size of 128 was used
during training to optimize computational efficiency. Upon
completion of the training process, we generated 300 synthetic
images for each lesion category. Each class-specific training
session required approximately 20 hours to complete on a local
PC equipped with an Intel i7-7820HQ CPU. These synthesized
images were then merged with the original dataset to augment
the data available for subsequent analysis or model training.
This approach ensured an expanded and balanced dataset that
could potentially improve downstream performance in tasks
such as endometriosis lesions classification or segmentation.

To evaluate the visual quality of the synthesized images,
a radiologist with expertise in endometriosis assessed the
synthetic lesions for their resemblance to real clinical cases.
The radiologist’s analysis focused on key morphological fea-
tures, such as texture, contrast, and spatial distribution, to
determine whether the synthetic lesions accurately mirrored the
appearance of genuine endometriosis implants. By conducting
training independently for each lesion category and ensuring
consistency in the training parameters, we aimed to achieve
high-quality image synthesis across all categories. This method
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Fig. 4. DCGANSs synthetic images.

highlights the potential of DCGANSs in generating synthetic
data that closely resembles real-world medical images, con-
tributing to the development of robust datasets in medical
imaging research.Figure (4) displays examples created for the
pathology class after 200 epochs.

E. Training Phase

This section emphasizes some of the primary details ap-
plied in the training stage, such as kinds of models, hyperpa-
rameters, and classifier architectures.

1) Dataset split: In supervised machine learning and deep
learning workflows, datasets are first divided into distinct
sets for training, validation, and testing. Image augmentation,
commonly performed on the training and potentially validation
sets, aids in model generalization during the training and op-
timization stages. To ensure unbiased results, test data usually
remains unaugmented to evade data leakage. Nevertheless,
recent research highlights that augmenting test data can also
be valuable in examining model robustness.In this work, the
dataset is divided into 70% for training, 20% for validation,
and 10% for testing.
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e  Training Images: 17977
e  Validation Images: 5136
e  Testing Images: 2569

2) Model architectures: In this study, several deep learning
models were evaluated using the Glenda dataset to assess
their performance across different architectures. Three mod-
els (VGGI19, InceptionV3, MobileNetV2)were implemented
utilizing the Keras library in Python. Transfer learning was
utilized for the convolutional layers to initialize these models,
while random initialization was applied to the fully connected
layers. The classifier network was built with a custom design
that included two hidden layers and an output layer containing
two neuron units, each assigned to a specific class. This
minimalist design, featuring fewer layers and neurons, was
strategically utilized to avoid overfitting.

3) MobileNetV2: MobileNetV2 [48] is recognized as a
lightweight convolutional neural network (CNN) that is gen-
erally utilized in miscellaneous applications. It improves the
MobileNetV1 model by introducing new modules, especially
inverted residuals and linear tie-ups. The essence design of
MobileNet is established on depthwise divisible convolution.
This approach differs from standard 2-dimensional convolu-
tion, which treats all input channels uniformly to produce one
output channel. Instead, depthwise convolution applies filters
independently to each input channel, resulting in separate
output channels that are subsequently combined. The separable
depth-wise convolution process involves a subsequent 1x1
point-wise convolution, which merges these output channels
into one final channel. This method provides the same output
as traditional convolution while being more efficient due to a
reduced number of parameters.Figure 5 presents the graphical
representation of the MobileNetV2 framework.

4) Hyper parameters: In this study, we kept hyper param-
eters uniform across all models, allowing for a precise and
fair comparison of each model’s performance. This consistent
approach allowed for a clear assessment of each model’s
relative performance.
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a) Optimizer: In our optimization process, we rigor-
ously tested two methods: Stochastic Gradient Descent (SGD)
and Adaptive Momentum Estimation (Adam). After multiple
iterations, we found that both optimizers performed similarly.
However, we chose the Adam optimizer for training, as it is
a more advanced technique for learning model weights and
has been proven to enhance convergence and stability in deep
learning models.

b) Learning rate: Since we utilized pre-trained weights
through transfer learning for the convolutional networks in
our models, we opted for a low learning rate, set explicitly
at 0.0001, to ensure stable training.

¢) Activation functions: ReLU was implemented across
all layers, excluding the output layer, adding non-linearity to
enhance model performance. In the output layer, we applied
the softmax function, which is well-suited for labeled classifi-
cation, as it allows each neuron to generate separate outputs.

d) Loss function: We opted for Binary Cross-Entropy
(BCE) to calculate loss, which allows us to consider each label
independently.

IV. RESULTS

This section presents a detailed account of the results
obtained from our experimental research and describes the
programming environments employed to achieve these results.
For clarity, each aspect is discussed in separate subsections.

A. Experimental Setup

The large dataset influenced our choice of programming
environments to conduct deep learning experiments. We car-
ried out model implementation and training on our Dell laptop,
assembled with a 1.80 GHz Intel Core i5 CPU and 16 giga-
bytes of RAM. Our approach leveraged Python libraries such
as TensorFlow, Keras, and sci-kit-learn for effective attribute
classification. Jupyter Notebook enabled efficient program
development and data analysis, and we observed satisfactory
results across several models.

B. Evaluation Procedure

In order to make a comprehensive comparison of model
classification performance, this paper leverages various metrics
associated with the confusion matrix, including precision,
recall, Fl-score, and accuracy.Accuracy calculates the model’s
prevalent correctness, while precision focuses on the reliability
of optimistic predictions. Recall quantifies the model’s sensi-
tivity by measuring the proportion of true positives, and speci-
ficity assesses the ability to identify negative cases correctly.
We clearly understand each model’s strengths and weaknesses
by calculating and analyzing these metrics. The formulas for
calculating these performance metrics are provided below.

Accuracy = TP+ TN @))
YT TPYTN+FP+FN
TP
Precision = m (2)
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TP
Recall = ———
A= TPYFN 3)

Floscore — 9 - Prec?is.ion - Recall @)
Precision + Recall

In this equation, TP, or True Positive, refers to the count
of positive cases accurately identified as positive. FN, or False
Negative, represents the number of positive cases mistakenly
classified as negative. FP, or False Positive, denotes the count
of negative cases incorrectly labeled as positive, while TN, or
True Negative, captures the number of negative cases correctly
classified as negative.

C. Area Under the Curve (AUC)

The ROC curve is commonly used to evaluate how well
a model can distinguish between different classes. It is based
on plotting the True Positive Rate (TPR) and False Positive
Rate (FPR) across different thresholds. Since TPR and FPR are
directly proportional, they increase together. The ROC curve
visually represents this relationship and enables calculation of
the Area Under the Curve (AUC), where a larger AUC value
implies a more robust classification capability. Thus, a higher
AUC indicates better model performance.

D. VGGI9

In analyzing endometriosis lesion images, spatial data is
crucial for effective disease classification. Deep learning-based
models are frequently employed to capture these essential
features, and VGG19, a highly layered convolutional model,
was chosen for this study. We applied VGG19 with pre-trained
weights for feature extraction and added a custom three-layer
classifier. The model was trained across three configurations
with varying epochs (3, 7, 14, and 20) and a batch size of
(32, 64, and 128), resulting in above-average performance
metrics with an accuracy of up to 88%. Table I compiles the
results of tests conducted without data augmentation, providing
insights into the baseline performance of our endometrio-
sis lesion detection algorithm. Table II, on the other hand,
presents the outcomes when data augmentation techniques are
applied, showcasing the improvements in detection accuracy
and robustness achieved through augmentation. Figures 6 and 7
illustrate the loss trajectories and accuracy trends, respectively,
for the VGG19 model trained on the baseline dataset (without
augmentation). In contrast, the effects of incorporating data
augmentation are evident in Figures 8 and 9, which depict the
model’s loss dynamics and classification performance under
enhanced training conditions. Figure 10 shows the confusion
matrices illustrating the endometriosis lesion classification
outcomes from testing the VGG19 model. The AUC-ROC
curve, which can be seen in Figure 11, also explains the result
of the VGG19 model.

E. InceptionV3

The InceptionV3 model offers an optimized approach to
achieve high classification accuracy without relying on an ex-
tensive network architecture. With fewer learnable parameters
than the VGG19 model, InceptionV3 provides an efficient al-
ternative that still delivers excellent classification performance.
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TABLE I. VGG19 MODEL RESULTS WITHOUT DATA AUGMENTATION
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TABLE II. VGG19 MODEL RESULTS WITH DATA AUGMENTATION

Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%) Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%)
32 56 54 55 56 32 60 60 61 61
3 64 57 57 56 57 3 64 62 61 62 63
128 59 59 59 60 128 64 63 64 65
32 63 63 63 63 32 68 69 69 70
7 64 65 64 64 65 7 64 72 72 73 73
128 66 65 66 66 128 74 74 75 75
32 70 70 69 70 32 77 76 77 78
14 64 74 73 73 74 14 64 79 79 79 80
128 77 77 77 78 128 82 83 83 84
32 80 80 79 80 32 84 84 85 85
20 64 80 79 80 80 20 64 87 87 87 88
128 81 81 81 82 128 88 87 88 88
Training and Validation Loss without Data Augmentation Training and Validation Loss
1.1 i 11
—e— Training Loss —e— Training Loss
Validation Loss Validation Loss
1.0 1.0
0.9 0.9
0.8 0.8
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Fig. 6. VGG19 loss display without data augmentation. Fig. 8. VGG19 loss display.
Training and Validation Accuracy without Data Augmentation Training and Validation Accuracy
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0-807 0.85
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—&— Training Accuracy —@— Training Accuracy
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0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

Fig. 7. VGG19 accuracy display without data augmentation.

Its design prioritizes streamlined architecture, balancing effec-
tiveness with computational efficiency.InceptionV3 model was
trained across three configurations with varying epochs (3, 7,
14, and 20) and a batch size of (32, 64, and 128), resulting
in above-average performance metrics with an accuracy of up
to 97%, that are higher than VGG19. Table III compiles the
results of tests conducted without data augmentation, providing
insights into the baseline performance of our endometriosis
lesion detection algorithm. Table IV, on the other hand,
presents the outcomes when data augmentation techniques are

0.0 25 5.0 7.5 10.0 125 150 175
Epoch

Fig. 9. VGG19 accuracy display.

applied, showcasing the improvements in detection accuracy
and robustness achieved through augmentation. Figures 12
and 13 illustrate the loss trajectories and accuracy trends,
respectively, for the InceptionV3 model trained on the baseline
dataset (without augmentation). In contrast, the effects of
incorporating data augmentation are evident in Figures 14 and
15, which depict the model’s loss dynamics and classification
performance under enhanced training conditions. Figure 16
shows the confusion matrices illustrating the endometriosis
lesion classification outcomes from testing the InceptionV3
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Fig. 10. VGG19 confusion matrix.
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Fig. 11. VGG19 AUC-ROC curve.
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model. The AUC-ROC curve, which can be seen in Figure
17, also explains the result of the InceptionV3 model.

TABLE III. INCEPTIONV3 MODEL RESULTS WITHOUT DATA

AUGMENTATION
Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%)
32 65 63 64 65
3 64 67 67 67 67
128 70 69 69 70
32 73 72 73 73
7 64 75 75 75 76
128 80 79 79 80
32 83 83 82 83
14 64 87 85 86 87
128 88 88 89 89
32 90 89 89 90
20 64 90 91 90 91
128 92 91 92 92

FE. MobileNetV2

MobileNetV2 builds on the foundation of MobileNetV1
with an updated architecture featuring fewer learnable param-
eters for greater efficiency.MobileNetV2 model was trained
across three configurations with varying epochs (3, 7, 14,

Training and Validation Loss without Data Augmentation
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n
a
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Fig. 12. InceptionV3 loss display without data augmentation.
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Fig. 13. InceptionV3 accuracy display without data augmentation.

TABLE IV. INCEPTIONV3 MODEL RESULTS WITH DATA AUGMENTATION

Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%)
32 52 53 53 54
3 64 56 56 57 58
128 59 58 58 59
32 62 63 61 63
7 64 68 69 71 72
128 80 80 82 83
32 89 88 89 90
14 64 90 91 89 92
128 92 92 92 93
32 92 93 93 94
20 64 95 94 96 96
128 96 97 97 97

and 20) and a batch size of (32, 64, and 128), resulting in
above-average performance metrics with an accuracy of up to
99%, which are higher than InceptionV3. Table V compiles the
results of tests conducted without data augmentation, providing
insights into the baseline performance of our endometriosis
lesion detection algorithm. Table VI, on the other hand,
presents the outcomes when data augmentation techniques are
applied, showcasing the improvements in detection accuracy
and robustness achieved through augmentation. Figures 18
and 19 illustrate the loss trajectories and accuracy trends,
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Fig. 14. InceptionV3 loss display.
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Fig. 15. InceptionV3 accuracy display.
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Fig. 16. InceptionV3 confusion matrix.

respectively, for the MobileNetV2 model trained on the base-
line dataset (without augmentation). In contrast, the effects of
incorporating data augmentation are evident in Figures 20 and
21, which depict the model’s loss dynamics and classification
performance under enhanced training conditions. Figure 22
shows the confusion matrices illustrating the endometriosis
lesion classification outcomes from testing the MobileNetV2
model. The AUC-ROC curve, which can be seen in Figure 23,
also explains the result of the MobileNetV2 model.
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Fig. 17. InceptionV3 AUC-ROC curve.

TABLE V. MOBILENETV2 MODEL RESULTS WITHOUT DATA

AUGMENTATION
Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%)
32 70 70 69 70
3 64 70 70 71 71
128 72 72 71 73
32 73 74 74 75
7 64 76 77 77 78
128 79 80 79 80
32 83 84 83 84
14 64 83 84 84 85
128 85 86 86 87
32 90 90 89 90
20 64 92 91 92 92
128 93 94 94 95

Training and Validation Loss without Data Augmentation
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Fig. 18. MobileNetV2 loss display without data augmentation.

V. DISCUSSION

Endometriosis is one of the leading gynecological issues
facing women worldwide. Diagnosing and treating this con-
dition remains complex, particularly in settings with lim-
ited medical resources. Deep learning techniques applied to
medical imaging on large datasets have enabled computer
algorithms to achieve diagnostic accuracy similar to that of
healthcare professionals. In this research, we propose a deep
learning-based solution for classifying endometriosis lesions
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Fig. 19. MobileNetV2 accuracy display without data augmentation.

TABLE VI. MOBILENETV2 MODEL RESULTS WITH DATA

AUGMENTATION
Epochs Batch-Size |Precision (%)| Recall (%) |F1-Score (%)|Accuracy (%)
32 61 62 61 62
3 64 61 61 62 63
128 65 65 65 65
32 67 66 67 68
7 64 70 70 71 73
128 79 80 79 80
32 83 84 82 84
14 64 86 87 87 87
128 91 91 91 92
32 94 93 94 94
20 64 95 96 96 97
128 99 99 99 99
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Fig. 20. MobileNetV2 loss display.

TABLE VII. OVERALL RESULTS

#
Deep Learning Accuracy without Accuracy with
Models Data Augmentation (%) | Data Augmentation (%)
1 VGG19 82 88
2 InceptionV3 92 97
3 MobileNetV2 95 99

Vol. 16, No. 6, 2025
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Fig. 21. MobileNetV2 accuracy display.
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Fig. 23. MobileNetV2 AUC-ROC curve.

in laparoscopy images, utilizing the MobileNetV2 architec-
ture alongside a neural network classifier. We incorporate
both conventional methods and deep learning-based image
augmentation techniques. Experimental findings indicate that
deep learning models are well-suited to accurately classify
endometriosis lesions, facilitating a robust diagnostic tool for
endometriosis.

The incorporation of synthetic images into the training
process offers a substantial benefit to the performance of
deep learning models, particularly when dealing with small or
imbalanced datasets. In many real-world applications, such as
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TABLE VIII. COMPARED WITH DIFFERENT TECHNIQUES EMPLOYED BY
OTHER RESEARCHERS

# Citation Classifier Accuracy (%)
1 Visalaxi et al. (2021) [36] ResNet50 91

2 Yun et al. (2021) [43] VGGNet-16 90.80

3 Takahashi al. (2021) [44] DNN 90.29

4 Leibetseder al. (2022) [40] Faster-RCNN 32.4 (precision)
5 Sudalaimuthu al. (2022) [45] U-Net 74 (F1-score)

6 Figueredo al. (2024) [46] Ensemble of Networks 96.67

7 Zaidi al. (2025) [5] Inception V3 93

8 Our proposed MobileNetV2 99

medical imaging, obtaining a large and representative dataset
can be a significant challenge. Synthetic image generation
addresses this limitation by augmenting the dataset, providing
the model with a broader spectrum of examples, including rare
or underrepresented cases. This allows the model to learn more
robust and generalized features, which directly contributes to
improvements in key performance metrics such as accuracy,
precision, and recall. When compared to models trained solely
on real images, those trained with synthetic images exhibit
superior handling of rare classes. This is particularly important
in fields like medical imaging, where certain conditions or
abnormalities may be infrequent but critical for diagnosis. By
increasing the diversity of the training data, synthetic images
help to reduce bias toward more common classes, ensuring
that the model does not develop a skewed understanding of
the data. As a result, models trained with synthetic images are
better equipped to identify and classify rare conditions, leading
to a decrease in false negatives and an overall improvement in
recall.

Moreover, synthetic images enhance the generalization
ability of deep learning models. With more varied and com-
prehensive data, models are better prepared to perform well
on unseen data, a crucial aspect for deployment in real-world
scenarios. This greater ability to generalize ensures that the
model’s performance remains consistent when faced with new,
previously unobserved examples. Thus, synthetic images play
a vital role in improving not only the accuracy and reliability of
deep learning models but also their ability to adapt to diverse
and unpredictable data, particularly in specialized fields such
as medical imaging.

In our comparative evaluation of convolutional neural net-
work architectures, MobileNetV2 demonstrated superior per-
formance relative to models such as VGG19 and InceptionV3,
mainly due to MobileNetV2’s lightweight and efficient struc-
ture, making it ideal for mobile and embedded deployment.
With fewer parameters, it offers faster and simpler training
and deployment. Experimenting with 32, 64, and 128 batch
sizes, we achieved a favorable trade-off between accuracy and
computational efficiency at a resolution of 224x224. Scaling
pixel values from 0 to 1 was the most effective for normaliza-
tion. Additionally, we observed that while fine-tuning the fully
connected layer and freezing convolutional layers maintained
stable performance, it did extend convergence time.

Table VII presents a comparative analysis of various deep
learning algorithms tested on the GLENDA dataset, highlight-

Vol. 16, No. 6, 2025

ing the performance of each model in detecting endometriosis.
This comparison underscores the strengths and limitations of
different algorithms within the same dataset, allowing for
an evaluation of each model’s effectiveness in classifying
endometriosis lesions. Table VIII provides a summary of these
findings and compares the performance of our models to
existing state-of-the-art approaches, offering insights into how
our methods advance current standards in accuracy, precision,
and overall reliability for clinical decision support.

VI. CONCLUSION

Our approach, combining the MobileNetV2 model with
both conventional and deep learning-based augmentation tech-
niques, demonstrated high performance, achieving 99% in
recall, binary accuracy, and Fl-score. The integration of syn-
thetic samples generated by DCGAN significantly improved
training data diversity and addressed class imbalance issues
within the dataset. Specifically, by generating synthetic images
of endometriosis using DCGAN, we were able to enhance
the MobileNetV2 model’s accuracy, likely due to DCGAN’s
capacity to capture diverse manifestations of endometriosis
present in the GLENDA dataset. These findings underscore
the potential of deep learning models to accurately classify
endometriosis lesions from laparoscopy images, supporting
their use as clinical decision support tools for timely diagno-
sis. Additionally, synthetic data augmentation shows promise
for addressing similar challenges in other areas of medical
imaging, offering a pathway to more effective and reliable
diagnostic support systems. Future work will aim to further
improve system performance by expanding the dataset to
include a wider variety of laparoscopy videos, enhancing both
model accuracy and generalization across clinical scenarios.
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