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Abstract—Down syndrome is a genetic disorder caused by the
presence of an extra copy of chromosome 21, affecting both neu-
rological development and physical features. Early and accurate
diagnosis is critical for ensuring timely medical intervention and
support. This study presents a comparative analysis of prenatal
(ultrasound) and postnatal (facial) imaging modalities for the
detection of Down syndrome using deep learning techniques. We
employed VGG19, ResNet50, DenseNet121, MobileNetV2, and
the Vision Transformer for image classification. An ensemble
model integrating four CNN architectures achieved superior per-
formance, with 92% test accuracy on prenatal images and 83%
on postnatal images. Among the individual models, ResNet50 out-
performed the others across both modalities. Evaluation metrics,
including accuracy, precision, recall, and F1-score, confirm the
effectiveness of the proposed framework. These results highlight
the potential of ensemble learning to enhance the early detection
of Down syndrome and improve accessibility to healthcare.
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I. INTRODUCTION

Down syndrome is currently defined as a genetic disorder
caused by the presence of an extra chromosome 21, affecting
both the physical characteristics and cognitive development of
children. However, this disorder was not recognized until 1866
when the English physician John Langdon Down published
a detailed description [1] of the condition that would later
bear his name. Children affected by Down syndrome often
experience academic difficulties, delays in cognitive develop-
ment, and health complications such as heart disease, hearing
loss, and vision impairments. Although there is no cure,
early diagnosis, appropriate care, and therapy can significantly
improve quality of life. Research into imaging-based detection
of Down syndrome is crucial for enabling early diagnosis and
enhancing healthcare accessibility. Advances in deep learning
and imaging technologies have facilitated the development of
cost-effective, noninvasive diagnostic methods. While postna-
tal imaging [2] captures facial characteristics, prenatal imag-
ing [3]—such as ultrasound and 2D scans—detects structural
markers. Combining these two approaches provides a com-
prehensive diagnostic framework. Motivated by the success
of deep learning techniques, we employed transfer learning
using models such as ResNet50, VGG19, DenseNet121, Mo-
bileNetV2, and the Vision Transformer.

Each of the employed models offers unique advantages;
therefore, leveraging an ensemble approach proves beneficial,
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as it consistently outperforms individual CNN architectures.
The key contributions of this study are summarized as follows:

• Evaluation of both ultrasound (prenatal) and facial
(postnatal) images to fine-tune models for improved
diagnostic accuracy in AI-assisted Down syndrome
detection.

• Comparative analysis of two distinct imaging modal-
ities using diverse datasets—1,684 ultrasound images
and 2,000 facial images—to enhance generalizability.

• Performance benchmarking of multiple deep learn-
ing models across both prenatal and postnatal image
datasets.

• Implementation of an ensemble learning strategy that
integrates CNN features, resulting in optimized per-
formance and higher accuracy compared to standalone
models across both imaging types.

II. RELATED WORKS

Several studies have previously explored the prediction and
diagnosis of Down syndrome (DS) using a variety of methods,
some of which are summarized below:

A study [4] utilized the Random Forest machine learn-
ing model to improve the accuracy of DS prediction using
second-trimester prenatal images, achieving a detection rate
of 66.7% on the training dataset—outperforming traditional
approaches. In another study [5], NMR-based metabolomics
of maternal serum samples was employed to predict DS. Three
key biomarkers were identified, and the inclusion of maternal
age as a modifier improved detection efficiency from 48.1%
to 51.9%.

Vičić et al. [6] analyzed 157 DS cases out of 6,448 prenatal
examinations conducted in Croatia between 2002 and 2014.
Key diagnostic markers included maternal age, ultrasound find-
ings, and biochemical screening, while the primary diagnostic
procedures were chorionic villus sampling and amniocentesis.

The study [7] introduced CVIFLR, a machine learning
model designed for non-invasive DS prediction, and [8] ex-
plored deep transfer learning (DTL) in disease diagnosis,
achieving a classification accuracy of 93.3%. Thomas et al. [9]
used 100 fetal ultrasound images, combining SegNet for nuchal
translucency segmentation with AlexNet for classification,
resulting in 100% sensitivity, 85.7% specificity, and 91.7%
accuracy.

Machine learning models for first-trimester DS screening
using clinical data from the UK and Canada were evaluated

www.ijacsa.thesai.org 898 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

in [10], where deep neural networks (DNNs) outperformed
commercial software with an AUC of 0.96 and a 78% detection
rate. Similarly, Zhang et al. [11] employed machine learning
algorithms for second-trimester prenatal screening, where sup-
port vector machines (SVMs) achieved 100% detection with a
low false positive rate (FPR).

Another study [12] proposed a 1D convolutional neural
network (CNN) model that utilized biomarkers like PAPP-A
and hCG along with ultrasound data, reaching a high detection
accuracy of 95.17%. Given the ethnic variability of DS fea-
tures [13], facial recognition tools have shown promise, with
one approach achieving 94.3% accuracy. Cornejo et al. [14]
developed a novel method using geometric descriptors from
facial features, capturing key distances such as intercanthal
spacing, nose breadth, and mouth width based on 14 distances
from 16 fiducial points.

The Face2Gene AI tool demonstrated strong performance
in identifying DS among Thai children [15], with 90% sen-
sitivity for DS cases and 87% for non-DS cases. A convolu-
tional neural network-based method [16] offered a non-invasive
solution for DS identification, achieving 99.3% accuracy and
outperforming conventional methods like SVM.

In another work [17], extracted image features were used to
train a backpropagation neural network (BPNN), which clas-
sified nasal bone presence with 86% accuracy. Additionally,
a study [18] proposed an expert system framework aimed at
enhancing the education of children with DS, while another
work [19] introduced a mobile educational platform to support
cognitive development through educator-guided learning.

Although not directly related to DS, a study [20] fo-
cused on Parkinson’s disease—a related neurological disor-
der—demonstrated the effectiveness of three machine learning
approaches for diagnosis. Furthermore, a review [21] provided
comprehensive guidelines for the care and development of
children with DS. The study [22] emphasized the benefits
of early detection and treatment of sleep disorders, such as
obstructive sleep apnea (OSA), in DS patients. Finally, [23]
demonstrated the use of computer vision and deep learning
techniques to analyze parental behaviors, specifically identi-
fying supportive physical interventions during communication
with children affected by Down syndrome.

III. METHODOLOGY

A systematic method for comparing both prenatal and
postnatal images of children with or without Down syndrome
is depicted in Fig. 1. This section outlines the methodological
pipeline in this study, encompassing data collection, data
processing, training various models, model evaluation, and
finally the comparison between prenatal and postnatal datasets
for detecting Down syndrome in children.

A. Data Collection

Data collection is the initial and most critical step in the
proposed methodology. In this study, two distinct datasets are
utilized:

Fig. 1. Proposed methodology for Down Syndrome (DS) detection.

1) Prenatal dataset: This dataset, obtained from Mende-
ley [https://data.mendeley.com/datasets/n2rbrb9t4f/1], com-
prises 1,684 ultrasound images of fetuses aged between 11
and 14 weeks. Ultrasound imaging is a standard tool for
monitoring fetal development and, in this context, is used to
detect potential markers of Down syndrome prior to birth.
These markers may include increased nuchal translucency
thickness, anomalies in the facial profile, or other structural
differences observed in the fetus.

2) Postnatal dataset: Sourced from Kaggle and GitHub
[https://github.com/vinayaa1/down-syndrome-detection], this
dataset contains 2,000 facial images of infants and children.
The majority of samples fall within the 0–15 years age range,
with limited representation from 16–18 years. This dataset
supports the detection of Down syndrome through facial
recognition, leveraging characteristic facial features such as
almond-shaped eyes, a flat nasal bridge, and other distinct
craniofacial traits. These postnatal images are instrumental in
identifying Down syndrome after birth.

Each dataset was split into three subsets: training (80%),
validation (10%), and testing (10%). This division ensures
unbiased model evaluation and promotes better generalization
of the results. It is also important to note that the prenatal
and postnatal datasets were sourced independently and do not
represent the same children across both stages. The neural
network or machine learning model is trained using the training
set. Its performance and ability to generalize to new data are
then evaluated using the test set. This approach ensures a
large and diverse training dataset, a separate set for unbiased
evaluation, and the ability to assess the model on unseen
samples, simulating potential real-world scenarios.

B. Data Preprocessing

Data processing is a crucial step in data-driven tasks like
machine learning, statistical analysis, and decision-making. It
transforms raw data into structured, clean, and usable formats,
improving data quality and standardizing datasets for machine
learning models. Preprocessing steps in Fig. 2 and Fig. 3
include image resizing, normalization, rotation, cropping, flip-
ping, and dataset splitting.

Image resizing ensures uniform input dimensions, while
normalization standardizes pixel intensity values across all
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Fig. 2. Data augmentation of prenatal images: Normalized, Rotated, Cropped
and Flipped.

Fig. 3. Data augmentation of postnatal images: Normalized, Rotated,
Cropped and Flipped.

images. Rotation helps correct misalignments, and cropping re-
duces background noise, enhancing model efficiency. Flipping
augments the dataset by increasing variability, which helps
prevent overfitting. Dataset splitting into training, validation,
and testing sets enables effective performance evaluation.
Collectively, these preprocessing techniques ensure that models
learn more effectively from clean and well-prepared input data.

C. Transfer Learning Using Pre-trained CNN Models

This study employs four deep convolutional neural net-
work (DCNN) models—VGG19, ResNet50, DenseNet121,
and MobileNetV2—that were pre-trained on the ImageNet
dataset and used for feature extraction. Additionally, the Vision
Transformer model is utilized to evaluate performance from
a transformer-based perspective. These models are applied to
both prenatal ultrasound images and postnatal facial images
for the detection of Down syndrome in children.

1) VGG19: This 19-layer deep CNN is known for its high
accuracy but also for its computational intensity. It uses small

3×3 convolutional filters and ReLU activation. VGG19 is an
extended version of VGG16, incorporating three additional
layers [24].

2) ResNet50: A 50-layer residual network [25] designed
to address the vanishing gradient problem through the use of
skip (residual) connections, enabling more effective training of
deeper networks.

3) DenseNet121: A densely connected convolutional net-
work with 121 layers, introduced by [26]. In this architecture,
each layer receives inputs from all preceding layers, which
enhances feature propagation and reduces the number of
parameters.

4) MobileNetV2: Designed for mobile and resource-
constrained environments, MobileNetV2 uses depthwise sep-
arable convolutions to reduce computational cost while main-
taining accuracy. It was introduced by [27].

5) Vision Transformer (ViT): Proposed by [28], the Vi-
sion Transformer processes images as sequences of patches
and utilizes self-attention mechanisms to capture long-range
feature dependencies. Unlike CNNs, it leverages transformer-
based architectures for image classification.

D. Training and Predicting Models

To obtain the visual Down Syndrome detection results
from each model, we extract deep image feature vectors using
DenseNet121, VGG19, MobileNetV2, ResNet50, and Vision
Transformer. These feature vectors are then passed through the
appropriate fully connected dense layers followed by activation
layers. The model parameters are optimized using both the
Adam optimizer and the stochastic gradient descent (SGD)
technique. Training is conducted using the sparse categorical
cross-entropy (CE) loss function, shown in (1).

CE = − 1

N

N∑
i=1

[yi log p(yi) + (1− yi) log(1− p(yi))] (1)

E. Proposed Ensemble Model

In order to enhance accuracy, the ensemble combines the
outputs of four CNNs (VGG19, ResNet50, DenseNet121, and
MobileNetV2). In Fig. 4, the architecture of the model [29] is
described. As illustrated in Fig. 4, each CNN model extracts
deep features independently. These features are then concate-
nated and passed to a classifier for prediction. Soft voting
combines the probability outputs, and the final prediction
is based on the average likelihood. This method enhances
generalization and stability across diverse image modalities.
These basic steps include the following:

1) Feature extraction: This involves the removal of the last
layers of each model and the extraction of deep feature vectors.

2) Concatenation: Combining these characteristics im-
proves categorization accuracy.

3) Prediction aggregation: Accuracy and resilience are
increased by using Yes/No Soft Voting, Hard Voting, Stacking,
and Bagging.
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4) Optimization: To make the entire training process as ef-
ficient as possible, use the Adam Optimizer and the categorical
cross-entropy loss function.

Fig. 4. Architecture of ensemble model.

Model ensembling offers several benefits for improving
machine learning performance:

5) Improved generalization: Different models capture di-
verse features due to their architectural differences. For ex-
ample, VGG19 is effective for low-level pattern recognition,
ResNet50 extracts deep features, DenseNet121 promotes fea-
ture reuse and propagation, and MobileNetV2 focuses on
efficient feature extraction.

6) Enhanced accuracy: Combining predictions using tech-
niques such as soft voting (averaging probabilities), hard voting
(majority voting), or stacking (meta-learning) helps improve
overall accuracy.

7) Robustness to data variability: Each model emphasizes
different aspects of the data, making the ensemble more robust
and better able to generalize across varied datasets.

8) Reduction of overfitting: Using multiple diverse models
helps reduce the risk of overfitting by preventing the ensemble
from memorizing the training data.

9) Efficient feature learning: The combination of different
architectures allows the model to learn features at multiple
levels of abstraction, leading to more effective overall feature
representation.

In prenatal and postnatal datasets, the ensemble technique
ensures robust diagnosis of Down syndrome by enhancing
generalization and minimizing overfitting.

F. Performance Measures

The performances are classified into True Positive (TP),
True Negative (TN), False Positive (FP), False Negative (FN).
Various evaluation metrics are used in this study such as,
accuracy, precision, recall, and f1-score.

• Accuracy – Measures the proportion of correct pre-
dictions:

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100 (2)

• Precision – Measures the percentage of correctly pre-
dicted positive cases:

Precision =
TP

TP + FP
∗ 100 (3)

• Recall (Sensitivity) – Measures the ability of the
model to find all positive cases:

Recall =
TP

TP + FN
∗ 100 (4)

• F1-Score – Harmonic mean of precision and recall,
balancing both metrics:

F1 = 2× Precision×Recall

Precision+Recall
∗ 100 (5)

IV. EXPERIMENTS AND RESULTS

In this study, we utilized both prenatal ultrasound im-
ages and postnatal facial images of children to detect Down
Syndrome. We fine-tuned five pre-trained models—ResNet50,
VGG19, DenseNet121, MobileNetV2, and Vision Trans-
former—using transfer learning. As represented in Table I
and Table II, ResNet50 consistently achieved the highest test
accuracy across both imaging modalities. Among the CNN
models, the highest test accuracy for prenatal images was 91%,
while for postnatal images it was 83%. Although the Vision
Transformer demonstrated strong performance, it did not sur-
pass ResNet50. To further improve accuracy, we employed
model ensembling, which achieved 92% accuracy for prenatal
images and 83% for postnatal images.

TABLE I. ACCURACY OF DIFFERENT MODELS (PRENATAL IMAGES)

Model Validation Accuracy Test Accuracy

ResNet50 90% 91%

VGG19 86% 85%

DenseNet121 84% 88%

MobileNetV2 83% 86%

Vision Transformer 80% 83%

Ensemble 91% 92%

TABLE II. ACCURACY OF DIFFERENT MODELS (POSTNATAL IMAGES)

Model Validation Accuracy Test Accuracy

ResNet50 80% 83%

VGG19 75% 77%

DenseNet121 70% 72%

MobileNetV2 79% 78%

Vision Transformer 72% 73%

Ensemble 82% 83%

A. Comparison Between the Models for Prenatal and Postna-
tal Dataset

For the prenatal dataset, we have the classification report
for each model, like ResNet50, DenseNet121, MobileNetV2,
VGG19, and Vision Transformer model. From all of the
classification matrices, we can see that ResNet50 is beating
all other models in all contexts, like accuracy, precision and
f1-score in Fig. 5.
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Fig. 5. Comparison chart of the models for prenatal images.

Fig. 6. Comparison chart of the models for postnatal images.

In addition, for the postnatal dataset, we generated
classification reports for each model, including ResNet50,
DenseNet121, MobileNetV2, VGG19, and the Vision Trans-
former. Once again, ResNet50 outperforms all other models
across all evaluation metrics. Fig. 6 presents a comparative
chart of these models based on the prenatal dataset.

B. Performance of the Proposed Ensemble Model for Prenatal
Images

1) Accuracy and loss graph: The overall performance
based on the training and validation curves is shown in next
Fig. 7.

Fig. 7. Performance of the ensemble model (Prenatal images).

It is evident from the graphs that both the training and
validation accuracies are close enough, suggesting that the
model shows minimal overfitting. Similarly, the loss curve
demonstrates a consistent decline for both training and valida-
tion sets, with the validation loss remaining low and closely
matching the training loss trend. This suggests that the model
effectively minimizes error and learns meaningful features
from the data with minor overfitting.

2) Confusion matrix: As we know that a confusion matrix
helps to evaluate a classification model by presenting true
and false predictions for each class. Moreover, this helps to
calculate precision, recall and f1-score precisely.

Fig. 8. Confusion matrix of ensemble model (Prenatal images).

Finally, the confusion matrix in Fig. 8 evaluates the perfor-
mance of the ensemble model for Down Syndrome detection
using nuchal translucency (NT) measurements. The model
achieves an accuracy of 91.67%, correctly identifying 56 Down
Syndrome cases where NT measurements were abnormal.
However, it misclassifies nine affected fetuses as normal
(false negatives). Additionally, the model correctly identifies
109 normal fetuses with standard NT measurements, while
misclassifying six as having Down Syndrome (false positives).

C. Performance of the Proposed Ensemble Model for Postnatal
Images

1) Accuracy and loss graph: The line graph in Fig. 9
represents two key plots to evaluate the ensemble model’s
performance through accuracy and loss curves. The model is
shown to perform well with high accuracy in both training and
validation with 25 epochs. This also suggests a strong ability
to classify with minimal overfitting.

2) Confusion matrix: The effectiveness of an ensemble
model for identifying Down syndrome from postnatal images
is assessed using this confusion matrix depicted in Fig. 10.

Since there were no false negatives, the model achieved
a perfect sensitivity of 100% by properly identifying all 105
newborns with Down syndrome. Nevertheless, it produced a
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Fig. 9. Performance of the ensemble model (Postnatal images).

Fig. 10. Confusion matrix of ensemble model (Postnatal images).

false positive rate by incorrectly classifying 28 healthy infants
as having Down syndrome. 75 healthy newborns were correctly
categorized despite this. Although the model is excellent at
identifying cases of Down syndrome without missing any, it
may need to be further improved to increase specificity and
decrease false alarms because it has a propensity to categorize
healthy babies incorrectly.

D. Comparison Between the Ensemble Model for Prenatal and
Postnatal Dataset

After doing the ensemble by Feature Fusion Ensem-
ble method with the four models: ResNet50, VGG19,
DenseNet121, and MobileNetV2, we have found that the
model has increased the performance instantly. The model’s
accuracy score is almost near to ResNet50 but increased a
little bit. Here is a bar graph in Fig. 11, comparing the
classification performance between the prenatal and postnatal
ensemble models. The prenatal model performs better in all
four metrics, indicating its stronger classification capability.

Fig. 11. Comparison chart of the ensemble model (Prenatal vs. Postnatal).

E. Performance Comparison with Existing Research for Down
Syndrome Detection

The following Table III represents a comparative analysis
of different research studies focused on the detection of Down
syndrome using various machine learning models. It includes
details on image types, sample sizes, applied models, and
their respective accuracies. For example, Reshi, Aijaz Ahmad,
et al. [3] used CNN on 1,120 fetus images, achieving an
accuracy of 97%. Similarly, Zhao, Qian, et al.[2] applied
SVM to facial images (50 DS, 50 healthy) and attained
94% accuracy. The highest reported accuracy (99.3%) was
achieved by Feng, Bing, et al. [16], who used a Support
Vector Machine (SVM) on SNP maps with a relatively small
dataset (315 non-DS, 63 DS cases). This exceptionally high
accuracy is likely due to the limited size and controlled nature
of the dataset. Unlike some prior studies using smaller or
synthetic datasets, our work utilizes publicly available and
diverse real-world datasets—namely the Kaggle facial image
set and Mendeley ultrasound data—which allows a more
robust evaluation. Among those, [3] used the same Mendeley
ultrasound dataset, reporting 97% accuracy using CNN, while
we achieved 92% through ensemble methods. Moreover, the
proposed model in this study processes both ultrasound and
facial images, leveraging an ensemble of four CNN models to
achieve optimal accuracy—92% for prenatal images and 83%
for postnatal images. These results demonstrate that integrating
multiple image modalities with deep learning techniques can
significantly enhance the accuracy of Down Syndrome (DS)
detection.

V. CONCLUSION

In this study, we explored the effectiveness of differ-
ent imaging modalities and machine learning techniques for
detecting Down Syndrome in children. By analyzing both
prenatal (ultrasound) and postnatal (facial) images, our aim
was to evaluate the diagnostic potential of each modality in-
dividually, as well as their combined efficacy. We investigated
the performance of several pre-trained convolutional neural
network (CNN) models—ResNet50, VGG19, DenseNet121,
and MobileNetV2—on both datasets. In addition, we evaluated
the Vision Transformer model for the same task.
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TABLE III. COMPARISON OF PREVIOUS STUDIES RELATED TO DOWN SYNDROME

Research Image Description Image Samples Applied Model Accuracy

[3] Fetus Image 1120 CNN 97%

[7] MSS Non-DownSyndrome: 100,244
DownSyndrome: 108

CVIFLR 95% (AU-CROC)

[2] Facial Image DS: 50, Healthy: 50 SVM 94%

[8] Facial Image 350 DCNN 90%

[17] Fetus Image Nasal bone: 50, Without Nasal bone: 50 BPNN 80%

[16] SNP Maps Non-DS: 315, DS: 63 SVM 99.3%

[30] Fetus Image 442 K-means Clustering 87%

Proposed Model Ultrasound & Facial Images Ultrasound: 1684, Facial: 2000 CNN & Vision Transformer Ultrasound: 92%, Facial:
83%

The ensemble of CNN models yielded the highest accuracy,
achieving 92% for prenatal ultrasound images and 83% for
postnatal facial images, underscoring the advantages of a mul-
timodal approach. Notably, the pre-trained ResNet50 model
demonstrated consistently strong performance, achieving a
validation accuracy of 89% and test accuracy of 91% on the
prenatal dataset, and a validation accuracy of 81.5% and test
accuracy of 83% on the postnatal dataset.

Compared to existing studies that primarily focus on either
fetal ultrasound or facial imagery using traditional machine
learning methods, our approach leverages deep learning to en-
hance classification performance. Future research should focus
on expanding dataset size, incorporating more advanced imag-
ing features, and developing hybrid AI architectures to improve
accuracy and generalizability. This includes integrating data
from diverse demographics, combining prenatal and postnatal
imaging, and utilizing multimodal data fusion. Furthermore,
future models could benefit from hybrid AI architectures that
combine CNNs, Vision Transformers, and traditional machine
learning techniques to enhance feature extraction and ensemble
learning.
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