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Abstract—In power-system unstructured-data management, a 

large volume of images from inspection drones, substation 

cameras, and smart meters is heavily compressed due to 

bandwidth and storage constraints, resulting in lower resolution 

that hinders defect detection and maintenance decisions. 

Although deep-learning super-resolution (SR) techniques have 

made significant advances, real-world deployments still require a 

balance between reconstruction accuracy and model 

lightweightness. To meet this need, we introduce a channel-

attention-embedded Transformer SR method (CAET). The 

approach adaptively injects channel attention into both the 

Transformer’s global features and the convolutional local 

features, harnessing their complementary strengths while 

dynamically enhancing critical information. Tested on five public 

datasets and compared with six representative algorithms, CAET 

achieves the best or second-best performance across all upscaling 

factors; at 4× enlargement, it outperforms the advanced SwinIR 

method by 0.09 dB in PSNR on Urban100 and by 0.30 dB on 

Manga109, with noticeably improved visual quality. Experiments 

demonstrate that CAET delivers high-precision, low-latency 

restoration of compressed images for the power sector while 

keeping model complexity low. 

Keywords—Image compression; attention mechanism; 

multimodal fusion; unstructured data in the power industry; image 

data 

I. INTRODUCTION 

In today’s data-intensive power systems, images captured 
by UAV patrols, robot inspections, smart meters and substation 
cameras constitute a major source of unstructured information. 
Because these visual records are often transmitted or stored 
under stringent bandwidth and storage limits, aggressive 
compression and down-sampling are common, which sharply 
degrades resolution and hinders defect detection, asset 
identification and other downstream analytics. High-resolution 
(HR) images convey richer detail than their low-resolution 
(LR) counterparts [1-2], so recovering spatial fidelity after 
compression is crucial for reliable power-equipment 
management. Single-image super-resolution (SISR) addresses 
this need by reconstructing an HR image from one LR input 
and has been proven in domains such as security, medical and 
satellite imaging [3-4]. 

Deep-learning methods dominate modern SISR, thanks to 
rapid progress in GPU computing power, achieving large leaps 
in reconstruction quality [17]. The seminal SRCNN network 
used a three-layer CNN to learn an LR–HR mapping [5]. 

Deeper CNNs such as VDSR with 20 layers [13], EDSR that 
widens and deepens residual blocks [20][8], WDSR that 
activates wider feature dimensions, and RCAN that embeds 
channel attention to model inter-channel dependencies, have 
steadily improved results. Yet convolution itself has 
limitations: fixed filters ignore image content, and locality 
prevents long-range modeling. Transformer architecture [30] 
overcomes these issues via global self-attention that exploits 
self-similarity [7]. Large-scale Transformer variants (e.g., IPT 
[4]) and remote-sensing specific designs like TransENet [18, 
26], as well as SwinIR built on Swin Transformer blocks [19] 
[22-23] have shown strong performance. 

However, state-of-the-art networks are typically heavy, 
conflicting with the real-time and resource-constrained 
requirements of power-system back-end servers and edge 
devices. Lightweight CNN strategies—FSRCNN that operates 
directly on LR inputs [6], recursive models DRCN and DRRN 
that cut depth via weight sharing [14, 28], and distillation-
based IMDN and RFDN that progressively extract informative 
features while trimming parameters [11, 21]—have mitigated 
this to a degree. The Swin Transformer’s windowed attention 
further lowers complexity without sacrificing quality and 
performs well on restoration tasks. 

Building on these insights, we propose a channel-attention-
embedded Transformer (CAET) for compressed-image 
restoration in power-grid data platforms. The method alternates 
Transformer attention with convolution, exploiting their 
complementary strengths, and uses channel attention to 
adaptively fuse features, enhancing learning capacity while 
remaining lightweight for deployment. Experimental 
comparisons on multiple datasets confirm that CAET attains 
notable quality gains with modest model size, making it 
suitable for large-scale unstructured image archives in the 
power sector. Key advantages include effective integration of 
convolution and Transformer feature extraction via the CAET 
block, adaptive weighting of multi-level features through 
channel attention, and superior performance versus existing SR 
approaches at lower computational cost. 

In response to the common issues of complexity, high 
resource consumption, and the difficulty of balancing 
performance and efficiency in existing image super-resolution 
methods, this study conducts research aimed at improving 
image reconstruction quality while reducing model complexity. 
We propose a Channel Attention-Embedded Transformer 
Image Super-Resolution Network (CAET), which integrates 
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the local modeling capabilities of convolutional networks with 
the global modeling advantages of Transformers. By 
introducing a channel attention mechanism to enhance the 
discrimination of multi-level features, the method improves the 
ability to restore image details. While maintaining a low 
parameter count and computational complexity, our approach 
achieves superior reconstruction performance compared to 
existing methods across multiple public datasets, 
demonstrating good lightweight properties and practicality. 
The main innovations of this study are: 1) the design of a 
channel attention-embedded Transformer module that 
effectively combines convolutional and Transformer features; 
2) the proposal of a channel attention discrimination 
enhancement strategy to improve the network's learning ability; 
and 3) the validation of the superiority of this method under 
lightweight conditions across various diverse datasets. 

II. IMAGE PROCESSING RELATED 

Due to the demand for implementing super-resolution tasks 
on commonly used real-world devices, lightweight super-
resolution models have attracted widespread attention. 
FSRCNN replaced the approach of SRCNN [5], which first 
upsampled images before feeding them into the network, by 
applying the core network directly to low-resolution (LR) 
images, significantly reducing the computational resources 
required [6]. DRCN [14] and DRRN [28-31] introduced 
recursive neural networks, which, while reducing the number 
of parameters and network depth, led to a significant increase 
in computational cost due to repeated recursion. LapSRN 
(Deep Laplacian Pyramid Network for Fast and Accurate 
Super-Resolution) [16] adopted a progressive strategy to 

gradually increase image resolution, achieving more stable 
results for high-scale upscaling. IMDN [10-12] proposed a 
lightweight Information Multi-distillation Network, which 
effectively extracts hierarchical features using an information 
distillation mechanism. LatticeNet (Image Super-Resolution 
with Lattice Block) [4, 18, 24], inspired by the Fast Fourier 
Transform, designed a lattice network capable of efficiently 
utilizing and adjusting multi-level information. ECBSR (Edge-
oriented Convolutional Block for Real-time Super-Resolution) 
[15, 19, 36] introduced a convolutional block incorporating 
edge information based on re-parameterization techniques, 
which enhances the model's learning capacity while reducing 
inference time. Despite significant progress made by 
lightweight super-resolution algorithms, there is still room for 
improvement in reconstruction quality. 

III. CHANNEL ATTENTION EMBEDDED TRANSFORMER 

A. Algorithmic Framework 

The specific design diagram of the lightweight super-
resolution network based on the combination of Transformer 
and convolution is shown in Fig. 1. It mainly consists of four 
parts: shallow feature extraction stage, deep feature extraction 
stage, multi-level feature fusion stage, and image 
reconstruction stage. Among them, the deep feature extraction 
stage is composed of Transformer modules embedded with 
attention mechanisms (CAETB), which will be described in 
detail. The network takes the given ILR (input low-resolution 
image) and ISR (inferred super-resolution image) as the low-
resolution input and the predicted high-resolution output, 
respectively. 

 

Fig. 1. Overall structure of Channel-Attention-Embedded Transformer network. 

1) Shallow feature extraction stage. This stage uses a 

convolutional layer with a kernel size of 3 × 3 to extract 

shallow features F0 from the given LR image. The process can 

be expressed as: 

0 SF LR( )F H I                        (1) 

In this equation, HSF represents the convolution operation. 
The extracted shallow feature F0 will be further used for deep 
feature extraction. Meanwhile, F0 is also directly passed to the 
reconstruction module to preserve the low-frequency 
information of the image. 

2) Deep feature extraction stage. This stage takes the 

shallow feature F0 as input and uses multiple CAETBs to 

extract deep feature information. Assuming the number of 

CAETBs is k, the output of the ith CAETB, denoted as Fi

 1 i k  , can be expressed as: 

CAETB 1( ), 1,2, ,i iH i k F F
            (2) 

In this equation, HCAETB represents the operation of the 
CAETB, which is used to extract deep features of the image. 
The structure of CAETB is shown in Fig. 2. 

3) Multi-level feature fusion stage. Hierarchical 

information from different stages is beneficial to the final 

reconstruction result. Therefore, in the multi-level feature 

fusion stage, the network integrates all low-level and high-level 
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information from the deep feature extraction stage. The fused 

result is denoted as FM. 

MFF 1 2
( , , , , , )

i kM HF F F F F
          (3) 

In this equation, HMFF represents the multi-level feature 
fusion operation, which provides sufficient reference and 
guidance for the final image reconstruction. 

4) Image reconstruction stage. The fused result FM and the 

shallow feature F0 are further input into the image 

reconstruction stage to recover high-resolution images adapted 

to different tasks. The process of obtaining the final high-

resolution image ISR can be expressed as follows: 

SR REC 0( )MH I F F
                            (4) 

In this equation, HREC represents the operation in the 
reconstruction stage, which uses a 3 × 3 convolutional layer 
and the sub-pixel convolution layer from ESPCN [27] to 
upsample the features to the corresponding size of the super-
resolution image. 

B. Attention-Embedded Transformer Block 

Convolutional layers provide more stable optimization and 
better feature extraction in early visual processing. 
Additionally, the shared weights of spatially invariant filters 
can enhance the network’s translation equivariance [19]. 
Stacking convolutional layers effectively enlarges the 
network’s receptive field. Therefore, three cascaded 
convolutional layers are placed at the front end of the CAETB 
to receive feature outputs from the previous module. To better 
adjust features from different levels and transformation units, 
the network employs a channel attention-based feature 
discrimination enhancement strategy, which performs channel 
attention-based discriminative enhancement and interactive 
fusion between Transformer features and convolutional 
features. Specifically, the input Transformer-transformed 
features and convolution-processed features undergo learnable 
channel attention feature enhancement and cross-fusion. The 
generation method of channel attention will be detailed in 
Section III(D). Taking the input feature as Fi, the process of 
channel attention feature discrimination enhancement can be 
expressed as follows. 

CL ( )P i iA H  F F F
                       (5) 

CL ( )Q i iH D  F F F
                       (6) 

In this equation, A and D represent channel attention 
parameters, and HCL denotes the cascaded convolutional layer 
operation. The three convolutional layers have channel 
numbers of 60, 45, and 60, respectively, with Leaky ReLU 
(LReLU) activation applied between them. Then, a 
convolutional layer with a kernel size of 1 × 1 is used to adjust 
the cascaded features back to the original number of channels. 
Its output, FR, can be expressed as: 

  ,R C P QF H Concat F F
                (7) 

In this equation, Concat represents the feature 
concatenation operation, and HC denotes the 1 × 1 
convolutional layer operation. After passing through the 
attention embedding part, the features are input into the ST 
module for further feature extraction. The output of the 
module, FS, can be expressed as: 

Swin ( )s RF H F
                      (8) 

In this equation, HSwin represents the operation of the ST 
module. The number of Swin Transformer layers (STL) in the 
CAETB module is set to 4. 

The specific structure of CAETB is shown in Fig. 2. Since 
CAETB adopts a residual connection structure, the final output 
of the module, Fi+1, can be expressed as: 

1i S i
F F F


 

              (9) 

 

Fig. 2. Internal structure of the CAETB. 

C. ST Module 

The ST module is an improvement over the multi-head 
attention mechanism in the standard Transformer architecture. 
The standard Transformer performs global self-attention 
calculations on images, but the complexity of the global 
attention mechanism increases sharply as the image size grows. 
Therefore, when dealing with larger images in downstream 
vision tasks, the standard Transformer faces excessive memory 
requirements. To address this issue, the ST module introduces 
local attention mechanisms and a window-shifting mechanism. 
The overall structure of the Swin Transformer layer (STL) is 
shown in Fig. 3. 

 

Fig. 3. Internal structure of STL. 

For a given input of size H×W×C, ST first uses non-
overlapping local windows of size M×M to reshape the input 

features into 2

2

HW
M C

M
  , where 

2

HW

M
 represents the total 

number of windows. Then, standard self-attention is computed 
separately for each window. For the local window feature 

2M CX R  , the query, key, and value matrices Q, K, and V 
are computed as follows: 
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, ,Q K VQ XP K XP V XP  
                (10) 

In this equation, PQ, PK, and PV are shared learnable 
projection matrices across different windows, and Q, K, V

2M dR  . The attention matrix Attention (Q, K, V) is 
computed through the self-attention mechanism within the 
local window and can be expressed as follows: 

T

( , , ) softmax
QK

Attention Q K V B V
d

 
  

    (11) 

In this equation, B represents learnable relative position 
encoding, and d denotes the dimension of the multi-head 
attention. The results of multi-head self-attention (MSA) are 
concatenated to maintain the feature dimensions. Next, a 
multilayer perceptron (MLP) is used for further feature 
enhancement, consisting of two fully connected layers with 
GELU (Gaussian error linear unit) activation between them. 
Layer normalization (LN) is applied before both the MSA and 
MLP, and residual connections are used in both parts. Taking 
the input feature as FINP, the overall process can be 
mathematically described as follows. 

  MSA MSA LN INP INPF H H F F 
     (12) 

  MLP MLP LN MSA MSAF H H F F 
    (13) 

In this equation, HLN represents the layer normalization 
operation, HMSA denotes the multi-head attention operation, 
and HMLP stands for the multilayer perceptron operation. 

Although the local attention mechanism based on window 
partitioning reduces computational complexity, fixed window 
partitions do not allow information exchange between 
windows. The ST module adopts shifted window partitioning 
and alternates between shifted and non-shifted windows to 
achieve cross-window connections. Specifically, shifted 
window partitioning means that features are shifted by (M/2, 
M/2) pixels before window partitioning, and the alternating 
rule means that shifted and non-shifted Swin Transformer 
layers (STLs) are used alternately. This approach addresses the 
problem of no information exchange between non-overlapping 
windows and significantly increases the receptive field of the 
ST module. 

D. Channeling Attention Mechanisms 

This section provides a detailed introduction to the 
calculation of channel attention parameters A and D mentioned. 
The channel attention mechanism [9] models the 
interdependencies between feature channels and can adaptively 
adjust the feature responses of different channels by assigning 

corresponding weights. Embedding channel attention enables 
adaptive enhancement and fusion of the corresponding 
convolutional and Transformer features within CAETB. 
Moreover, due to the local operation characteristics of 
convolution, each output value cannot represent the overall 
information of the entire image. Therefore, global information 
from channel attention is needed as guidance to select the most 
effective features across the whole image. 

The specific operation of the channel attention mechanism 
is shown in Fig. 4. The input is denoted as X = [x1, x2, ..., xc], 
containing c channel feature maps each of size H×W. To obtain 
the global characteristics between feature channels, global 
average pooling (GAP) is used to acquire the statistical features 
of each channel, denoted as Z = [z1, z2, ..., zc]: 

GAP
1 1

1
( ) ( , )

H W

C C c
i j

H i j
H W  

  


z x x
    (14) 

In this equation, xc(i, j) represents the value at position (i, j) 
in the feature map xc, and HGAP denotes the global average 
pooling operation, which calculates the average value 
representing the global information of each feature map. 

The above information is then input into the second 
process, called weight learning (WL). The weight learning 
process consists of two fully connected layers, a ReLU 
function, and a sigmoid function. The former learns the 
nonlinear interactions between channels through channel 
squeeze and excitation, while the latter restores the channels 
and normalizes the parameters to ensure the network can focus 
on multiple important channels simultaneously. This process 
can be expressed as: 

  
WL 2 1( )W H Z s f r f Z 

           (15) 

In this equation, HWL represents the overall weight learning 
process, r(·) and s(·) represent the ReLU and sigmoid 
functions, respectively, and f1 and f2 denote the two fully 
connected layers. 

The learned weights W = [w1, w2, ..., wc] are multiplied by 
the original input features. The adjusted result is denoted as X′ 
= [x′1, x′2, ..., x′c], where the adjusted feature map 
corresponding to the cth channel can be expressed as: 

c c cx w x 
              (16) 

In this equation, wc represents the weight factor used to 
adjust the proportion of the original feature’s weight, allowing 
the weight of important feature information to be increased. 

 

Fig. 4. Architecture of channel attention module. 
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E. Loss Function 

For the sake of fairness in comparison, only the L1 loss 
function is used to optimize the network. Given a training 

dataset of N image pairs  
1

,
N

i i

LR HR i
I I


, the optimization 

process can be expressed as follows: 

  1
1

1 N
i i

SR HR
i

L
N 

  θ I I
              (17) 

In this equation, 
i

SRI  represents the high-resolution image 

predicted by the network for 
i

LRI , 
i

HRI  denotes the ground-

truth high-resolution image, and θ represents the learnable 
parameters of the network. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 

For the model training part, this study uses the widely 
applied DIV2K dataset for image super-resolution tasks. 
Specifically, bicubic downsampling with three scale factors 
(×2, ×3, and ×4) is performed on 800 training images to obtain 
low-resolution input images. Data diversity is enhanced by 
randomly applying vertical rotations and horizontal flips to the 
training images. The network optimizer is Adam, with 
parameters β1 = 0.9, β2 = 0.999, and ε = 10⁻⁸. The initial 
learning rate is set to 2 × 10⁻⁴ and is halved at the 150,000th, 
300,000th, 400,000th, and 450,000th batches, with a total of 
500,000 training batches. During training, each input batch 
consists of 32 randomly cropped low-resolution images of size 
64 × 64 pixels (batch size = 32). For the super-resolution 
networks with ×3 and ×4 scale factors, training is performed 
based on the pretrained model with ×2 scale factor, and the 
total number of training iterations is halved. 

For model evaluation, this study uses five commonly used 
public benchmark datasets: Set5, Set14, BSD100 (Berkeley 
Segmentation Dataset 100), Urban100, and Manga109. These 
datasets cover various types of image features and resolutions. 
Peak signal-to-noise ratio (PSNR) and structural similarity 
index measure (SSIM) are used as objective evaluation metrics, 
with quantitative assessments performed on the luminance 
channel. Meanwhile, model complexity is measured by the 
number of parameters and the number of multiply-add 
operations (MAdds). The MAdds represent the cumulative 
number of multiplication and addition operations required by 
the model to process a single input image, with an output 
image size of 1280 × 720 pixels used as the benchmark. All 
experiments are conducted on the PyTorch platform, using an 
NVIDIA GTX 4090 GPU. 

B. Analysis of CAETB Structure and Volume 

To verify the effectiveness of the CAETB structure, the 
impact of different embedding combinations of channel 
attention and Transformer on the results is explored. Fig. 5 
shows the case where channel attention is embedded after the 
Transformer, while the case where channel attention is 
embedded before the Transformer is the same as in CAETB. 

 

Fig. 5. Channel Attention（CA）after Transformer layers. 

Table I shows the impact of different combination methods 
on reconstruction quality for the Urban100 and Set5 datasets at 
a scale factor of ×2. It can be seen that embedding channel 
attention before the Transformer layer achieves better 
reconstruction performance. During the actual training process, 
the model occupied approximately 7.6 GB of GPU memory 
when trained on an RTX 4080, with a single iteration taking 
about 0.85 seconds and a total training time of approximately 
68 hours. In the inference stage, when the input image size is 
1280×720, the average reconstruction time for a single image 
is 46 milliseconds, demonstrating real-time processing 
capability. Therefore, this model can be efficiently deployed on 
conventional high-performance GPU platforms, making it 
suitable for practical application scenarios that require a 
balance between performance and resources. 

TABLE I.  EFFECT OF THE COMBINATION STYLE IN CAETB ON THE 

RECONSTRUCTION PERFORMANCE 

Combinatorial 

model 

Number of 

parameters/k 

Urban 100 Set5 

PSNR/(dB)/SSIM PSNR/(dB)/SSIM 

CA embedded in 

front 
851 32.79/0.9348 38.15/0.9618 

CA is embedded 

after 
851 32.74/0.9340 38.12/0.9615 

Note: Bold font indicates the best result in each column. 

Since network depth plays an important role in improving 
reconstruction performance, the effect of increasing the 
number of CAETBs from two to five on the network’s 
reconstruction results was investigated. Table II shows the 
reconstruction results with different numbers of CAETBs at a 
scale factor of ×2 on the Set14 dataset, along with an analysis 
of the required number of parameters. As shown in Table II, 
due to the strong nonlinear abstraction capability of deep 
networks, the performance improves as the number of modules 
increases. However, it can also be observed that the 
improvement in reconstruction results slows down as the 
number of CAETBs increases, a phenomenon known as the 
saturation of deep networks. To balance model complexity and 
performance, four CAETBs are selected to form the basic 
reconstruction network. 

TABLE II.  EFFECT OF THE NUMBER OF CAETBS ON PARAMETER SIZE 

AND RECONSTRUCTION PERFORMANCE ON SET14 

Quantities 
Number of 

parameters/k 
PSNR/dB SSIM 

2 446 33.73 0.9195 

3 649 33.83 0.9201 

4 851 33.89 0.9204 

5 1054 33.93 0.9206 
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C. Comparison with other Algorithms 

To validate the effectiveness of the algorithm, this study 
compares it with lightweight networks such as bicubic 
interpolation, SRCNN [5], CARN [2], IMDN [11], LatticeNet 
[24-25], and SwinIR [19] under different scale factors (×2, ×3, 
×4). These algorithms are representative and have superior 
performance. 

The comparison results of PSNR and SSIM between the 
proposed algorithm and other methods are shown in Tables III 
to V. It can be seen that CAET leads in objective metrics 
PSNR and SSIM across all datasets and different upsampling 
factors. Specifically, on the Urban100 dataset, CAET 
outperforms the second-best method by 0.03 dB at an 
upsampling factor of ×2, 0.08 dB at ×3, and 0.09 dB at ×4. The 
most significant improvement is observed on the Manga109 
dataset, where CAET surpasses the second-best by 0.13 dB at 
×2, 0.33 dB at ×3, and 0.30 dB at ×4. In terms of model 
complexity, CAET maintains relatively low parameter counts 
and FLOPs, achieving better restoration performance while 
having lower complexity than SwinIR, which also uses a 
Transformer model. To further demonstrate the effectiveness 
of the proposed algorithm, the number of CAETBs was 
reduced to two, resulting in the CAET-M variant. Despite its 
significantly lower complexity compared to convolution-based 
lightweight SR algorithms like IMDN, CAET-M still achieves 
some performance gains. These results indicate that the 

proposed algorithm offers better overall performance compared 
to these lightweight methods. 

To further analyze the impact of dataset diversity on model 
performance, this study conducts a statistical comparison of 
five test datasets from multiple dimensions, including image 
types (natural images, urban scenes, hand-drawn images, etc.), 
texture complexity, and image detail density. Set5 and Set14 
primarily consist of simple natural images, while BSD100 has 
moderate complexity. In contrast, Urban100 and Manga109 
represent urban architectural images with high structural 
complexity and detail-dense comic images, respectively. From 
the objective metrics presented in Tables III to V, it can be 
observed that the performance improvement of the CAET 
model is most significant on Urban100 and Manga109, 
achieving the highest PSNR gains (e.g., an increase of 0.09 dB 
and 0.30 dB at a 4x upscaling factor). This indicates that the 
model demonstrates stronger reconstruction capabilities on 
data rich in structure and texture details. The results suggest 
that the CAET model, through the combination of channel 
attention enhancement mechanisms and the global modeling 
capabilities of Transformers, can effectively extract features 
and recover high-frequency details even when faced with 
increased image content complexity. Thus, it achieves robust 
adaptability to diverse data. This outcome verifies that the 
model's structural design possesses good generalization 
capabilities for varied image content. 

TABLE III.  AVERAGE PSNR AND SSIM COMPARISON OF DIFFERENT ALGORITHMS UNDER MAGNIFICATION IS 2 

Model 
Number of 

parameters/k 
Multiplier/G 

Set5 Set14 BSD100 Urban100 Manga109 

PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM 

Interpolation - - 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339 

SRCNN 57 52.7 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663 

CARN 1592 222.8 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9765 

LatticeNet 756 169.5 38.06/0.9610 33.70/0.9193 32.20/0.8999 32.25/0.9288 -/- 

IMDN 694 158.8 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774 

SwinIR-light 878 243.7 38.14/0.9611 33.86/0.9206 32.31/0.9012 32.76/0.9340 39.12/0.9783 

CAET (this study) 851 214.7 38.15/0.9618 33.89/0.9204 32.34/0.901  32.79/0.9348 39.25/0.9781 

CAET 446 110.4 38.04/0.9613 33.73/0.9195 32.26/0.9007 32.39/0.9308 38.93/0.9777 

Note: Bold and underlined fonts indicate the best and second-best results in each column, respectively. A dash “–” indicates the absence of corresponding data. 

TABLE IV.  AVERAGE PSNR AND SSIM COMPARISON OF DIFFERENT ALGORITHMS UNDER MAGNIFICATION IS 3 

Model 
Number of 

parameters/k 
Multiplier/G 

Set5 Set14 BSD100 Urban100 Manga109 

PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM 

Interpolation - - 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556 

SRCNN 57 52.7 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117 

CARN 1592 118.8 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.50/0.9440 

LatticeNet 765 76.3 34.40/0.9272 30.32/0.8416 29.10/0.8049 28.19/0.8513 -/- 

IMDN 703 71.5 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445 

SwinIR-light 886 19.5 34.62/0.9289 30.54/0.8463 29.20/0.8082 28.66/0.8624 33.98/0.9478 

CAET (this study) 859 98.4 34.65/0.9297 30.61/0.8482 29.26/0.8099 28.74/0.8652 34.31/0.9491 

CAET 454 51.1 34.40/0.9278 30.44/0.8445 29.17/0.8076 28.40/0.8577 33.89/0.9466 

Note: Bold and underlined text indicate the best and second-best results in each column, respectively. A dash “–” denotes missing or unavailable data. 
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TABLE V.  AVERAGE PSNR AND SSIM COMPARISON OF DIFFERENT ALGORITHMS UNDER MAGNIFICATION IS 4 

Model 
Number of 

parameters/k 
Multiplier/G 

Set5 Set14 BSD100 Urban100 Manga109 

PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM PSNR/(dB)/SSIM 

Interpolation - - 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866 

SRCNN 57 52.7 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555 

CARN 1592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.47/0.9084 

LatticeNet 777 43.6 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 -/- 

IMDN 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075 

SwinIR-light 897 61.7 32.44/0.8976 28.77/0.7858 27.69/0.7406 26.47/0.7980 30.92/0.9151 

CAET (this study) 871 55.4 32.47/0.8997 28.80/0.7871 27.74/0.7427 26.56/0.8016 31.22/0.9168 

CAET 465 28.8 32.24/0.8963 28.70/0.7847 27.65/0.7394 26.26/0.7928 30.73/0.9118 

Note: Bold and underlined fonts indicate the best and second-best results in each column, respectively. A dash “–” indicates that no corresponding data is available. 

To further validate the advantages of the proposed network, 
representative visual results on standard benchmark datasets 
are analyzed. Fig. 6 shows the local enlargement results for 
image Urban100_img012 with an upsampling factor of ×4. It 
can be observed that other algorithms incorrectly restore the 
orientation of building textures, whereas CAET (proposed in 
this study) accurately preserves the texture structure of the 
buildings. Fig. 7 presents the local enlargement results for 
image B100_253027 at a ×4 scale. Compared to other 

methods, the proposed algorithm restores the zebra stripes with 
greater clarity and accuracy. Fig. 8 shows the ×4 enlargement 
results for image Set14_barbara. The proposed algorithm 
accurately reconstructs the arrangement of the books, while 
other methods exhibit varying degrees of distortion. These 
results demonstrate that the proposed method not only leads in 
objective metrics but also produces clearer super-resolved 
images than all the compared approaches. 

 

Fig. 6. Comparison of reconstructed HR images of img012 in Urban100 by different SR algorithms at the scale factor ×4 [(a) Urban100_img012×4; (b) HR; (c) 

bicubic interpolation; (d) SRCNN; (e) CARN; (f) IMDN; (g) LatticeNet; (h) SwinIR; i) ours]. 

 

Fig. 7. Comparison of reconstructed HR images of 253027 in BSD100 by different SR algorithms with the scale factor ×4 [(a) BSD100_253027×4; (b) HR; (c) 

bicubic interpolation; (d) SRCNN; (e) CARN; (f) IMDN; (g) LatticeNet; (h) SwinIR; (i) ours]. 
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Fig. 8. Comparison of reconstructed HR images of barbara in Set14 by different SR algorithms with the scale factor ×4 [(a) Set14_barbara×4; (b) HR; (c) bicubic 

interpolation; (d) SRCNN; (e) CARN; (f) IMDN; (g) LatticeNet; (h) SwinIR; (i) ours]. 

D. Ablation Experiment 

To effectively adjust features at different levels, this study 
adopts a channel attention-based discriminative enhancement 
strategy. Features from various levels are adaptively weighted 
using channel attention parameters. Unlike LatticeNet [24], 
which uses channel mean and standard deviation as modulation 
parameters, this approach applies channel attention weights 
directly to features from different levels. Table VI presents a 
comparison of reconstruction performance and model 
parameters using the two different weight generation strategies 
across multiple datasets with an upscaling factor of ×3. 
Experimental results show that, compared to the mean and 
standard deviation (MSD) based feature enhancement strategy 
proposed by Luo et al., the channel attention (CA) based 
discriminative enhancement method in this study enables better 
interaction and fusion of Transformer and convolutional 
features, achieving superior image reconstruction performance. 
To further investigate the roles of channel attention, linear 
weighting, and the feature aggregation module, ablation 
experiments were conducted to evaluate the impact of each 
component on overall performance. Specifically, the linear 
weighting structure was replaced with residual connections, 
and both channel attention and feature aggregation were 
removed to form the Base model. The models with different 
strategies are designated as Base A, B, C, and D. 

TABLE VI.  COMPARISON OF DIFFERENT WEIGHT GENERATION METHODS 

OF MODEL AT ×3 AMPLIFICATION FACTOR 

Methodologies 
Number of 

parameters/k 
Manga109 Set5 Set14 

CA 851 34.31 34.65 30.61 

MSD 858 34.24 34.63 30.59 

Note: Bold font indicates the best result in each column. 

Table VII shows how these strategies affect reconstruction 
quality on the Manga109 dataset at a ×4 upscaling factor. The 
Base model performs slightly worse, achieving only 30.93 dB 
PSNR. Adding multi-level feature fusion in model A yields a 
clear 0.19 dB improvement, indicating that this fusion 
approach remains effective even in a Transformer-dominated 
network. Model B embeds channel attention in series on top of 
model A, while model C adds linear weighting on model A but 
removes learnable channel-attention parameters. Both models 
B and C achieve varying degrees of PSNR improvement, but 
combining both strategies in model D produces the most 
significant gain. Thus, the design strategies in this work are 
effective individually and even more so when combined, 

greatly enhancing the network’s restoration capability. 
Compared with the Base model, model D boosts PSNR by 0.29 
dB with only a 32 k increase in parameter count. For a more 
intuitive demonstration of each component’s effect, 
representative images are visualized, with particular focus on 
how embedding channel attention improves the reconstruction 
of fine details. Fig. 9 shows the local magnification results of 
the drone aerial photo at a ×4 upscaling factor. It can be 
observed that, compared to model C, model D—which 
incorporates channel attention—can more accurately restore 
image details. This demonstrates that the integration of channel 
attention has a positive impact on image reconstruction 
performance. Experiments show that the model effectively 
improves the super-resolution performance while maintaining 
low complexity, and can provide a high-precision and low-
latency solution for fast recovery of compressed images in the 
power industry. The method proposed in this study 
demonstrates significant advantages in practical applications. 
Firstly, the network architecture achieves high-fidelity 
restoration of image details while maintaining a low parameter 
count and computational complexity, resulting in a good 
balance between performance and efficiency. Secondly, the 
model exhibits stronger texture modeling and detail restoration 
capabilities in urban architectural images (Urban100) and 
comic images (Manga109), making it suitable for high-
resolution demand scenarios such as video surveillance, remote 
sensing imagery, and anime image enhancement. Additionally, 
the model can run efficiently on consumer-grade GPUs with a 
single card, showing good deployment adaptability, which is 
ideal for resource-constrained edge devices or real-time image 
enhancement systems. 

TABLE VII.  COMPARISON OF THE EFFECTS OF DIFFERENT STRATEGIES ON 

MODEL RECONSTRUCTION PERFORMANCE ON MANGA109 AT AMPLIFICATION 

FACTOR ×4 

Methodologi
es 

Feature 

aggregatio

n 

Channe

l 
attentio

n 

Linear 

weightin

g 

PSNR/d
B 

Number of 

parameters/

k 

Base × × × 30.93 839 

A √ × × 31.08 850 

B √ √ × 31.09 853 

C √ × √ 31.14 864 

D (This 
study) 

√ √ √ 31.22 871 

Note: Bold font indicates the best result in each column. "√" indicates adoption, while "×" indicates not 

adopted. 
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(a) Drone Aerial Photo (b) HR (c) Model C (d) Model D (This Paper)
 

Fig. 9. Comparison of the effects of different strategies on the reconstruction of ARMS in drone aerial maps at a scale of 4 [(a) Drone Aerial Photo; (b) HR; (c) 

model C; (d) model D (ours)]. 

V. CONCLUSION 

In power-system unstructured-data management, images 
captured for patrol monitoring, equipment status awareness, 
and fault diagnosis are key information carriers. Because of 
limited storage and transmission bandwidth, these images are 
often heavily compressed, which degrades quality and removes 
fine details, ultimately impairing downstream intelligent 
recognition and O&M decision-making. To address this, we 
introduce a channel-attention-embedded Transformer super-
resolution method (CAET) that balances reconstruction 
accuracy and model complexity for compressed-image 
restoration. 

CAET adaptively embeds a channel-attention mechanism 
between Transformer global-context features and convolutional 
local-perception features, enabling interactive fusion. This 
design leverages the complementary strengths of Transformer 
and CNN feature extraction while dynamically enhancing 
critical information, markedly improving restoration quality. 
Across five public datasets and in comparison with six 
representative SR algorithms, CAET achieves best- or second-
best results at all upscaling factors. Under 4× enlargement, it 
boosts PSNR by 0.09 dB on Urban100 and by 0.30 dB on 
Manga109 relative to the advanced SwinIR method, with 
noticeably better visual quality. Although CAET delivers 
strong, lightweight performance and restoration accuracy, all 
current experiments are conducted using bicubic-downsampled 
degradation. Real-world power-system images suffer from 
additional compression artifacts, transmission losses, and 
noise, so models trained on synthetic degradation still require 
improved generalization. 

Future work will focus on enhancing the practical 
applicability of compressed-image restoration in power 
scenarios—particularly on lightweight, robust blind SR 
networks that can cope with multiple unknown degradations—
so that image restoration technology can better support 
intelligent management and utilization of unstructured data in 
the power industry. 

Although this method has demonstrated good performance 
on multiple public datasets, there are still two main limitations: 
first, the training and testing of this study are based on an 
idealized bicubic downsampling degradation model, which 
does not cover the complex degradation scenarios commonly 
found in real images, such as compression artifacts and noise 
pollution. As a result, the model may face performance 
degradation in practical applications. Second, there is still some 
computational redundancy in the integration of channel 

attention and Transformer features in CAET. Although it 
already possesses strong lightweight capabilities compared to 
similar methods, further optimization is needed for deployment 
on extremely resource-constrained devices (such as embedded 
systems). 
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