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Abstract—One of the most serious malignancies that affects
women’s health worldwide is ovarian cancer. As a result, prompt
accurate diagnosis and treatment are necessary. This study’s
primary objective is to determine whether or not OC is present
within the body of a person by using a range of characteristics
gleaned with a couple of health examinations. The article is
concentrated on twelve ML techniques used for OC diagno-
sis. The dataset has been altered by applying the borderline
SVMSMOTE method to address the imbalance properties and
the MICE imputation method to impute the missing values in
order to enhance the performance of the classifiers. Addition-
ally, the boruta approach and recursive feature reduction has
been utilized to identify the most important features while the
hyper parameter tuning strategy has been employed to improve
classifier performance and provide ideal solutions.Boruta opted
just 50% of the total characteristics and outperformed RFE
while considering the most important feature. Furthermore, many
performance measures are used to determine which classifiers are
the best in identifying OC. Voting classifier surpassed state-of-
the-art approaches and other machine learning methods with the
highest accuracy. The suggested approach obtained the highest
average of 93.06% accuracy, 88.57% precision, 96.88% recall,
92.54% F1-score, and 93.44% AUC-ROC based on experimental
results. Experiments show that in comparison with the state-of-
the-art techniques, our suggested method can identify OC more
accurately.

Keywords—Ovarian cancer detection; machine learning frame-
work; data balancing; feature selection

I. INTRODUCTION

Globally, ovarian cancer (OC) is one of the most com-
mon cancers in women. As to the most recent worldwide
cancer data published in 2021, there are roughly 314,000
new ovarian cancer cases (3.4% of all new cancer cases in
women) and 207,000 ovarian cancer deaths annually (4.7%
of all women’s cancer deaths) [1]. Most of the time, ovarian
cancer is discovered in its later stages due to a absence of
specific symptoms and indicators as well as improper screen-
ing, which frequently results in unfavorable consequences
[2], [3]. In general, gynaecologists have to determine if a
patient has grown malignant pelvic lumps, which may indicate
a tumour. Although certain approaches such as h CT and
ultrasound have been used to differentiate benign tumors from
malignant non-gynecologic conditions, tumor biomarkers such
as human epididymis protein 4 (HE4), carbohydrate antigen
125 (CA125) and carbohydrate antigen 72-4 (CA72-4) are
critical in differentiating between pelvic masses of women
[4]. To stratify patients with OC into benign and malignant

categories, machine learning (ML) models such as Light Gra-
dient Boosting Machine (LGBM), Gradient Boosting Machine
(GBM), Extreme Gradient Boosting Machine (XGBoost), Lo-
gistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), Decision Tree (DT), and are utilised in the
construction of classification models [5].

Compared to traditional methods, ML techniques are ex-
tremely useful for identifying complicated patterns in biomark-
ers yet, they may not provide physical insights into diagnosis.
The use of eXplainable Artificial Intelligence (XAI) can be
enhanced by gaining a greater understanding of how sophisti-
cated machine learning algorithms make decisions [6].

The main goal of this study is to identify OC using a
variety of characteristics obtained from certain clinical exam-
inations. Consequently, two datasets are used to test ensemble
learning techniques, including RF, gradient boosting decision
tree (GBDT), adaptive boosting,voting, bagging, XGBoost,
LightGBM, and stacking. These ensemble learning techniques
weren’t used in parallel to identify OC in the earlier research
publications. The models’ performance is assessed using the
dataset that is accessible to the general audience.

Various metrics, including precision, accuracy, recall, AU-
CROC, and Fl-score, are employed to evaluate the effective-
ness with every classifier.

The primary contributions of this study are as follows:

e In order to increase the effectiveness of the existing
ovarian cancer diagnosis method, this research offered
eight machine learning algorithms. In order to enhance
performance, we have also adjusted each classifier’s
hyperparameter through the parameter tuning proce-
dure.

e  This study employed the MICE imputation method to
address the missing information instead of applying
a statistical approach. Additionally, the Borderline-
SMOTE approach was used to balance the uneven
data. Moreover, the relevant features are selected us-
ing recursive feature elimination (RFE) and Boruta
approaches. Such OC prediction methods have not
previously been thoroughly examined.

The structure of this work is as follows: Section 2 is
devoted to the literature review, and Section 3 details the
materials and procedures. Comparably, Section 5 presents the
experimental findings and a discussion, while Section 4 shows
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TABLE I. COMPARATIVE ANALYSIS OF MACHINE LEARNING APPROACHES FOR OVARIAN CANCER DETECTION

l RefID [ Dataset [ Features Feature Selection Classifier [ Evaluation Metrics
[4] Mendeley 2 MRMR DT, ROMA, LR Acc: 92%, 95%, 97%
[5] Mendeley OC markers T-test, Mann—Whitney U-test Random Forest Acc: 91%

[6] PCLO Biomarker - - Random Forest AUC-ROC: 71%

[7] Ultrasound Images - Fast Fourier Transform LD, SVM, ELM Acc: 85%

[8] PCLO 27 F-test SVMSMOTE PPV: 90%

9] Tokyo Medical University 16 - XGBoost Acc: 80%

[11] Mendeley 5 - Group MCP Acc: 93.33%, AUC: 0.892
[17] Mendeley 16 SHAP Stacking Classifier Accuracy: 96.87%

the experimental setup. Followed by Section 6 represents the
conclusion and ongoing research, in summary.

II. LITERATURE SURVEY

This section walks around a number of cutting-edge ma-
chine learning techniques that have been created to identify
ovarian cancer. These strategies cover a variety of techniques,
such as deep learning methods, supervised learning, and
unsupervised learning. Through the utilisation of ML, these
approaches have the possibility to enhance the effectiveness,
precision, and expand-ability of ovarian cancer detection and
diagnosis, ultimately leading to improved patient results. Table
I presents a summary of the relevant works.

The author Mart “1nez-M “as et al. [7] identified the optimal
classifier for FT-based feature descriptors and compare the
ELM algorithm with traditional classifiers, by using ultrasound
of 348 images. They has demonstrated that machine learning
techniques, including LD and SVM approaches, are effective
in creating the classification phase with 86% accuracy.

The most reliable predicting method for ovarian cancer,
according to the Yang et al. [8] study, was the decision tree
using SVMSMOTE on PLCO imbalanced dataset of143:7 class
ratio. It had PPV of 0.9041, AUC of 0.9532, sensitivity of
0.7792, and specificity of 0.9982 is achieved by considering
only seven features where there is chance of overfitting.

The possibility of applying the XGBoost machine learning
algorithm to predict ovarian tumor which is proposed by
Akazawa and Hashimoto[9], attained an accuracy of 0.80 for
16 characteristics on the 202 patient data set. On other hand
Charkhchi et al. [10]focused the role that CA125 plays in the
treatment of ovarian cancer in a review article , the necessity
of accessible and affordable screening methods for the quick
recognition of type II tumors. To predict benign or malignant
ovarian tumors, the authors Hu et al. [11] selected distinct
11 groups by using 349 patients of 46 features achieved
an accuracy of 93.33on other hand Ghoniem et al. [12]
proposed to predict subtypes of other cancers by combining
characteristics from pathologic image modal and gene modal.
TCGAOV dataset is used containing pathological pictures,
copy number variations, and gene expression data for 587
OC patients.The author Sorayaie Azar et al. [13] by using the
SEER dataset, they study created ML techniques for regression
and classification methods. XGBoost and RF were themost
successful approaches for regression and classification, respec-
tively. The findings showed promise and could be a useful tool
for physicians to better understand the status of patients with
ovarian cancer. For the purpose of OC detection, the authors

Juwono et al. [14] has provided the best simultaneous feature
weighting/parameter optimisation method. The LASSO regu-
larisation and adaptive differential evolution (ADE) with cross
validation error are used as the fitness function to optimise the
weights.On other hand Boehm et al. [15] designed Decision
support system to find three highly discriminating proteins
(TOP1, PDIA4, and OGN) for the diagnosis of highgrade
serous ovarian cancer (HGSOC) utilizing proteome data and a
machine learning-based methodology. The DSS demonstrated
promising clinical utility in the diagnosis of HGSOC with
its excellent specificity and sensitivity in differentiating tumor
from non-tumor patients.

On other hand Comes et al. [16] implemented an explain-
able machine learning model, the study identified high-risk
BRCA-mutated patients and established when RRSO should
be performed. The model produced encouraging results, with
accuracy, specificity, sensitivity, G-mean, and AUC values of
83.2%, 85.3%, 57.1%, and 71.1%, respectively.

The key findings by the Abuzinadah et al. [17] include
the extremely accurate stacked ensemble model for ovarian
cancer prediction, the intricate interactions between biomarkers
shown by the SHAP analysis, and the potential for real-world
application.

III. METHODS AND MATERIALS

This article has built a smart approach for assessing and
identification of OC. This study analyses OC data in twelve
different ways. AUC-ROC, F-measure, accuracy, precision,
recall, and F-measure were among the metrics used to assess
each model’s performance. The dataset was sourced from the
Mendeley repository website.

A pair feature selection technique Boruta and Recursive
feature elimination are employed to determine which features
are most relevant. The steps involved in this investigation
are shown in Fig. 1. Assigning incomplete values to every
attribute in the dataset, the MICE method and a basic imputer
are used. After the target attributes are equalised using the
borderline-SMOTE technique, the processed data is fed into
each classifier. Each classifier’s parameter is adjusted via
the hyper parameter tuning technique and randomised grid
search. In this research, cross-validation techniques are used
to validate the model functionality.

A. Dataset Description

The Third Affiliated Hospital of Soochow University pro-
vided the dataset for the study, which included 349 patients.
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Fig. 1. Framework of detecting ovarian cancer.

The information was gathered between July 2011 and July
2018 and was split into two categories: 178 patients with
benign ovarian tumour diagnoses, and 171 patients with ma-
lignant diagnoses [5].

B. Data Preprocessing

Preprocessing is necessary for the majority of real-world
data because of outliers, noisy characteristics, missing values,
and inconsistent patterns. If not, it will be difficult to increase
the machine model’s quality and produce an acceptable out-
come. Numerous procedures have been used in this part to
enhance and clean the data.

Several feature columns are labelled as inputs in the case of
MICE technique, whereas single feature column that contains
data missing is considered as an output. Subsequently, the
output data is predicted using the regression model, and this
is done again. Every value that is missing in the dataset is
imputed using a different value in each iteration, and the
process is repeated until convergence is achieved.

1) Missing value imputation: In this representation D
represents the dataset with missing values, M represents the
number of imputations to generate, k represents the number
of iterations for each imputation, Dinpued represents the im-
puted dataset. The MICE algorithm iteratively imputes missing
values for each variable in the dataset using regression models
based on observed values of other variables. It repeats this pro-
cedure for a definite number of iterations for each imputation.
Finally, it returns a list of M imputed datasets.

By using Multiple Imputation method [Algorithm 1], the
dataset which contains 331 missing values which are been
replaced.

The equation for imputing missing values using linear
regression can be represented as follows:

Vi = Bo+ B1Xi1 + BoXiz + ...+ BpXip 1)

where:
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o Vi — predicted value for the i*" observation.
e [y — intercept term.

o  [(1,Ba,...

o X;1,Xj2,...,X;, — observed values of p predictors
for observation 1.

, Bp — regression coefficients.

Algorithm 1 Multiple Imputations by Chained Equations
(MICE)

1: procedure MULTIPLEIMPUTATIONSBYCHAINEDEQUA-
TIONS(D, M, k)

2 Input:

3 D: Dataset with missing values

4 M: Number of imputations to generate

5: k: Number of iterations for each imputation

6

7

8

9

Output: List of M imputed datasets
Initialize empty list: imputed_datasets < [ ]
for . =1to M do
Initialize Dippued <= D > Copy of original dataset

10: for j =1to k do

11: for all variables v with missing values in
Dimputed do

12: Predict missing values in v using linear
regression

13: Update v in Djippueq With predicted values

14: end for

15: end for

16: Append Dippueed to imputed_datasets

17: end for

18: return imputed_datasets

19: end procedure

C. Feature Selection

The process of eliminating unnecessary characteristics
from a machine in order to reduce its computational load
and improve the efficiency of the machine model is known
as feature selection. The dual feature selection methods are
used in this research.

1) Recursive Feature Elimination (RFE): This method se-
lects the best subset of features from the entire dataset and
minimizes the number of features. The SelectOptimalFeatures
algorithm [Algorithm 2] provides a detailed explanation of
each step in the RFE method.

2) Boruta based on RF: The BorutaFeatureSelection algo-
rithm iteratively creates shadow features, combines them with
original features, fits a Random Forest model, computes Z
scores, and marks features as important or unimportant based
on the comparison of Z scores. It repeats this procedure for a
specified number of iterations and returns the desired number
of optimal feature subsets.

3) Boruta based on RF: The BorutaFeatureSelection al-
gorithm [Algorithm 3] iteratively creates shadow features,
combines them with original features, fits a Random Forest
model, computes Z scores, and marks features as important or
unimportant based on the comparison of Z scores. It repeats
this procedure for a specified number of iterations and returns
the desired number of optimal feature subsets.

Vol. 16, No. 6, 2025

Algorithm 2 Select Optimal Features

Require: D: Training dataset with m samples and r features
Y: Output values
F': Set of features
k: Number of iterations
n: Number of optimal feature subsets
Ensure: Fpime.: n optimal feature subsets
Procedure:
1. Train a RF model on dataset D.
2. Initialize the feature subset Fpime with all features
(£ prime — F).
for i =1 to k do
a. Compute coefficients using Logistic Regression (LR)
on the feature subset Fiyime.
b. Calculate the rank R based on the coefficients.
c. Identify a specific number of features to eliminate,
such as those with the smallest coefficients.
d. Remove the determined number of features with the
smallest coefficients from Frime.
end for

Algorithm 3 Boruta Feature Selection

1: procedure BORUTAFEATURESELECTION(D, Y, F, k., n)
2 Input:

3 D: Training dataset with m samples and r features
4 Y': Target values

5: F: Set of features

6: k: Number of iterations

7 n: Number of optimal feature subsets to select

8

9

Output:

: F': Top n important features
10: Initialize selected_features < ||
11: for i =1 to k do
12: Generate shadow features by shuffling columns of

F
13: Combine F' and shadow features to form dataset
14: Train Random Forest (RF) model on X
15: Compute Z-scores: Z, (original features), Zj
(shadow features)

16: Let Z.x be the maximum of Z,
17: for each feature f; in F' do
18: if Z,[fi] > Zmax then
19: Mark f; as important
20: else
21: Mark f; as unimportant
22: end if
23: end for
24 Append important features to selected_features
25: end for
26: Select top n features from selected_features
27: return F’

28: end procedure
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IV. CLASSIFICATION MODELS

In this investigation, a variety of supervised ensemble-
based machine learning algorithms [19] have been utilized,
such as LR, DT, RF, LGBM, SVM, XGB, and GBM, in
isolation, to forecast ovarian cancer. Furthermore, the search
was conducted to identify the models that demonstrated the
most outstanding performance.

1) SVMs: Supervised learning algorithms that are applied
to regression and classification problems. It determines the
best hyperplane with the largest margin between data points
belonging to distinct classes. Using various kernel functions,
SVM can handle both linear and nonlinear classification tasks.

2) k-NN: A feature space classification algorithm that clas-
sifies data points by using the majority class of the k nearest
neighbors. This algorithm is regarded as non-parametric as it
doesn’t rely on explicit models.

3) Tree: This is probably a reference to decision trees,
which divide the feature space into regions recursively and
give each region a class name. Although decision trees are
simple to understand, overfitting is a possibility.

4) RF: A technique that constructs many decision trees and
combines their predictions by averaging or voting. This method
successfully reduces overfitting by adding randomness to the
feature and data sample selection processes.

5) QDA: A classification process known as quadratic dis-
criminant analysis, or QDA, uses a quadratic decision bound-
ary to simulate the probability density function of each class. It
functions on the presumption that each class’s features follow
a normal distribution.

6) Voting: An ensemble learning technique where numer-
ous models are trained independently and then their forecasts
are combined by either average (for regression) or majority
voting (for classification).

7) Bagging: Bagging (Bootstrap Aggregating) is an en-
semble learning technique that uses bootstrap sampling of the
training data to generate many models (typically of the same
kind). To increase generalization performance and minimize
variance, the predictions of the models are combined by voting
or averaging.

8) AdaBoost: A technique that turns a number of ineffec-
tive learners into one powerful one. In each iteration, it gives
more weight to data points that were incorrectly classified as
it trains models progressively.

9) GBMs: Gradient Boosting Machines, or GBMs, are an
ensemble learning technique that constructs a series of weak
learners, usually decision trees, one after the other in a staged
fashion, with each new tree fixing the mistakes of the preceding
one.

10) XGBoost: A meticulously optimized implementation
of the gradient boosting technique, specifically designed to
enhance both speed and performance. By incorporating a di-
verse range of regularization techniques, XGBoost effectively
prevents overfitting, thereby enabling it to achieve state-of-the-
art outcomes in numerous machine learning competitions.

Vol. 16, No. 6, 2025

11) LGB: An additional scalable and extremely effective
gradient boosting framework. To minimize memory usage and
expedite training, it employs histogram-based approaches and
a unique tree-growing algorithm.

12)SC: Also known as stacked generalization or stacking
ensemble, is a machine learning technique that combines mul-
tiple classification models to improve prediction performance.
Instead of relying on just one model, it leverages the collective
wisdom of several models to make predictions.

V. RESULTS

The recommended models are run through the Python
program on a Windows 10 computer for validation. The system
is powered by an Intel Core i3 processor with a 2.40GHz clock
frequency and 8GB of RAM.

Additionally, this section involves in splitting the data
source into 20% test and 80% training sets, adjusting the
parameters of each classifier using the randomized grid search
technique, and evaluating metrics to verify the performance of
the model.

A. Parameter Tuning

Hyper-parameter optimization, or parameter tuning, is an
essential stage in the creation of machine learning models. In
order to maximize an algorithm’s performance on a particular
dataset, the optimal set of hyper-parameters for that method
must be chosen. Additionally, the optimal subset of hyper-
parameters for every classifier was shown in Table II to yield
the best results for the OC prediction.

B. Model Evaluation Metric

The accuracy of a model’s predictions can be assessed
using a variety of performance evaluation criteria. More signif-
icantly, the well-known used performance evaluation metrics
for binary classification include confusion matrix, precision,
AUC-ROC, recall, F-measure, and accuracy.

1) Confusion matrix: The effectiveness of a classification
algorithm is summarized in a table known as a confusion
matrix that counts of false positives (NP), false negatives(NN),
true positives (PP), and true negatives(PN).

2) Accuracy: It is the measure the proportion of a given
class that is correctly classified among all instances is given
by,

Accuracy = PP+ NN )
YT PP+ NN+ PF+NF

3) Recall: Tt is the proportion of all positively predicted
instances to accurately predicted positive cases is given by,

PP
Recall = m (3)

4) Precision: 1t is the ratio of correctly predicted positive
cases among all positive cases is given by,

PP
Precision = ———— “)

PP+ PN
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TABLE II. LI1ST OF PRIMARY HYPERPARAMETERS FOR BINARY CLASSIFICATION FOR EACH CLASSIFIER

| Classifier | Hyperparameters
SVM kernel="rbf’, C=10, gamma=0.1, probability=True
KNN n_neighbors=11
RF n_estimators=60, max_features=None, bootstrap=True, min_samples_split=3, min_samples_leaf=3, max_depth=None, random_state=0
QDA Default parameters
DT criterion="gini’, min_samples_split=4, random_state=0, max_depth=None
SC estimators=[(’svc’, svm), (Cknn’, knn)], final_estimator=rf
vC estimators=[(’svc’, svm), (knn’, knn), (rf’, rf)], voting="soft’
BC n_estimators=500, base_estimator=tree, n_jobs=-1, bootstrap=True, random_state=0, bootstrap_features=False
ABC base_estimator=treel, n_estimators=500, algorithm="SAMME?’, random_state=0
GDB learning_rate=0.1, n_estimators=300, max_depth=3, min_samples_leaf=10
LGB learning_rate=0.1, n_estimators=500, max_depth=3, min_child_weight=3
XGB learning_rate=0.1, n_estimators=200, max_depth=2, min_child_weight=3

TABLE III. PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING ALL FEATURES

Classifier | Accuracy (%) Precision (%) Recall (%) F1 Score (%) ROC AUC (%)

SVM 79.1 79.3 71.9 75.4 78.4
KNN 77.8 68.2 93.8 78.9 79.4
DT 83.3 794 84.4 81.8 83.4
RF 87.5 81.1 93.8 87.0 88.1
QDA 86.1 82.4 87.5 84.8 86.2
vC 90.3 87.9 90.6 89.2 90.3
BC 88.9 833 93.8 88.2 89.4
ABC 83.3 85.7 75.0 80.0 82.5
GDB 87.6 82.9 90.6 86.6 87.8
XGB 88.9 85.3 90.6 87.9 89.1
LGB 90.3 87.9 90.6 89.2 90.3
SC 76.4 74.2 71.9 73.0 75.9

5) Fl-score: 1t is harmonic mean of precision and recall

is given by,

70
1 1
F1-— = 5
seore Precision + Recall )
C. Results of Without Feature Selection Method :
0

The experimental outcomes of each classification model SVM KN

100
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employing every feature in the dataset are shown in Table III, # Accuracy ®Precision (50T) mRecall (BOT)

Fig. 2 and Fig. 3.
and LightGBM achieved a 90.3% score and all the other

It was evident that the Voting classifier

performance metrics are high except recall. Moreover, the features.
other classifiers Bagging classifier, XGBoost, GBM, RF are
performing better and their scores are approximately 87.5%.
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Fig. 3. Comparison of ROC and F1-Score for ML models of all features.

TABLE IV. PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING RECURSIVE FEATURE ELIMINATION (RFE)

Accuracy (%) Precision (%) | Recall (%) | F1 Score (%) ROC AUC (%)

| Classifier
SVM 80.6 78.1
KNN 76.4 71.4
DT 75.0 71.9
RF 88.9 833
QDA 70.8 76.2
vC 93.1 88.6
BC 86.1 80.6
ABC 87.5 84.8
GDB 86.1 80.6
XGB 87.5 84.8
LGB 87.5 84.8
SC 722 68.8

78.1 78.1 80.3
78.1 74.6 76.6
719 71.9 74.7
93.8 88.2 89.4
50.0 60.4 68.8
96.9 92.5 934
90.6 853 86.6
87.5 86.2 87.5
90.6 85.3 86.6
87.5 86.2 87.5
87.5 86.2 87.5
68.8 68.8 71.9

D. Results of Recursive Feature Elimination Method

Among all the features in the present investigation, twenty-
four are significant features. AFP, Age, ALB, ALP, AST,
CA125, CA19-9, CEA, CO2CP, GLO, HE4, HGB, IBIL,
LYM#, LYM%, MCH, Menopause, MPV, Na, PCT, PHOS,
PLT, TBIL, TP are considered for classification of OC. It
was observed from Table IV that Voting classifier achieved
93.1% accuracy, 88.6% precision, 96.9% recall, 92.5% Fl1
score, 93.4% ROC AUC among all the ensemble classifiers.
Moreover, RF, XGB, LGB have moderate scores. Based on
rank important features are identified using RFE are shown in
Fig. 4.

E. Results of Boruta Feature Selection Method

In this feature selection method of all features, twenty-one
are important features (AFP, Age, ALB, ALP, AST, CA125,
CA19-9, CEA, GLO, HE4, IBIL, LYM#, LYM%, MCH,
Menopause, MPV, Na, PCT, PLT, TBIL, TP) are considered
for classification of OC. It was observed from Table V that the
Voting classifier achieved 93.06% accuracy, 88.57% precision,
96.88% recall, 92.54% F1 Score, 93.44% ROC AUC among all
the ensemble classifiers. Moreover, RF, AdaBoost, XGBoost
have moderate scores approximately 91%. Based on rank
important features are identified using Boruta are shown in Fig.
5; moreover, the common features among both approaches are
shown in Fig. 6.
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TABLE V. PERFORMANCE COMPARISON OF MACHINE LEARNING MODELS USING BORUTA FEATURE SELECTION METHOD

Classifier

Accuracy (%)

Precision (%)

Recall (%)

F1 Score (%)

ROC AUC (%)

SVM
KNN
DT
RF
QDA
vC
BC
ABC
GDB
XGB
LGB
sc

79.17
73.61
80.56
91.67
88.89
93.06
88.89
90.28
88.89
90.28
86.11
81.94

77.42
66.67
75.00
88.24
92.86
88.57
85.29
87.88
85.29
90.32
84.38
88.00

75.00
81.25
84.38
93.75
81.25
96.88
90.62
90.62
90.62
87.50
84.38
68.75

76.19
73.24
79.41
90.91
86.67
92.54
87.88
89.23
87.88
88.89
84.38
77.19

78.75
74.38
80.94
91.88
88.13
93.44
89.06
90.31
89.06
90.00
85.94
80.63
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Common Features Selected by BorutaPy and RFE
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Fig. 6. Common features between Boruta and RFE.

TABLE VI. COMPARISON OF THE PROPOSED MODEL WITH EXISTING SIMILAR WORKS

[ Ref.ID [ Missing Values [ Feature Selection Model Precision | Recall [ F1-Score | ROC-AUC | Accuracy
[17] Mean SHAP GBM+XGB 88.68 88.49 88.69 - 88.24
[5] Mean t-test,u-test RF 83 95 89 87 88
[11] Mean 11 groups Group MCP 84.6 88 - - 93
[18] Mean SHAP LGBM 89 94 91 95 91
Our Method-1 MICE - LightGBM 87.9 90.6 89.2 90.3 90.3
Our Method-2 MICE RFE vC 88.6 96.9 92.5 93.4 93.01
Our Method-3 MICE Boruta vC 88.57 96.88 92.54 93.44 93.06

VI. PERFORMANCE ANALYSIS WITH SIMILAR WORKS

Table VI presents a comparison between our suggested
models and some current publications. The table demonstrates
how classification methods were used in every study to iden-
tify OC. On the other hand, we have used twelve machine
learning techniques. Additionally, we have utilized SMOTE
and multiple imputation methods to address imbalanced and
missing data. We have achieved more than 2.3% of accuracy
compared with existing approaches. We have evaluated all the
five metrics for judging the model performance compared to
the existing approaches.

VII. CONCLUSION

We have developed an ensemble-based method for OC
detection in this paper. In this case dataset consists of 349
patients with 49 features where 171 are diagnosed with
OC and 178 are diagnosed with benign. To improve the
model’s performance, twelve ML techniques were employed
to categorize OC, and key parameters were chosen by fine-
tuning the hyperparameters. Out of twelve algorithms, the
voting classifier outperformed the others. To address the
missing value and unbalanced data, MICE imputation and
borderline SVMSMOTE algorithms were also applied. Two
feature selection techniques such as Boruta and RFE have also
been used. The Boruta method, which produced an average
of 93.44% AUC-ROC, 88.57% precision, 93.06% accuracy,
92.54% F-measure, and 96.88% recall, decreased 50% of the

total features. Experiments show that our proposed method can
recognize OC more correctly than the state-of-the-art methods.

A. Limitations

1) Limited dataset size: The dataset has a constrained
number of samples relative to the complexity of ovarian cancer
subtypes. This limits the ability to robustly train and validate
the model, especially for rare variants.

2) No Prospective clinical validation: The model was
tested on retrospective data only. No prospective testing was
conducted to assess clinical usability and patient impact.

B. Future Work

1) Multimodal feature integration: Fuse imaging, genomic,
and clinical metadata with biomarker data to improve predic-
tive power and facilitate subtype-specific detection.

2) Explainability benchmarking: Compare SHAP with
other interpretability techniques like LIME, Integrated Gradi-
ents, and Counterfactual Explanations to assess transparency
efficacy across user types (clinicians, data scientists).

3) Personalized risk stratification: Expand the fuzzy sys-
tem to include personalized thresholds for pre- and post-
menopausal patients, incorporating age, hormone levels, and
family history.
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