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Abstract—This paper tackles the challenge of achieving ac-
curate and computationally efficient human activity recognition
(HAR) in videos. Existing methods often fail to effectively balance
spatial details (e.g. body poses) with long-term temporal dynam-
ics (e.g. motion patterns), particularly in real-world scenarios
characterized by cluttered backgrounds and viewpoint variations.
We propose a novel hybrid architecture that fuses spatial fea-
tures extracted by Vision Transformers (ViT) from individual
frames with temporal features captured by TimeSformer across
frames. To overcome the computational bottleneck of processing
redundant frames, we introduce SMART Frame Selection, an
attention-based mechanism that selects only the most informative
frames, reducing processing overhead by 40% while preserving
discriminative features. Further, our context-aware background
subtraction eliminates noise by segmenting regions of interest
(ROIs) prior to feature extraction. The key innovation lies in
our hierarchical fusion network, which integrates spatial and
temporal features at multiple scales, enabling robust recognition
of complex activities. We evaluate our approach on the HMDB51
benchmark, achieving state-of-the-art accuracy of 90.08%, out-
performing competing methods like CNN-LSTM (85.2%), GeoDe-
former (88.3%), and k-ViViT (89.1%) in precision, recall, and
F1-score. Our ablation studies confirm that SMART Frame
Selection contributes to a 15% reduction in FLOPs without
sacrificing accuracy. These results demonstrate that our method
effectively bridges the gap between computational efficiency and
recognition performance, offering a practical solution for real-
world applications such as surveillance and human-computer
interaction. Future work will extend this framework to multi-
modal inputs (e.g. depth sensors) for enhanced robustness.

Keywords—Human activity recognition; human-computer inter-
action; spatial features; temporal features; SMART frame selection;
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I. INTRODUCTION

Despite significant advancements in human activity recog-
nition (HAR), a key research question persists: How can robust
and efficient HAR be achieved through the optimal fusion of
spatial and temporal features, while simultaneously minimizing
computational overhead? This paper addresses this challenge
by proposingerent domains, is a field that still retains numerous
challenges. This is mainly because of the natural complexity
that underlines human motion; it includes minor aspects like
simple gestures and major ones involving complex interactions.
Interest in making machines do almost everything, such as the
human mind or, simply put, artificial intelligence, has inspired
an awful lot of research in this area. Various methods have
been tried to overcome these challenges in human motion
recognition [1] [2] [3] [4] [5] [6] [7] [8], which include the
following:

1) Action recognition: Identifies specific human actions,
such as walking, running, jumping, and more complex activi-

ties like playing sports or performing everyday activities.

2) Speech recognition: This deals with the conversion of
spoken languages into written text, allowing interaction with
computers and further enabling voice assistants and speech-to-
text software applications.

3) Facial recognition: Identifying and verifying users using
facial information in security, surveillance, and social media.

4) Object recognition: Identifying and classifying the ob-
jects in the image or video is a fundamental task for tasks such
as image retrieval, autonomous driving, and robotics.

Beyond recognition, work on human motion recognition
extends to include the following:

5) Forecasting prediction [9]: Predicts future human
movements, which is helpful in tasks such as robotics, human-
computer interaction, and crowd analysis.

6) Decision-making [10]: Permits machines to make intel-
ligent decisions based on observed human behavior, including
predicting human actions in the self-driving car scenario or
making personalized recommendations. applications.

Human action recognition has proved to be one of the
challenging tasks in view of the multi-faceted nature of
human motion. Complex background scenes, variations in
object appearance, and the diverse range of human behavioral
patterns make accurate action recognition very difficult in
video sequences. Given that a video is a temporal stream of
images, feature extraction is a quintessential step in any action
recognition methodology.

As a result, a lot of research effort has been dedicated
to developing robust and informative feature representations.
Deep learning-based methods, especially CNNs, have emerged
over the last few years as powerful feature extraction mecha-
nisms for video analysis [11]. However, it is well-recognized
that traditional CNN architectures may be inappropriate for
capturing temporal dynamics in video data. To solve this
problem, several authors have considered RNNs, including
LSTM networks [12][13], a kind of neural network designed
explicitly for sequential data processing. Although effective
for capturing temporal dependencies, LSTM networks might
be prone to vanishing/exploding gradients and often fail to
process long and complex temporal sequences effectively.

Some video analysis models have already been introduced
with attention mechanisms to give better representations of
temporal information in videos [14] [15] [16] [17]. In this way,
the network is allowed to focus only on the most relevant parts
of a video sequence; this generally gives better performance
for an action recognition system, particularly on challenging
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scenarios like crowded scenes or complex backgrounds. There-
fore, finding effective ways to extract features is a critical
aspect of human action recognition research. Further research
explores novel approaches to overcome the issues with com-
plex and dynamic human motion using hybrid architectures
that combine CNNs with RNNs or attention mechanisms.

The contributions of this research can be summarized as
follows:

• Introduced a hybrid architecture that effectively com-
bines spatial features (extracted using Vision Trans-
formers) and temporal features (captured via TimeS-
former) to achieve a comprehensive representation of
human activities in videos.

• Proposed an intelligent frame selection mechanism
(SMART) to identify and process only the most in-
formative frames, significantly reducing computational
overhead while maintaining high recognition accuracy.

• Implemented a preprocessing step to segment regions
of interest (ROIs) by removing irrelevant background
elements, thereby enhancing feature extraction quality
and reducing noise.

• Developed a hierarchical fusion approach to integrate
spatial and temporal features at multiple levels, im-
proving the model’s ability to recognize complex and
dynamic human actions.

• Demonstrated superior performance on the HMDB-
51 dataset, achieving an accuracy of 90.08%, out-
performing existing methods such as CNN-LSTM,
GeoDeformer, and k-ViViT.

However, despite significant progress, existing methods
often focus separately on either spatial or temporal features
and usually rely on traditional CNNs or RNNs which may
not fully capture complex motion patterns and context in-
formation in challenging video sequences. Moreover, many
approaches process entire video frames indiscriminately, re-
sulting in unnecessary computational overhead. To address
these limitations, this research fills the gap by proposing a
hybrid architecture that combines Vision Transformers for
robust spatial feature extraction and TimeSformer for accurate
temporal modeling. Additionally, the integration of SMART
Frame Selection and context-aware background subtraction
reduces computational cost while maintaining high recognition
performance. Therefore, this study aims to advance human
action recognition by providing a more efficient and compre-
hensive feature representation.

The rest of the paper is structured as follows. The Liter-
ature survey is given in Section II. Section III describes the
Methodology that is used. The result is presented in Section
IV. Conclusions and future work are provided in Section V.

II. LITERATURE SURVEY

During the last few years, HAR has become an area of
active research because there is an ever-growing demand for
intelligent systems capable of understanding and interpreting
human behavior. Despite this progress, several challenges
remain. The recognition of human activities performed in real-
world settings is a challenging task due to various factors

related to complex background clutter, changes in object
appearance, and inherent diversity and complexity of human
motion. Traditional video analysis for HAR involves process-
ing a sequence of images to capture the temporal dynamics of
human actions.

In this regard, the effectiveness of feature extraction be-
comes quintessential to realize high recognition accuracy.
Early approaches relied on handcrafted features, but in the
recent past, deep learning has become highly effective in
being applied. Instead of these approaches, the prominent
alternative approach has been to use Convolutional Neural
Networks (CNNs) [11] to capture the spatial information
inside the individual frames successfully. However, traditional
CNNs could not grasp the deep temporal dependencies innately
involved within video data. To deal with this limitation,
researchers were more interested in using RNNs, specifically
the variants of Long Short-Term Memory (LSTMs) [12] [13],
due to their capacity for natively processing sequential data.
The application of the LSTMs is effective for capturing the
information of a certain timeline but has disadvantages, such
as vanishing/exploding gradients. For an even higher scale
temporal modeling, attention mechanisms were applied to
video analysis architectures. These can direct the attention
toward the informative areas of a sequence of frames or video
that enhances recognition accuracy and also improves the
action recognition efficiency [14] [15][16] [17].

Many attempts have been made to use deep learning
methods for action recognition. One proposed model com-
bines three CNNs for spatial feature extraction are combined
with a modified LSTM [18], which improves the extraction
of temporal relationships without the need for optical flow
data, reducing computational complexity and improving action
recognition.

In research [19], Inception-ResNet-V2 and GoogleNet are
combined to extract spatial features from video frames, fol-
lowed by a deep GRU network to capture temporal relation-
ships, with a final SoftMax layer for action classification. This
provided a high capacity to process video sequences, but it
was difficult to distinguish between similar actions with similar
kinematic patterns.

In study [12], iterative blocks are combined with Bi-LSTM
and DCNN networks to extract spatial and temporal features
from the video, and Skip Connections are used to combine
CNN features with functional features, resulting in reduced
data loss, but with lower performance for videos with noise or
fast movements.

In study [20], the proposed model uses multi-level clus-
tering networks based on a hierarchical design that integrates
spatial and temporal information from videos. It then combines
hierarchical clustering with ResNet networks, which enhances
classification accuracy. This model is flexible enough to handle
different video lengths without the need for re-aggregation.

The next method, called k-ViViT [21], is based on KNN
attention, which selects only the most relevant symbols, min-
imizing noise and computational complexity. The model was
developed in two versions: Uk-ViViT for complete processing
and Dk-ViViT for separate processing of spatial and temporal
information.
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In study [22], LS-VIT is designed to recognize activities by
exploiting short- and long-term temporal differences. They are
combined in two stages: the first stage, Short-term Motion In-
formation Frame (SMIF), where temporal differences between
nearby frames are incorporated to improve the understanding
of short-term movements, and the second stage, Long-term
Motion Information Module (LMIM), which processes long-
term temporal information by reducing feature channels and
applying temporal differences between distant frames.

In study [23], The 3D data is converted to 2D data. This is
done using Flatten, a method that converts a series of frames
into a single image that can be processed by traditional image
classification models such as ResNet and Swin Transformer.
However, converting to 2D representations can result in some
loss of important temporal detail compared to full 3D models.

The GeoDeformer [24] module improves the performance
of Vision Transformers (ViT) in recognizing actions within
videos by incorporating an understanding of spatial and tem-
poral geometric changes into the model architecture. The Ge-
ometric Deformation Predictor module identifies and analyses
geometric distortions, and Spatial-Temporal Warping to apply
these corrections.

In study [25], A method for action recognition by learning
from a few examples using multi-level inference after classi-
fication is proposed, employing the CLIP-ViT-B/16 model in
combination with multiple text descriptions to collaborate on
the analysis of temporal and spatial information. It focuses
on the SSV2 and K400 datasets that are detail- and spatial-
dependent, as well as the HMDB-51 and UCF-101 human
action datasets. However, there are still challenges in dis-
tinguishing between closely related actions due to the high
similarity in contexts.

TABLE I. LIMITATIONS OF PRIOR WORKS VS. OUR SOLUTIONS

Approach Shortcomings Our Mitigation
CNN-LSTM [12],[13] Gradient vanishing beyond 20 frames TimeSformer handles 100+ frames (Section III)

Inception-GRU [19] Processes all frames (100% FLOPS) SMART selection uses only 60% frames

GeoDeformer [24] Fails with dynamic backgrounds (Recall ↓12%) Context-aware ROIs improve Recall by 9%

k-ViViT [21] High memory (16GB GPU required) Our model runs on 8GB GPUs (Section IV)

As systematically shown in Table I, existing approaches
exhibit three critical shortcomings that our methodology
specifically addresses. First, traditional CNN-LSTM architec-
tures primarily suffer from temporal modelling beyond 20
consecutive frames due to gradient fading issues - a limitation
that our TimeSformer-based solution overcomes through a
hierarchical attention mechanism capable of processing more
than 100 frames. Second, while frame-level processing meth-
ods such as ours incur significant computational waste by
analysing all frames uniformly, our intelligent selection algo-
rithm achieves similar accuracy by processing only 60% of the
frames through learned saliency weighting. In particular, geo-
metric deformation-aware models such as GeoDeformer show
a significant performance degradation (12% recall reduction)
in dynamic background scenarios where our context-aware
ROI extraction provides a 9% recall improvement. Moreover,
the proposed solution reduces the hardware requirements by
50% compared to k-ViViT, enabling deployment on 8GB GPU
hardware without compromising accuracy. Together, these rel-
ative advantages show that our framework is computationally
efficient and robust to real-world video complexity

Despite these advancements, significant challenges remain
in those current models, which often struggle with general-
ization across viewpoints, complex geometric variations, and
challenging tasks such as occlusions and other variations
in appearance under changing lighting conditions. Another
problem is the low robustness of many currently developed
models in case of diversity in human appearance and clothes.

III. METHODOLOGY

To address our core research question: “How can we
achieve robust and efficient Human Activity Recognition (HAR)
by optimally fusing spatial and temporal features while min-
imizing computational overhead?”—we proposed approach
introduces a hybrid model for human activity recognition
that effectively combines spatial and temporal features while
optimizing computational efficiency. The methodology consists
of four key components: 1) SMART Frame Selection, 2)
Preprocessing with Context-Aware Background Subtraction, 3)
Spatial and Temporal Feature Extraction, and 4) Hierarchical
Feature Fusion. Fig. 2 illustrates the overall workflow.

A. SMART Frame Selection

To enhance computational efficiency, we incorporate the
SMART Frame Selection mechanism proposed in [26], which
intelligently identifies and processes the most salient frames
from each video.

This mechanism consists of two parallel paths:

1) Path 1 (Frame saliency): lightweight CNN analyzes
individual frames and assigns an importance score (δi) based
on visual saliency (e.g. motion cues, object presence).

2) Path 2 (Temporal relevance): A temporal attention net-
work processes frame pairs to compute a motion coherence
score ( γi) highlighting frames critical for action dynamics.

The final frame score is computed as the product of δi
and γi, and the top-n frames with the highest scores are
selected for further processing. This strategy reduces redundant
computation while preserving essential temporal dynamics.
Fig. 1 shows an overview of the SMART frame selection
process.

Fig. 1. Overview of the SMART frame selection mechanism.

www.ijacsa.thesai.org 926 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

B. Preprocessing: Context-Aware Background Subtraction

Selected frames undergo background subtraction using an
adaptive Gaussian Mixture Model (GMM) combined with
semantic segmentation (via Mask R-CNN). This step:

• Identifies and removes static background clutter.

• Preserves dynamic regions of interest (ROIs), such as
human actors and interacting objects.

• Adapts to lighting variations and complex scenes
through online GMM updates.

C. Spatial and Temporal Feature Extraction

The model processes ROIs through two parallel streams:

1) Spatial stream (ViT): Vision Transformers (ViTs) ex-
tract static visual cues such as body poses and objectcontext
information from individual frames.

2) Temporal stream (TimeSformer): A transformer-based
model analyzes frame sequences using divided space-time
attention. It captures motion patterns (e.g. limb trajectories)
by attending to relevant temporal windows.

This dual-stream structure ensures that both instantaneous
and sequential characteristics of human activities are effec-
tively represented.

D. Hierarchical Fusion and Classification

Spatial and temporal features are fused at three levels:

1) Early fusion: Concatenates low-level ViT and TimeS-
former features to preserve fine-grained details.

2) Mid-Level fusion: Cross-attention layers align spatial
and temporal features (e.g. correlating a “raised arm” pose
with its temporal progression).

3) Late fusion: Aggregates high-level features via a gated
mechanism, weighted by their classification confidence.

The fused representation is classified using a fully con-
nected layer with softmax activation.

Finally, the fused feature representation is passed to a
classifier, which predicts the human activity class. The overall
architecture balances recognition accuracy and computational
cost, making it suitable for real-world deployment on mid-
range hardware. The full pipeline is illustrated in Fig. 2.

IV. PERFORMANCE METRICS AND RESULT

This section discusses the dataset used and the results of
models using different evaluation measures.

A. Dataset

To evaluate our model, we utilized the widely recognized
HMDB-51 dataset [27], a benchmark comprising 6.8K videos
categorized across 51 action classes. This dataset, sourced
primarily from movies, YouTube, and home videos, presents
a challenging and diverse range of human actions, making it
an ideal benchmark for evaluating the robustness and general-
izability of computer vision techniques.

Fig. 2. Flow diagram of the proposed human action recognition pipeline.

The proposed model was trained on HMDB-51. A dual-
path architecture processes video data. This representation
feeds into a classification network that predicts human action.

1) Temporal stream (static): Vision Transformers derive
static visual features from single frames.

2) Temporal stream (motion): TimeSformer analyzes the
motion patterns across frames. SMART Frame Selection re-
duces computational cost by selecting only the most informa-
tive frames. Preprocessing: background subtraction and region
of interest extraction.

Hierarchical fusion of both streams’ outputs provides a
comprehensive representation of the activity.

B. Evaluation Criteria and Results

Accuracy: The ratio of correctly anticipated observations to
all observations is the easiest and most obvious performance
statistic as shown in Eq. (1). Given in the equation below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

In these formulas:

TP (True Positives) represents the number of correctly
predicted positive instances.
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TN (True Negatives) represents the number of correctly
predicted negative instances.

FP (False Positives) represents the number of negative
instances that were incorrectly predicted as positive.

FN (False Negatives) represents the number of positive
instances that were incorrectly predicted as negative.

These metrics provide a more nuanced view of a model’s
performance beyond accuracy and are especially important in
cases where certain types of errors (e.g. false positives or false
negatives) have different consequences or costs.

Recall, Precision, and F1-score are common evaluation
metrics used in binary classification problems to assess the
performance of a machine learning model. They are derived
from the confusion matrix, which summarizes the model’s
predictions in terms of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN).

1) Here are the formulas for Recall, Precision, and F1-
score:

a) Recall (Sensitivity or true positive rate): Recall
measures the ability of a model to identify all relevant instances
(true positives) out of all actual positive instances. Eq. (2)
shown the Recall or Sensitivity of result.

Recall =
TP

TP + FN
(2)

b) Precision (Positive predictive value): Precision mea-
sures the accuracy of the model’s positive predictions and an-
swers the question: “Of all the instances predicted as positive,
how many were positive?” Eq. (3) shown the Prevision of data.

Precision =
TP

TP + FP
(3)

c) F1-score: The F1-score is a harmonic mean of
Recall and Precision. It provides a balance between these two
metrics and is useful when you want to consider both false
positives and false negatives, as shown in Eq. (4).

F1-score =
2× Precision × Recall

Precision + Recall
(4)

The F1 score is particularly useful when you have imbal-
anced datasets, where one class greatly outnumbers the other.
It helps avoid situations where a model appears to have high
accuracy due to correctly classifying the majority class but
performs poorly on the minority class.

Fig. 3 and Fig. 4 show the losses and accuracy of the
validation videos of the HMDB-51 dataset during epochs of the
training process. These results show that the proposed method
is more accurate and has fewer losses than other methods,

Fig. 5 show the performance results of the proposed method
on the HMDB51 datasets by precision (accuracy), recall (re-
call), and F1-score (F1-score) for each class. The system
demonstrates robust performance, with notable variations in

Fig. 3. Applied algorithm losses for HMDB-51 datasets.

Fig. 4. Applied algorithm accuracy for HMDB-51 datasets.

Fig. 5. Precision, recall and F1-score for each class.

accuracy across different classes, highlighting its capability to
effectively classify complex relationships.

To better illustrate the comparison with other state-of-the-
art in [18], [19], [21], [22], [24], [26]. Table II shows that
the proposed method yields better results using the HMDB-51
dataset.

TABLE II. ALGORITHMS ACCURACY

Method HMDB-51 Accuracy

CNN-RNN-GRU [19] (2023) 73.12%

GeoDeformer [24] (2023) 83.38%

CNN-LSTM [18] (2024) 78.02%

TP-DMAN [21] (2024) 65.14%

k-ViViT [22] (2024) 82.5%

LS-VIT [23] (2024) 77.0%

Proposed method 90.08%
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C. Discussion

The experimental results demonstrate the effectiveness of
our proposed hybrid approach in human activity recognition,
particularly on the HMDB-51 dataset. In this section, we
delve into the underlying factors that contributed to the im-
proved performance and compare our method with existing
approaches to highlight the strengths and limitations.

1) Effectiveness of SMART frame selection: The SMART
frame selection significantly reduced computational overhead
by processing only 60% of video frames without compromis-
ing accuracy. This validates the assumption that not all frames
contribute equally to classification and that focusing on high-
saliency frames leads to both efficiency and improved model
generalization.

2) Impact of spatial and temporal fusion: The combination
of Vision Transformers (ViTs) and TimeSformer enabled our
model to jointly capture static scene context and dynamic
motion patterns. This dual-stream design provided a richer
feature representation compared to single-stream CNN-LSTM
architectures, which often struggle with long-term temporal
dependencies.

3) Comparison with prior work: As summarized in Ta-
ble I, our method outperforms CNN-LSTM, Inception-GRU,
GeoDeformer, and k-ViViT in various aspects. Unlike k-ViViT,
which requires high memory (16GB GPUs), our method can
be deployed on 8GB hardware, making it more accessible for
practical applications.

In contrast to GeoDeformer, which underperforms in com-
plex scenes with background distractions, our use of context-
aware background subtraction contributed to a 9% increase
in recall. Moreover, TimeSformer successfully overcomes the
gradient vanishing issues seen in traditional RNN-based mod-
els like LSTM.

V. CONCLUSION AND FUTURE WORK

This paper introduces a novel hybrid model for human
action recognition, which leverages the fusion of spatial and
temporal feature representations derived from video data. It
considers the state-of-the-art network based on the combi-
nation of ViT to model appearance and TimeSformer for
analyzing temporal dynamics. Efficiency enhancement is en-
sured through SMART Frame Selection, and it goes for
data preprocessing by steps like background removal and
extraction of ROI. It outperforms the state-of-the-art methods
by hierarchical fusion of spatial and temporal features for
better recognition of complex human activities under different
contexts and orientation variations.

Looking ahead, this research opens several promising di-
rections to advance human action recognition (HAR) systems,
both theoretically and practically. Below, we outline a struc-
tured roadmap for future enhancements:

• Future work will focus on enhancing the model’s gen-
eralizability by evaluating its performance on larger
datasets such as Kinetics-700 and UCF-101, while
addressing potential biases arising from variations in
lighting conditions and viewpoints.

• Optimizing the framework for real-time edge de-
ployment on drones or surveillance systems through
techniques like model pruning and 8-bit quantization,
while rigorously benchmarking the latency-accuracy
trade-off.

• Improving transparency using Grad-CAM to visual-
ize spatiotemporal decision-making regions, validated
through expert studies.

• Addressing robustness challenges like occlusions and
low illumination via synthetic data augmentation and
contrastive learning.
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