
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Dynamic Polygon-Based Reverse Driving Detection
Technique for Enhanced Road Safety

Tara Kit1, Youngsun Han2, Anand Nayyar3, Tae-Kyung Kim4*
Department of AI Convergence, Pukyong National University, Busan, South Korea1,2

School of Computer Science, Duy Tan University, Da Nang 550000, Vietnam3

Department of Management Information Systems, Chungbuk National University,
Seowon-Gu, 28644, Cheongju, South Korea4

Abstract—Reverse driving and lane collapse pose serious risks
to road safety, especially on complex infrastructures such as
multi-lane highways, intersections, and roundabouts. Existing
detection systems often depend on rigid lane configurations and
struggle to adapt to varied road geometries and environmental
conditions. Prior works are typically limited to straight, multi-
lane roads and rely on automated boundary extraction, making
them unsuitable for irregular traffic layouts. To address this gap,
the objectives of this research paper is to propose a vision-based
detection system that combines the YOLOv8 object detector
with a dynamic polygon-based zone management strategy. The
system aims to detect reverse driving and lane collapse incidents
in real time using CCTV footage, without requiring additional
sensors. Its key novelty lies in manually configurable zones and
the integration of ByteTrack for robust vehicle tracking across
complex scenes. The system was tested under diverse real-world
parameters, including different road types (single-lane, multi-
lane, roundabouts), lighting conditions (day and night), and
traffic behaviors (normal flow, reverse, and collapse) and visual
evaluations highlight consistent and logically coherent results
across scenarios, highlighting its practical effectiveness for real-
time intelligent traffic monitoring.

Keywords—Reverse driving detection; lane collapse detection;
polygon zones; object detection; YOLOv8

I. INTRODUCTION

Preventing traffic accidents and maintaining efficient traffic
flow are critical challenges of modern transportation infras-
tructure [1]. Although wrong-way driving incidents account
for only 3% of global traffic accidents, they result in a dis-
proportionate 22% of traffic-related fatalities [2], highlighting
their severe impact. This underscores the urgent need for
effective detection and prevention systems to mitigate the
risks associated with dangerous driving behaviors, particularly
reverse driving and lane collapse incidents [3], [4], [5].

Recent advances in intelligent transportation systems have
played a crucial role in enhancing road safety and traffic
management. However, the increasing complexity of modern
road networks, diverse driving behaviors, and unpredictable
environmental conditions pose significant challenges to exist-
ing solutions. Traditional countermeasures, including physical
barriers and static signage, provide some deterrence but often
prove inadequate in dynamic traffic environments that require
rapid response. Although emerging detection technologies,
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including sensor-based and artificial intelligence AI-driven
methods, offer promising alternatives, they face limitations in
scalability, adaptability, and cost-effectiveness.

To address these challenges, this study proposes a novel
AI-driven detection system for identifying wrong-way driving
and lane collapse incidents in real-world traffic scenarios.
Using advanced computer vision techniques, the proposed
method enhances detection accuracy and robustness across
various road environments, including intersections, highways,
and roundabouts, making it well-suited for intelligent traffic
management systems.

The proposed approach integrates the state-of-the-art You
Only Look Once, version 8 (YOLOv8) [6] object detection
model with a dynamic polygon-based zone management sys-
tem, offering several key advantages:

1) Adaptive configuration: Dynamic polygon-based zones
adjust to various road configurations, enabling deployment
across diverse infrastructure environments.

2) Real-time processing: The lightweight architecture of
YOLOv8, combined with efficient zone management, enables
real-time detection and response.

3) Robust scene adaptability: The combination of polyg-
onal zones and ByteTrack enables reliable detection across
intersections, roundabouts, and complex traffic scenes.

4) Cost-effectiveness: The vision-based system requires
minimal additional infrastructure, making it accessible to trans-
portation authorities with varying resources.

Through the comprehensive evaluation of diverse datasets,
our approach demonstrates superior performance in detecting
reverse driving and lane collapse scenarios across various
road configurations. The system maintains high accuracy while
minimizing computational overhead, ensuring its suitability for
widespread deployment.

Objectives of the Paper:

• To conduct an in-depth literature review of diverse
driving behavior detection techniques proposed in
prior research, with a focus on identifying limitations
related to adaptability, road type constraints, and de-
ployment cost in existing systems;

• To propose a novel vision-based methodology for
detecting reverse driving and lane collapse behaviors
using CCTV surveillance. The purpose is to provide
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a lightweight and infrastructure-independent system
capable of adapting to a variety of real-world road
layouts, including intersections and roundabouts. The
novelty of the proposed system lies in its manually
configurable polygon-based zone management and
integration with YOLOv8 and ByteTrack for precise
object detection and multi-object tracking in complex
scenes;

• To test and validate the system’s performance across
varied traffic scenarios using visual assessments under
different lighting conditions (day and night), road
types (single-lane, multi-lane, roundabout), and behav-
ioral patterns (normal flow, reverse driving, and lane
collapse);

• And, to validate the proposed system in real-time
system responsiveness to detect and update reverse-
driving incidents immediately within video stream
processing.

The remainder of this paper is organized as follows. The lit-
erature review section analyzes existing detection methods and
their limitations. The methodology section details the system
architecture. The implementation details section summarizes
the steps of the algorithm, illustrating the logical workflow.
The result section discusses the experimental results across
various road configurations, demonstrating the effectiveness of
the system. Finally, the discussion concludes with insights into
future research directions and potential applications.

II. LITERATURE REVIEW

Research highlights the significant impact of wrong-way
driving and lane collapse incidents on road safety. The AAA
Foundation reported a 34% increase in driving against the
traffic flow incidents over the past five years, particularly on
highways and divided roads [7]. In the United States, annual
economic losses from such incidents exceed $5.2 billion,
encompassing direct damage, emergency response costs, and
productivity losses. Lane collapse incidents account for 18%
of highway accidents, with heightened risks under adverse
weather conditions and reduced visibility [8], [9].

Traditional countermeasures, including signage and phys-
ical barriers, have been widely implemented, yet their effec-
tiveness remains limited, preventing only 65% of wrong-way
entries [10], [11]. Electronic detection systems, such as road-
side cameras and automated warnings, can improve response
times but suffer from high false-positive rates (15–20%) and
incur high maintenance costs, averaging $50,000 annually per
installation [12]. Sensor-based solutions, including radar, lidar,
and GPS tracking, have also been explored [13], [14], [15],
[16], [17]. However, radar systems exhibit reduced accuracy
in adverse weather, lidar presents high deployment costs, and
GPS-based approaches require vehicle-mounted units, which
hinders scalability in public infrastructure applications.

Artificial intelligence (AI)-based systems, particularly
those utilizing convolutional neural networks (CNNs), have
demonstrated high accuracy in detecting traffic anomalies in
controlled environments. Studies report over 95% accuracy
in detecting lane violations and reverse movement under
ideal conditions [18], [19], [20], [21]. Nevertheless, real-world

deployment remains challenging due to lighting variation,
complex road geometries, and occlusions. Camera-based detec-
tion approaches, including dashcam footage and surveillance
systems, also require adaptation to varied environmental con-
ditions [22], [23], [24], [25]. Moreover, these methods often
struggle with performance in intersections, roundabouts, and
irregular traffic zones [26], [27].

Recent advances have sought to combine multiple tech-
niques to address these challenges. Hybrid systems integrating
vehicle detection, motion tracking, and infrastructure feed-
back have improved robustness. Vehicle-to-infrastructure (V2I)
methods offer real-time alerts, but remain costly and dependent
on specific installations [28]. Grouping-based vehicle detection
enhances classification accuracy but is vulnerable to changes
in weather, traffic density, and road layout [29]. Loop-type
detectors such as those from Sumitomo Electric require precise
calibration and suffer from false activations in dense traffic
areas [30].

Among recent contributions, the work by Suttiponpisarn et
al. [18] presents an enhanced system combining YOLOv4-Tiny
with FastMOT [31] and a road boundary extraction algorithm
(RLB-CCTV). This method achieves high accuracy using
embedded-suitable components, and replaces manual boundary
marking with automated lane detection based on edge and line
detection. However, it remains limited to straight roads. The
system’s dependency on statistical estimation for directional
flow and sensitivity to environmental conditions constrain its
applicability in complex or non-linear road structures such as
roundabouts or intersections.

These observations highlight the need for a flexible and
generalizable detection system that performs reliably across
diverse road conditions. Our study addresses this gap by
introducing a polygon-based zone framework integrated with
YOLOv8 for real-time detection and tracking. The proposed
approach allows users to manually configure detection zones
for arbitrary road layouts, enabling robust performance in
environments where automated methods or fixed detectors fail
to generalize.

III. METHODOLOGY

The proposed system is designed to detect reverse driving
and lane collapse incidents using video streams from roadside
CCTV cameras. The overall architecture is composed of four
primary modules: video input processing, dynamic zone setup,
movement detection and analysis, and real-time monitoring. A
visual overview of the framework is presented in Fig. 1.

A. Video Input and Frame Processing

Each video stream is processed frame-by-frame. Frames are
extracted in real time and passed to the object detection and
tracking module. This ensures the system can maintain tem-
poral continuity of vehicle movement and associate detection
results across time.

B. Object Detection and Vehicle Tracking

To detect vehicles, we use YOLOv8 [6], a state-of-the-art
object detection model known for its accuracy and efficiency,
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Fig. 1. Overview of the proposed traffic monitoring system architecture. (a) Video input module processes CCTV streams. (b) Configuration defines dynamic
detection zones. (c) Movement detection analyzes object transitions and detects anomalies. (d) Real-time monitoring generates alerts and visual output.

particularly in complex scenes. Each detected vehicle is repre-
sented by a bounding box and class label (e.g., “car”, “truck”).
The detection results are then passed to the ByteTrack multi-
object tracker [32], which assigns a unique tracker ID to each
vehicle.

ByteTrack in Section III-G operates by associating de-
tections across frames using Intersection-over-Union (IoU)
matching. It follows multiple steps which helps maintain
trajectory consistency even when detections are temporarily
uncertain or occluded.

C. Dynamic Zone Configuration

In the initial frame of the video, polygonal zones are
manually defined using OpenCV [33]. For a two-lane road,
four zones are created: in-zone-0, out-zone-0, in-zone-1, and
out-zone-1. These zones represent logical boundaries of entry
and exit for each lane (as shown in Fig. 2 and 3).

Each vehicle’s bounding box is evaluated in every frame
to check whether it intersects any of these predefined zones.
The result is stored as a binary occupancy value for that zone
(1 = inside, 0 = outside). Each tracker ID maintains a zone
presence vector over time.

D. Illustrative Example

Consider vehicle ID #3 on a single-lane road in Fig. 2:

• It enters in-zone-0 and later exits through out-zone-0.

• Its zone vector becomes (1,1,0,0), matching the first
row in Table I.

• Therefore, the reverse value is set to 0 (reverse driving
within the same lane).

By contrast, if a vehicle enters both in-zone-0 and
in-zone-1, but never exits correctly, its vector becomes
(1,0,1,0) and is assigned a reverse value of 1 (violation or
lane collapse) as shown in Fig. 3.

E. Real-Time Output and Monitoring

Once the reverse status is determined for a tracker ID, the
label is visualized in real time using bounding boxes and zone
overlays. Vehicles are annotated with their ID and reverse
status (e.g., “car (reverse: 1)”), enabling immediate visual
confirmation and alerting.

This modular pipeline ensures the system can operate
reliably across varied road configurations, including intersec-
tions and roundabouts, without retraining. The manual polygon
zone setup provides flexibility, while YOLOv8 and ByteTrack
ensure accurate detection and persistent identity tracking.

F. Reverse Driving Judgement

The algorithm, outlined in Table I, employs a zone-based
configuration with four distinct monitoring areas—in-zone-0
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Zone Configuration Setup

Define zones in the first frame of the video 
for vehicle detection single-lane road

in-zone-0

out-zone-0

Reverse Flow

Normal Flow

Identify the reverse driving event on a single-lane road

OBJ ID: 3
IN-ZONE-0: 1
OUT-ZONE-0: 1
REVERSE: 0

OBJ ID: 3
IN-ZONE-0: 0
OUT-ZONE-0: 0
REVERSE: -1

video
stream

frames extraction

Fig. 2. Zone configuration for single-lane road monitoring.
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Normal Flow

Identify the reverse driving event on a two-lane road
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OUT-ZONE-0: 0
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OUT-ZONE-1: 0
REVERSE: -1

in-zone-1

out-zone-1

OBJ ID: 3
IN-ZONE-0: 1
OUT-ZONE-0: 0
IN-ZONE-1: 1
OUT-ZONE-1: 0
REVERSE: 1

Fig. 3. Zone configuration for two-lane road monitoring.

TABLE I. ZONE TRANSITION STATES AND THEIR CORRESPONDING
REVERSE VALUES. THE ’REVERSE’ COLUMN INDICATES WHETHER A

VEHICLE IS IN AN UNKNOWN STATE (-1), REVERSE WITHIN ITS LANE (0),
AND COLLAPSE ON OTHER LANES (1)

in-zone-0 out-zone-0 in-zone-1 out-zone-1 reverse

1 1 0 0 0

0 0 1 1 0

1 0 0 1 1

0 1 1 0 1

1 0 1 0 1

0 1 0 1 1

else -1 (unknown)

and out-zone-0 for the left lane, and in-zone-1 and out-zone-1
for the right lane, as depicted in Fig. 3. The occupancy of each
zone is binary (0 or 1), enabling precise vehicle movement
tracking and directionality assessment. The algorithm evaluates
all possible combinations of zone occupancies to detect reverse
driving incidents. The ‘reverse’ column in Table I represents
the detection outcome, where 0 indicates reverse driving within
the same lane, 1 signifies cross-lane reverse driving or lane
collapse, and -1 indicates ambiguous cases requiring further
analysis. This six-row approach effectively identifies and as-
sesses vehicle movements, enhancing detection accuracy for
traffic anomalies on two-lane roads. This approach provides
a robust framework for automated reverse driving detection,
improving traffic safety by identifying potentially hazardous
situations.

The implementation, illustrated in Fig. 3, demonstrates
both normal traffic flow and lane collapse scenarios, with
corresponding zone transition states documented in Table I.
This comprehensive method ensures accurate monitoring and
timely detection of reverse driving events, contributing to
traffic safety.

G. Vehicle Tracking

ByteTrack [32] is employed as a robust multi-object track-
ing algorithms that effectively track objects, including vehicles,
by utilizing both high-confidence (Dhigh) and low-confidence
(Dlow) detection. This algorithm serves as the starting point
of Algorithm 1, which analyzes the movements of tracked
vehicles and assigns each one a unique tracker_id, as
defined in Algorithm 1.

The ByteTrack tracking mechanism involves the following
main steps:

1) Detection set division: At each frame t, the detections
are divided into:

Dt = Dhigh,t ∪Dlow,t, (1)

where:

• Dhigh,t: comprises detections with confidence c > τ ,
where τ is a high confidence threshold.

• Dlow,t: include detections with confidence τlow < c ≤
τ , where τlow is a lower confidence threshold.

2) Matching with high-confidence detections: High-
confidence detections are matched to existing tracks Tt using
the intersection over union (IoU) metric:

IoU(di, Tj) =
|bi ∩ bj |
|bi ∪ bj |

, (2)

where bi and bj are the bounding boxes of detection di
and track Tj , respectively. The Hungarian algorithm is used to
find the optimal matching:

Tmatched = Hungarian(Tt, Dhigh,t, IoU). (3)
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3) Incorporation of low-confidence detections: To prevent
track loss, unmatched tracks from the high-confidence step are
matched with low-confidence detections:

Tlow-matched = {(t, d) | (4)
IoU(t, d) ≥ τlow,

t ∈ Tunmatched, d ∈ Dlow,t} (5)

4) Track update: Matched tracks are updated using Kalman
filtering [34] to refine the bounding box predictions:

bupdated = K(bpredicted, bnew), (6)

where bpredicted is the predicted state of the track, bnew is
the observed detection, and K represents the Kalman filter.

5) New track initialization: Unmatched high-confidence
detections are initialized as new tracks:

Tnew = {bi | bi ∈ Dhigh,t, bi /∈ Tmatched}. (7)

6) Track termination: Tracks are terminated if they remain
unmatched for k consecutive frames:

Tterminated = {t | ∆t > k, t /∈ Tupdated}. (8)

IV. IMPLEMENTATION DETAILS

Algorithm 1 is designed to detect reverse driving by pro-
cessing object detections with their associated tracker_id
and bounding boxes. The algorithm’s primary goal is to update
reverse_conditions for each detection, which stores
information about tracked objects.

Algorithm 1 Detecting Reverse Driving and Lane Collapse
Input: Detections with tracker_id and bounding boxes
Output: Detections with updated reverse_conditions
tracker_id: An object being tracked
reverse_conditions: Stores values related to tracked
objects (as in Table I) Initialize reverse_conditions
for all detections ForEach detection in detections

Extract tracker_id and bounding box Initialize
reverse_conditions[tracker_id]

end
ForEach zone in zones

ForEach tracker_id in zone
Update zone information for tracker_id Check if
tracker_id moved in or out of the zone If reverse
driving is detected
reverse_conditions[tracker_id] ←
true

end
end
Return detections with updated
reverse_conditions

It begins by initializing reverse_conditions for
all detections in the input data. The process then iterates

through each detection, extracting the tracker_id and
bounding box information, and initializes the corresponding
reverse_conditions entry for that tracker_id. The
core detection logic operates by examining each zone and the
tracker_ids within them. For each tracker_id present
in a zone, the algorithm updates the zone information and
monitors whether the tracked object has moved in or out of
the zone. When reverse driving behavior is detected, the algo-
rithm sets the reverse_conditions for the corresponding
tracker_id.

After processing all zones and their associated
tracker_ids, the algorithm concludes by returning
the complete set of detections with their updated value of
reverse_conditions as shown in ’reverse’ column in
Table I, providing a comprehensive record of any reverse
driving incidents detected during the analysis.

V. RESULTS

To validate the proposed system, we present qualitative
results using real-world video footage across various scenar-
ios. Fig. 4 to 7 demonstrate the system’s ability to detect
normal and reverse driving behavior in single-lane, multi-
lane, nighttime, and roundabout road conditions. These case
studies confirm the robustness and practical performance of
the system, even in complex or low-visibility environments.

in-zone-0

out-zone-0

#13 : car (reverse: 0)

#5 : car (-1 unknown)

Fig. 4. Result of monitoring on single-lane road configuration.

in-zone-0

out-zone-0

#5 : car (reverse: 0)

out-zone-1

in-zone-1

#10 : car (reverse: 0)

Fig. 5. Result of monitoring on double-lane road configuration.

The real-world implementation demonstrates the effective-
ness of the reverse driving detection algorithm on single-lane
road segments. As shown in Fig. 4, the system successfully
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TABLE II. COMPARISON BETWEEN THE PROPOSED METHOD AND SUTTIPONPISARN ET AL. [18]. THE TABLE HIGHLIGHTS DIFFERENCES IN DETECTION
FLEXIBILITY, DEPLOYMENT SCOPE, AND CORE ALGORITHMIC CHOICES

Aspect Suttiponpisarn et al Proposed Method

Detection Model YOLOv4-Tiny YOLOv8

Tracking Algorithm FastMOT ByteTrack

Zone Definition Automated rectangular zones via edge detection Manual polygonal zones for flexible layout

Supported Road Types Straight, unobstructed multi-lane roads Multi-lane, intersections, roundabouts

Lighting Adaptability Requires brightness correction Works under day/night

Object Focus Motorcycle detection in 4 test locations All vehicles across diverse traffic scenarios

Evaluation Type Quantitative (96.61% accuracy) Qualitative visual validation

False Positive Handling Measured and reported Acknowledged; future work planned

out-zone-0

out-zone-1

in-zone_1

#25 : car (-1 unknown)

#2 : car (reverse: 0)

#20 : car (-1 unknown)#21 : ca

#6 : car (-1 unknown)

#15 : car (-1 unknown)

Fig. 6. Result of monitoring at night condition.

out-zone-0

out-zone-1

#5 : car (-1 unknown)
in-zone-1

in-zone-0

#14 : car (reverse: 0)

#17 : car (-1 unknown)

Fig. 7. Result of monitoring on roundabout road configuration.

monitors vehicle movement through defined zones on a pri-
mary road. A test case with vehicle #13 demonstrated normal
forward motion. The vehicle traversed through in-zone-0 and
out-zone-0, with the algorithm correctly assigning reverse: 0
based on the zone transition states in Table I. This corresponds
to the first row of the transition table, where the activation of
both zones in a single lane (1,1,0,0) indicates proper directional
flow. Additionally, the system simultaneously tracks multiple
objects. For instance, vehicle #5 was detected in an unknown
state (-1), aligning with the undefined state conditions of the
table. These results validate the capability of the algorithm
to differentiate normal and reverse driving patterns in real-
time monitoring scenarios. The clear zone demarcation enables
reliable movement classification.

The monitoring capabilities of the system were further

tested in multi-lane scenarios, where multiple vehicles were
tracked simultaneously. As shown in Fig. 5, the algorithm cor-
rectly classifies vehicle #5 in out-zone-0/in-zone-0 and vehicle
#10 in in-zone-1/out-zone-1 with reverse: 0. This aligns with
the zone transition states of Table I, where the simultaneous
occupation of zones (0,0,1,1) indicates normal directional flow
in the right lane. Clear zone delineation between lanes (red for
lane 0 and green for lane 1) enables accurate vehicle tracking
and classification. These results validate the effectiveness of
the algorithm in complex multi-vehicle, multi-lane monitoring
scenarios.

Fig. 6 presents results from nighttime highway monitoring.
Vehicles are detected and annotated with bounding boxes and
labels. Vehicle #2, labeled ’car (reverse: 0)’, indicates it is
traveling against the flow of traffic in out-zone-0.

The reverse driving detection algorithm can monitor round-
about scenarios, where dynamic polygonal zone setups present
unique challenges. Fig. 7 demonstrates the performance of the
system at a roundabout intersection, where multiple vehicles
are tracked simultaneously. Detected vehicles include vehicle
#14 in out-zone-0 (reverse: 0), indicating normal flow and
vehicles #17 and #5 in unknown states (-1) due to movement
through zones that do not conform to the standard transition
patterns in Table I. The system effectively monitors multiple
entrance and exit points, although the increased complexity
of roundabout navigation results in a higher frequency of un-
known state classifications compared to straight road segments.

A. Analysis

To further evaluate the strengths and limitations of the
proposed system, we conducted a comparative analysis with a
closely related work by Suttiponpisarn et al. [18]. Their method
combines YOLOv4-Tiny for object detection, FastMOT [31]
for tracking, and an automated road boundary extraction al-
gorithm (RLB-CCTV) that utilizes edge detection and Hough
transforms to define lane boundaries. The system is designed
for embedded devices and achieves high accuracy (96.61%) for
detecting wrong-way motorcycles on straight, well-lit roads.

However, their approach presents several constraints. It
is restricted to straight, unobstructed multi-lane roads and
depends on brightness correction and predefined geometric
assumptions. It does not support curved roads, roundabouts,
or intersections—scenarios which are common in urban traffic
environments.
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In contrast, our method uses manually defined polygonal
zones that can be flexibly adapted to any road geometry.
The system is validated qualitatively across multiple complex
real-world scenarios, including intersections and roundabouts,
and performs reliably under both day and night conditions.
Moreover, we adopt YOLOv8 for object detection, which
has demonstrated superior accuracy and generalization over
YOLOv4-Tiny in benchmark evaluations, particularly in de-
tecting small or partially occluded objects [6]. Table II sum-
marizes the key differences between the two approaches.

This comparative analysis underscores the broader appli-
cability and deployment flexibility of our method, particularly
in urban environments where roads are non-linear and traffic
conditions are more dynamic.

VI. CONCLUSION AND FUTURE WORK

The research paper proposes a novel system for detecting
reverse driving and lane collapse using CCTV-based video
monitoring. The system integrates YOLOv8 for object de-
tection, ByteTrack for vehicle tracking, and manually defined
polygonal zones for flexible configuration across different road
layouts. The novelty of the method lies in its adaptability
to intersections, roundabouts, and non-linear road geometries
without relying on additional sensors or automated boundary
extraction. Experimental results show consistent visual perfor-
mance across day, night, single-lane, multi-lane, and round-
about scenarios. However, the evaluation remains qualitative
due to the absence of labeled datasets.

In the near future, it is planned to focus on developing
dynamic zone adjustment mechanisms that extend beyond
straight road detection. In contrast to prior approaches that
rely on automated boundary extraction limited to linear lane
structures, the proposed direction will aim to support adaptive
zone generation for complex geometries such as roundabouts,
intersections, and curved roads. This advancement is expected
to reduce manual configuration effort and improve generaliz-
ability. In addition, the work will include quantitative evalua-
tion using annotated datasets to assess detection accuracy, false
detection rates, and latency. These improvements can further
enhance the system’s robustness and scalability for real-world
intelligent traffic surveillance.
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