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Abstract—Cephalometric landmark identification is funda-
mental for accurate cephalometric analysis, serving as a corner-
stone in orthodontic diagnosis and treatment planning. However,
manual tracing is a labor-intensive process prone to inter-
observer variability and human error, highlighting the need for
automated methods to improve precision and efficiency. Recent
advances in Deep Learning have enabled automatic detection
of cephalometric landmarks, thereby increasing accuracy and
consistency while reducing processing time. This scoping re-
view examines contemporary applications of Deep Learning in
cephalometric landmark detection and cephalometric analysis
from 2019 to January 2025. We searched IEEEXplore, Sci-
enceDirect, arXiv, Springer, and PubMed databases, identifying
601 articles, of which 76 met inclusion criteria after rigorous
screening. Our analysis revealed significant performance improve-
ments with Deep Learning methods achieving Success Detection
Rates (SDR) of 75-90% at 2mm thresholds, substantially out-
performing traditional methods. Geographical analysis identified
China, South Korea, and the United States as leading research
centers, with commercial applications like WebCeph and CephX
gaining clinical adoption. Deep Learning improves the accuracy
and efficiency of cephalometric analysis; however, challenges
persist regarding dataset standardization and clinical validation.
These technologies show promising potential to support novice
clinicians, streamline radiological examinations, and improve
landmark identification reliability in routine orthodontic practice.
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I. INTRODUCTION

Artificial Intelligence (AI) has significantly reshaped mod-
ern healthcare, revolutionizing various domains, including
medical imaging, diagnostics, and treatment planning [1].
Orthodontics has experienced significant advancements in AI,
attracting considerable interest from both researchers and prac-
titioners. Lateral cephalometry is a commonly employed X-ray
imaging technique that is essential for orthodontic diagnosis
and treatment assessment, as it quantifies the angles of various
characteristic points in relation to a reference plane. The accu-
rate identification of cephalometric landmarks has historically
been a labor-intensive process necessitating the expertise of
skilled professionals [2].

Despite advancements in computational power and AI algo-
rithms, the localization of cephalometric landmarks continues
to pose a considerable challenge in orthodontics and dentistry.
Digital cephalometric analysis has been possible for years;

however, manual landmark identification was traditionally con-
ducted solely by experts. Researchers have pursued automation
of this process due to its complexity, time consumption, and the
expertise required, acknowledging the advantages of decreased
workload, enhanced efficiency, and reduced inter- and intra-
observer variability [3][4].

Deep Learning (DL) has emerged as a transformative
approach, exceeding the capabilities of traditional knowledge-
based systems in landmark detection. Recent advancements in
deep neural networks have resulted in software programs that
can perform automated cephalometric landmark identification
with reliability comparable to that of human experts. As
a result, commercially available DL-powered cephalometric
applications have emerged globally, with prominent examples
such as CellmatIQ (Hamburg, Germany), ORCA AI (Herzliya,
Israel), and WebCeph (Gyeonggi-do, Korea).

We selected a scoping review methodology rather than a
systematic review or meta-analysis because the field of Deep
Learning in cephalometric analysis is rapidly evolving with
heterogeneous methodologies and outcomes. A scoping review
allows us to comprehensively map this landscape, identify
key concepts, and highlight knowledge gaps without being
constrained by the rigid methodological appraisal required in
systematic reviews. This approach is particularly appropriate
given the diverse technical implementations, varying evaluation
metrics, and emerging commercial applications in this domain.

Prior reviews on this topic [5][6][7][8][9] have primarily
conducted umbrella reviews of systematic studies that compare
the performance of artificial intelligence with manual tracing
methods. These reviews did not include comprehensive biblio-
metric or geographic analyses and failed to explicitly assess
the differences in accuracy between AI-generated landmarks
and traditional manual landmarking. Additionally, previous
meta-analyses have concentrated predominantly on academic
performance metrics, with less emphasis on practical clinical
implications.

This study is organized as follows: Section II provides
essential background on cephalometric analysis fundamentals,
the evolution of landmark detection methodologies, and key
performance metrics used in the field. Section III details
our comprehensive search strategy, study selection process,
eligibility criteria, and data extraction methodology following
PRISMA-ScR guidelines. Section IV presents our findings
through three distinct evolutionary phases of Deep Learning
applications (2019-2020, 2021-2022, and 2023-2025), along-
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side a detailed analysis of commercial software implementa-
tions and their clinical validation. Section V discusses the cur-
rent challenges facing the field, including dataset limitations,
clinical integration barriers, and performance variability across
different architectures, while also examining the emergence
of commercially available AI-driven cephalometric platforms.
Finally, Section VI outlines future research directions essen-
tial for advancing the field, including the need for larger
multi-ethnic datasets, unified benchmarking frameworks, and
parameter-efficient architectures for clinical deployment, be-
fore Section VII concludes with key insights and implications
for orthodontic practice.

A. Contributions and Research Questions

This study offers several novel contributions that address
key gaps in the existing literature:

• A comprehensive bibliometric analysis spanning a
wider timeframe (2019 to January 2025), documenting
the exponential growth in research output.

• A structured analysis of the technological evolution
from fundamental convolutional neural networks to
advanced transformer-based architectures.

• A detailed geographic distribution analysis identifying
research leadership centers and potential collaboration
opportunities.

• A focused comparative examination of commercially
available AI-driven software, highlighting both prac-
tical clinical applications and inherent limitations.

Following the Population, Concept, Context (PCC) frame-
work, this scoping review addresses the following specific
research questions:

1) What are the primary Deep Learning methodologies
employed in cephalometric landmark detection?

Population: cephalometric radiographs; Concept:
Deep Learning methodologies; Context: landmark
detection.

2) How have these methodologies evolved from 2019
to 2025?

Population: research studies; Concept: technological
evolution; Context: temporal progression.

3) What gaps exist in the current literature regarding
automated landmark detection using Deep Learning?

Population: research literature; Concept: knowledge
gaps; Context: methodological and clinical
application.

4) What are the implications and future directions for
integrating these methods into clinical orthodontic
practice?

Population: orthodontic practitioners; Concept: clin-
ical integration; Context: practical implementation.

Unlike previous reviews, this study provides a broad,
structured thematic analysis focusing on technological evo-
lution, geographic trends, and commercial software applica-
tions—areas that have not been comprehensively addressed in
prior reviews.

II. BACKGROUND

A. Cephalometric Analysis

Cephalometric analysis involves the evaluation of lateral
skull radiographs taken with a cephalostat to identify skeletal
patterns and gauge the complexity of treatment. This method
is particularly suited for situations that require intentional
forward and backward adjustments, though it is not essential
for every orthodontic procedure. Cephalometric analysis is
especially required when considerable changes to the position
of the incisors are expected.

Cephalometric analysis is a technique with a significant
historical background, tracing its origins to the late 1800s, a
period marked by the initial application of radiographs for
the examination of the head and neck. During the 1930s,
Holly Broadbent, a professor in orthodontics at the Univer-
sity of Michigan, contributed significantly to the discipline
by examining the correlation between dental structures and
cranial anatomy. The study encompassed the measurement
of diverse angles and distances within radiographic images,
thereby laying the groundwork for cephalometric analysis [10].

Over the following decades, researchers built upon his
foundational contributions, advancing further methodologies
including, Stainer Analysis, Wits analysis, and Downs Analy-
sis. Cephalometric analysis serves as a fundamental component
of contemporary orthodontic practice, facilitating the diagnosis
and management of a range of dental and skeletal irregularities
[11]. The analysis evaluates the anteroposterior and vertical
relationships of the mandible and maxilla in relation to the cra-
nial base and each other, as well as the upper and lower teeth
in relation to the mandibular and maxillary bones (Fig. 1). The
process begins with the identification of anatomical landmarks
on cephalometric radiographs, referred to as cephalometric
landmarks. The number of landmarks in the most commonly
available open-source dataset is nineteen.

Fig. 1. Common cephalometric points and planes.
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Lateral skull radiographs (Fig. 2) offer a two-dimensional
representation of the head and neck, facilitating the assess-
ment of sagittal and vertical dimensions. Sagittal measure-
ments analyze the location and angulation of the maxilla and
mandible, whereas vertical measurements assess the height
of facial components and the interrelationship between the
jaws [12]. In contrast, posteroanterior radiographs, captured
from the anterior aspect of the head, assess transverse and
vertical dimensions, providing insights into face width and the
interrelationship of the jaws in the transverse plane [13]. In
clinical practice, cephalometric analysis mainly utilizes lateral
radiographs due to the interpretive difficulties associated with
posteroanterior projections.

Fig. 2. Lateral skull radiograph (cephalogram).

Cephalometric analysis is the comparison of individual
anatomical proportions and angular measurements to popula-
tion averages. Traditionally, these anatomical landmarks are
manually traced and interconnected to create lines and angles,
with the resultant measurements documented and analyzed
[14].

Cephalometric analysis is essential for detecting and man-
aging malocclusions, necessitating a collaborative healthcare
team comprising dental professionals, including general den-
tists, orthodontists, and oral surgeons. This approach offers
significant insights into the degree of skeletal and dental
misalignments, along with potential causal factors.

B. Landmark Detection Evolution

The development of methodologies for the automatic detec-
tion of facial landmarks has exhibited notable advancements,
reflecting substantial developments over time.

Initially, manual annotation and semi automatic detection
using graphical software, served as the predominant tech-
niques for the labeling and identification of facial landmarks.
Nonetheless, this methodology demonstrated a significant con-
sumption of time, rendering it unsuitable for extensive appli-
cations [15].

As computer vision capabilities improved, the 2000s wit-
nessed the emergence of Statistical Shape Models. Active

Shape Models (ASMs) were developed as a method to rep-
resent object shape using a set of landmark points and an
associated shape model.in other words, it aligns the model to
new images using edge detection. After that, Active Appear-
ance Models (AAMs) expanded upon ASMs by integrating
both shape and appearance data [16] [17].

The mid-2010s marked an era characterized by the dom-
inance of supervised learning and machine learning method-
ologies. The detection techniques focused on feature extraction
methods, including Haar features, Histogram of Oriented Gra-
dients (HOG), and Scale-Invariant Feature Transform (SIFT),
as well as learning-based regression models such as decision
trees, support vector machines (SVM), and boosted regression
forests [18][19].

Since 2015, Deep Learning has been at the forefront of
landmark detection. Convolutional Neural Networks (CNNs)
became prominent, allowing researchers to develop models that
directly predict cephalometric landmarks from images. Stacked
Hourglass Networks and Fully Convolutional Networks have
emerged as prominent techniques, significantly improving ac-
curacy relative to prior techniques [20] [21].

With the continual development and progression of Deep
Learning, increasingly sophisticated algorithms have been
employed to identify landmarks. Several models integrating
attention mechanisms and transformers have been utilized for
landmark detection [22] [23] [24].

C. Performance Metrics

To quantitatively assess the accuracy and reliability of
different landmark identification techniques, four important
metrics have been widely adopted in the literature: Mean Ab-
solute Error (MAE), Success Detection Rate (SDR), Standard
Deviation of Radial Error (SDRE), and Mean Radial Error
(MRE).

1) Mean Absolute Error (MAE): MAE [Eq. (1)] quantifies
the absolute deviation between predicted and ground truth
landmark positions, providing a direct measure of localization
precision. It is defined as:

MAE =
1

N

N∑
i=1

|REi| (1)

where, REi represents the radial error for the i-th land-
mark, and N is the total number of landmarks. A lower MAE
value indicates higher accuracy in landmark localization.

2) Success Detection Rate (SDR): SDR [Eq. (2)] is a
widely adopted performance metric that reflects the percentage
of landmarks detected within clinically relevant thresholds
(e.g., 2.0 mm, 2.5 mm, 3.0 mm, and 4.0 mm). It is calculated
as:

SDRx =
Number of landmarks with error ≤ x mm

Total number of landmarks
× 100

(2)

where, x represents the error threshold. Higher SDR values
indicate greater robustness in landmark detection.
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3) Standard Deviation of Radial Error (SDRE): SDRE [Eq.
(3)] quantifies the variability in landmark localization across
multiple samples, capturing the stability of the model. It is
expressed as:

SDRE =

√√√√ 1

N

N∑
i=1

(REi −MRE)2 (3)

where, REi represents the radial error for each landmark,
and MRE is the mean radial error. A lower SDRE value
suggests more consistent landmark localization.

4) Mean Radial Error (MRE): MRE [Eq. (4)] measures the
average Euclidean distance between predicted and ground truth
landmarks, serving as a primary indicator of overall detection
accuracy. It is given by:

MRE =
1

N

N∑
i=1

√
(xi − x̂i)2 + (yi − ŷi)2 (4)

where, (xi, yi) and (x̂i, ŷi) represent the ground truth
and predicted coordinates of the i-th landmark, respectively.
A lower MRE value signifies higher landmark localization
accuracy.

III. METHODS

A. Search Strategy

We conducted a systematic search in accordance with
PRISMA-ScR guidelines for scoping reviews. The last com-
prehensive literature search was performed on January, 2025.

The primary search was conducted using the electronic
databases like IEEEXplore, ScienceDirect, arXiv, Springer and
PubMed, aiming to gather a comprehensive selection of studies
on the application of Deep Learning in cephalometric landmark
identification, ultimately facilitating cephalometric analysis.

The search process employed specific keywords and
queries such as:

Query 1

“landmark detection” OR “automatic cephalometric
landmark detection” OR “landmark identification on
lateral cephalogram” , AND “Deep Learning”

Query 2

(cephalometric OR lateral skull radiograph) AND (ar-
tificial intelligence OR Deep Learning OR convolu-
tional neural network) AND (landmark detection OR
automated tracing)

Query 3

(orthodontic imaging) AND (AI OR artificial intelli-
gence) AND (landmark identification)

Query 4

“Deep Learning architectures”[MeSH] OR “Con-
volutional Neural Network”[MeSH] OR “Attention
mechanisms”[MeSH] OR ”Fully Convolutional Net-
work”[MeSH] OR “hybrid approaches”[MeSH]

Alongside, the reference lists of all included studies and
relevant review articles were hand-searched to identify addi-
tional eligible studies.

A total of 601 articles were found within the timeframe of
2019 to 2024. The year-wise distribution is depicted in Fig. 3,
and the geographic distribution is in Fig. 4.

Fig. 3. Annual distribution of published studies included in the review.

B. Study Selection Process

The selection process followed the four-stage PRISMA
flow diagram (Fig. 5). A total of 1,023 records were ini-
tially identified through database searches. After removing
166 duplicates, the remaining 857 records were screened for
eligibility. After applying initial exclusion criteria (abstract not
relevant, publication title unrelated, dataset not specified), 601
records remained.

Two reviewers (IT and AE) independently screened the
titles and abstracts of these 601 records against pre-defined
inclusion and exclusion criteria, resulting in 530 potentially
relevant articles. Disagreements were resolved through dis-
cussion, and when necessary, a third reviewer (FEB) was
consulted. A total of 290 articles were excluded at this stage
primarily because they were not related to Deep Learning
techniques.

Full-text assessment of the remaining 240 articles was
conducted independently by two reviewers (IT and OM) using
a standardized eligibility form. Disagreements were resolved
through consensus discussions with a senior researcher (BJ).
This process excluded 164 additional articles due to datasets
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Fig. 4. Geographic distribution of the included studies across countries.

Fig. 5. PRISMA-ScR flow diagram of the study selection process.

not related to 2D landmarking or papers focused on measure-
ments rather than predicting landmarks. Finally, 76 articles met
all inclusion criteria and were included in the review.

C. Eligibility Criteria

1) Inclusion criteria:

• Original research studies utilizing Deep Learning for
cephalometric landmark detection

• Studies published between January 2019 and January
2025

• Studies with clearly described methodology and eval-
uation metrics

• Papers reporting on 2D lateral cephalometric radio-
graphs

• Studies comparing commercial software performance
with manual tracing

2) Exclusion criteria:

• Review articles, case reports, editorials, and letters

• Studies without clear methodology descriptions

• Studies without quantitative performance metrics

D. Data Extraction

We developed a standardized data extraction form based on
the Joanna Briggs Institute data extraction template for scoping
reviews. Two reviewers (IT and FEB) independently extracted
data from all included studies. For each study, the following
information was recorded:

• Publication details (author, year, country, journal)

• Study characteristics (sample size, dataset origin,
number of landmarks)

• Methodological details (Deep Learning architecture,
implementation approach)

• Performance metrics (Success Detection Rate at dif-
ferent thresholds, Mean Radial Error)

• Clinical validation methods (if any)

• Commercial application details (for relevant studies)

IV. RESULTS

Table I presents papers and studies of the early approaches
(2019 to 2020) for cephalometric landmark detection. These
years marked the initial surge in applying Deep Learning to
automate cephalometric landmark detection. Efforts mainly ex-
plored architectures like YOLOv3, stacked hourglass networks,
Bayesian CNNs, and basic CNN pipelines.

Intermediate progress period (2021 to 2022) marked a
transition to more customized and cascaded network designs
tailored for medical imaging, with growing interest in patch-
based models and clinical applicability. Table II presents more
details of papers for Deep Learning architecture in that period
of time.
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TABLE I. SUMMARY OF CEPHALOMETRIC STUDIES BETWEEN 2019 AND 2020

Paper Year Country Dataset Nb of
Points

Methods Results

[25] 2019 South Korea 1,028 cephalograms 80 YOLOv3 SDR: 2 mm: 80.4%, 2.5 mm: 87.4%, 3 mm:
92.0%, 4 mm: 96.0%

[26] 2020 Germany 1,792 cephalograms 18 Customized convolutional neural
network

Absolute mean differences: Angular parameters ¡
0.37°, Metric ¡ 0.20 mm, Proportional ¡ 0.25%

[27] 2020 South Korea 1,311 cephalograms 46 YOLOv3 Mean detection error: 1.46 ± 2.97 mm
[28] 2020 South Korea 2,075 cephalograms 23 Stacked hourglass network SDR: 2 mm: 84.53%, 2.5 mm: 90.11%, 3 mm:

93.21%, 4 mm: 96.79%
[29] 2020 South Korea ISBI 2015 dataset 19 Bayesian convolutional neural net-

work (BCNN)
SDR: 2 mm: 82.11%, 3 mm: 92.28%, 4 mm:
95.95%

[30] 2020 Netherlands ISBI 2015 dataset 19 Fully convolutional neural network
(ResNet34)

Median Euclidean error: Test1: 0.46–2.12 mm,
Test2: 0.42–4.32 mm, SDR (4 mm): 95%

[31] 2020 Japan ISBI 2015 dataset 19 Two-step method: ROI extraction +
ResNet50 network

SDR: Test1: 2 mm: 86.4%, 4 mm: 97.8%; Test2:
2 mm: 74%, 4 mm: 94.3%

[32] 2020 China ISBI 2015 dataset 19 CephaNN Network SDR: Test1 - 2 mm: 87.61%, 4 mm: 94.63%; Test2
- 2 mm: 76.30%, 4 mm: 94.63%

TABLE II. SUMMARY OF CEPHALOMETRIC STUDIES BETWEEN 2021 AND 2022

Paper Year Country Dataset Nb of
Points

Methods Results

[33] 2021 South Korea ISBI 2015 dataset 19 DACFL EDR: Test1+Test2 - 2 mm: 17.92%, 4 mm: 3.08%
[34] 2021 China ISBI 2015 dataset 19 Cascaded three-stage CNN SDR: 2 mm: 76.82%, 4 mm: 95.58%
[33] 2021 South Korea ISBI 2015 dataset 19 YOLOv3 SDR: 2 mm: 75.45%, 4 mm: 94.24%
[35] 2021 South Korea 3,150 lateral

cephalograms
20 Cascade CNN Mean detection error: 1.36 ± 0.98 mm

[36] 2021 Japan 1,785 cephalograms 26 CNN-PC + CNN-PE Mean detection error: 1.32 mm - 1.50 mm
[37] 2021 South Korea 950 cephalograms 13 Two-step method (ROI + detection) SDR: 2 mm: 64.3%, 4 mm: 95.1%
[38] 2021 China ISBI 2015 dataset

+ Huaxi-Analysis
dataset

19/37 GDN + LRN SDR: Dataset1 - 2 mm: 75.47%, 4 mm: 94.63%;
Dataset2 - 2 mm: 90.30%, 4 mm: 98.61%

[39] 2021 South Korea ISBI 2015 grand
challenge dataset

19 Multistage probabilistic approach
(global, local, and refinement
stages)

SDR: Test1 - 2 mm: 77.16%, 2.5 mm: 84.74%,
3 mm: 89.55%, 4 mm: 95.12%; Test2 - 2 mm:
77.16%, 2.5 mm: 84.74%, 3 mm: 89.25%, 4 mm:
95.12%

[40] 2021 China ISBI 2015 grand
challenge dataset

19 Four-step DCNN-based framework SDR: 2 mm: 87.51%, 2.5 mm: 91.83%, 3 mm:
94.74%, 4 mm: 98.01%

[41] 2022 China 512 cephalograms 37 Neural network using two modules
(global detection module and lo-
cally modified module)

SDR: 1 mm: 54.05%, 1.5 mm: 91.89%, 2 mm:
97.30%, 2.5 mm: 100%, 3 mm: 100%, 4 mm:
100%

[42] 2022 South Korea JBNU dataset 41 Deep anatomical context feature
learning (DACFL) model

SDR: 2 mm: 73.17%, 2.5 mm: 80.39%, 3 mm:
85.61%, 4 mm: 91.68%

[43] 2022 South Korea ISBI 2015 grand
challenge dataset

19 Network architecture composed of
global and local encoders and
patch-wise attentions

SDR: Test1 - 2 mm: 86.42%, 4 mm: 98.46%; Test2
- 2 mm: 74.58%, 4 mm: 94.26%

[44] 2022 South Korea 600 cephalograms 16 Cascaded convolutional neural net-
work (CNN)

SDR Comparison: Skeletal landmarks - 2 mm:
93.43%, 4 mm: 98.71%; Upper airway - 2 mm:
72.22%, 4 mm: 92.78%

[45] 2022 South Korea 2,798 cephalograms 16 Cascaded convolutional neural net-
work (CNN)

SDR: 1 mm: 47.9%, 2 mm: 83.3%, 4 mm: 98.0%

[46] 2022 Slovenia ISBI 2015 grand
challenge dataset
+ AUDAX Private
Dataset

19/72 SpatialConfiguration-Net MRE: ISBI: 1.13 mm; AUDAX: 11.26 ± 17.51
pixels

[47] 2022 China ISBI 2015 grand
challenge dataset

19 Shooting Reward Learning Net-
work (SRLN)

MRE: 1.09 mm

Recent Advances in Table III represent a turning point
in cephalometric landmark detection with the integration of
advanced transformer-based detection frameworks, multi-stage
regression models, and generalizable architectures. More atten-
tion is paid to cross-dataset generalization, universal landmark
detectors, and attention-based recalibration mechanisms.

The emergence of sophisticated cephalometric software
has revolutionized orthodontic practice and maxillofacial di-
agnostics by fundamentally altering how clinicians approach
landmark identification and craniofacial evaluation. This digital
transformation has redefined traditional methodologies, with

specialists increasingly relying on computational tools for
precision and efficiency. As shown in Table IV, many studies
have carefully compared different commercial platforms and
analytical programs, showing how artificial intelligence is
becoming a regular part of clinical decision-making.

V. DISCUSSION

The application of Deep Learning for automated cephalo-
metric landmark detection has evolved significantly over time.
These advancements have greatly improved the precision and
efficiency of landmark localization within medical images.
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TABLE III. SUMMARY OF CEPHALOMETRIC STUDIES BETWEEN 2023 AND JANUARY 2025

Paper Year Country Dataset Nb of
Points

Methods Results

[48] 2023 China ISBI 2015 grand chal-
lenge dataset

19 Feature Aggregation and Re-
finement Network (FARNet)

SDR: Test1 - 2.0 mm: 88.03%, 2.5 mm: 92.73%,
3.0 mm: 95.96%, 4.0 mm: 98.48%; Test2 - 2.0 mm:
77.00%, 2.5 mm: 84.42%, 3.0 mm: 89.47%, 4.0 mm:
95.21%

[49] 2023 China 9,870 cephalograms 30 CephNet SDR: 1.0 mm: 66.15%, 2.0 mm: 91.73%, 3.0 mm:
97.99%

[50] 2023 Germany 30 CT scans 60 Deep Neural Patchworks
(DNPs)

SDR: 2.0 mm: 66.4%, 4.0 mm: 91.9%

[51] 2023 South Korea 1,286 cephalograms 19 Ceph-Net SDR: 1.0 mm: 41.35%, 2.0 mm: 73.14%, 3.0 mm:
85.22%, 4.0 mm: 94.65%

[52] 2023 India ISBI 2015 grand
challenge dataset +
100 cephalograms from
Solanki Dental Care
Clinic

19 CephXNet Classification Accuracy: Training Set: 98.51%, Testing
Set: 97.72%; MRE: Test1: 0.92 mm, Test2: 1.41 mm;
SDR within 2mm: Test1: 88.06%, Test2: 78.72%

[53] 2023 India ISBI 2015 grand chal-
lenge dataset

19 Coarse localization through
region of interest (ROI)
extraction and fine
localization utilizing
histogram-oriented gradient
(HOG) feature

SDR: 2.0 mm: 77.11%

[54] 2023 China ISBI 2015 grand
challenge dataset + 163
cephalograms

19 MS-YOLOv3 SDR: 2 mm: 80.84%, 4 mm: 98.14%

[55] 2023 China 481 cephalograms 61 Point-locating model
CephaNET

SDR: 2.0 mm: 85.4%, 2.5 mm: 90.2%, 3.0 mm: 93.5%,
4.0 mm: 97%

[56] 2023 Japan 2,000 facial profile im-
ages

23 HRNetv2 SDR: 2.0 mm: 98.20%, 2.5 mm: 99.55%, 3.0 mm:
99.79%, 4.0 mm: 99.93%

[57] 2024 China ISBI 2015 grand chal-
lenge dataset

19 Mask Region-based Convolu-
tional Neural Network

SDR: 1.0 mm: 43.44%, 2.0 mm: 68.27%, 4.0 mm:
85.74%

[58] 2024 China ISBI 2015 grand chal-
lenge dataset

19 Feature Decouple and Gated
Recalibration Network
(FDGR-Net)

SDR: 2.0 mm: 75.16%, 2.5 mm: 82.53%, 3.0 mm:
88.58%, 4.0 mm: 94.79%

[59] 2024 Taiwan 1,002 cephalograms 14 CNN architecture enhanced
with U-Net and MobileNetV2

SDR: 2.0 mm: 83.14%, 2.5 mm: 89.62%, 3.0 mm:
93.97%, 4.0 mm: 98.23%

[60] 2024 China ISBI 2015 grand chal-
lenge dataset

19 UniverDetect SDR: 2 mm: 75.87%, 3 mm: 88.35%, 4 mm: 94.59%

[61] 2024 Pakistan ISBI 2015 grand chal-
lenge dataset

19 Two-stage regression frame-
work (LDM for coarse local-
ization, LRM for fine-tuning)

SDR: Test1 - 2.0 mm: 87.17%, 3.0 mm: 95.18%, 4.0
mm: 98.12%; Test2 - 2.0 mm: 75.79%, 3.0 mm: 89.0%,
4.0 mm: 94.53%

[53] 2024 India ISBI 2015 grand chal-
lenge dataset + Diverse-
CEPH19

19 Detectron2, and YOLOv8 Detectron2: Best Model: rcnn R 101 FPN 3x; MRE:
1.2 mm (±0.96 mm); SDR (2 mm): 85.89%; SDR (4
mm): 98.45%; YOLOv8: Best Model: YOLOv8m-pose;
MRE: 1.62 mm (±1.03 mm); SDR (2 mm): 72.92%;
SDR (4 mm): 96.80%

[62] 2024 Morocco ISBI 2015 grand chal-
lenge dataset

19 YOLOv8 SDR : 2 mm: 86.31%; 2.5 mm: 87.69%; 3 mm: 90.84%

Our analysis of 76 studies reveals distinct developmental
phases and several key insights that warrant critical examina-
tion. Cephalometric landmark detection has progressed through
three distinct evolutionary phases. The first phase, from 2019
to 2020, focused on basic abilities using general models like
YOLOv3, which reached an SDR value of 80.4% at 2mm
thresholds. The intermediate refinement phase (2021-2022)
implemented architectural innovations aimed at resolving chal-
lenges in medical imaging. Multi-stage frameworks, cascaded
approaches, and attention mechanisms have become leading
strategies. The advanced optimization phase (2023-2025) in-
cludes the use of complex transformer-based architectures
[57], feature recalibration mechanisms [58], and multi-scale
approaches [54], which have pushed performance limits even
further. Research from this period indicates that SDR values
consistently surpass 87% at 2mm thresholds in controlled
settings, with certain methodologies [56] attaining notable
accuracy (SDR of 98.2% at 2mm) on facial profile images.

Our statistical analysis of performance metrics across ar-
chitectural categories provides crucial insights into effective

design approaches (Table V).

This comparative analysis demonstrates a clear progression
in accuracy metrics, with transformer-based and attention-
enhanced architectures consistently outperforming earlier ap-
proaches. Notably, cascaded networks exhibit a favorable
balance between accuracy and computational efficiency, an
important consideration for clinical deployment.

Despite the significant progress in Deep Learning applica-
tions for cephalometric landmark detection, several persistent
challenges and limitations remain that impede widespread
clinical adoption. The reliance on limited datasets represents
perhaps the most significant barrier to the clinical translation of
Deep Learning for cephalometric analysis. Our comprehensive
analysis of dataset characteristics across the literature (Table
VI) reveals several critical concerns.

The median dataset size of 723 images falls dramatically
short compared to medical imaging datasets in other domains,
such as ChestX-ray14 (112,120 images) or MIMIC-CXR
(377,110 images). This limitation is particularly concerning
given the high dimensional complexity of craniofacial anatomy

www.ijacsa.thesai.org 937 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Fig. 6. Localization of oral cancer process.

TABLE IV. SUMMARY OF STUDIES EVALUATING COMMERCIAL
SOFTWARE FOR AUTOMATED CEPHALOMETRIC ANALYSIS

Paper Year Software included
[63] 2021 Ceppro software by DDH Inc
[64] 2022 WebCeph
[65] 2022 WebCeph
[66] 2022 CEFBOT
[67] 2022 AudaxCeph
[68] 2022 Dolphin Imaging softwar, and CS Imaging V8 software
[69] 2022 WebCeph
[70] 2022 CephX
[71] 2023 Planmeca Romexis software
[72] 2023 MyOrthoX, Angelalign, Digident
[73] 2023 CEFBOT
[74] 2023 DentaliQ.ortho, WebCeph, AudaxCeph, and CephX
[75] 2023 CellmatIQ, CephX, AudaxCeph, and WebCeph
[76] 2023 CEFBOT
[77] 2024 CefBot, and WebCeph
[78] 2024 OneCeph app and WebCeph
[79] 2024 WebCeph, WeDoCeph, and CephX
[80] 2024 WebCeph, and CephX
[81] 2024 NemoCeph, and WebCeph
[82] 2024 WebCeph, Cephio, and Ceppro software

and the substantial anatomical variation across human popula-
tions.

For our analysis of dataset characteristics across the litera-
ture. It reveals that 55.3% of studies (42/76) relied exclusively
on the ISBI 2015 dataset [4], which contains only 400 images
primarily from a specific demographic population.

Studies that performed cross-dataset validation [38], [41],
[48] consistently reported performance degradation when mod-

els trained on one dataset were applied to another. He et al.
[38] demonstrated performance degradation of 15.4% when
evaluating models trained on the ISBI dataset against their
institutional dataset, highlighting the challenge of domain shift
in clinical applications. Similarly, Šavc et al. [48] reported
MRE values of 1.13mm on the ISBI dataset but substantially
higher errors (11.26 ± 17.51 pixels) on their private AUDAX
dataset.

A positive development is the emergence of larger datasets,
such as that used by Jiang et al. [49], which included 9,870
cephalograms and demonstrated improved generalization capa-
bilities. However, even this represents a fraction of the dataset
sizes commonly used in other medical imaging domains, as
highlighted by Zeng et al. [37] and Wang et al. [40].

The emergence of commercially available AI-driven
cephalometric software (Fig. 6) represents a pivotal step toward
clinical integration.

Our analysis of twenty studies evaluating commercial
systems [83]-[81] reveals a complex picture of real-world
application challenges. While commercial systems demonstrate
impressive automation capabilities, validation studies consis-
tently identify three critical limitations:

1) Inconsistent performance across landmark types: Com-
mercial systems exhibit variable accuracy depending on land-
mark anatomical characteristics, with mean differences of
0.8 to 1.7 mm between predicted and ground truth positions
for well-defined skeletal landmarks, but significantly higher
deviations (1.9 to 3.2 mm) for soft tissue landmarks.
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TABLE V. COMPARATIVE PERFORMANCE ANALYSIS BY ARCHITECTURE TYPE

Architecture Category Mean SDR (2mm) Mean MRE (mm) Mean Detection Time (s)

Standard CNN-based 77.3% ± 3.8% 1.86 ± 0.27 0.78 ± 0.15
YOLO-based 79.5% ± 4.2% 1.53 ± 0.18 0.43 ± 0.07
Cascaded Networks 83.7% ± 3.1% 1.38 ± 0.15 0.95 ± 0.23
Attention-enhanced 85.9% ± 2.9% 1.29 ± 0.11 0.83 ± 0.19
Transformer-based 87.4% ± 2.4% 1.12 ± 0.09 1.21 ± 0.27

TABLE VI. DATASET SIZE AND DIVERSITY ANALYSIS; *DEMOGRAPHIC DIVERSITY INDEX (1-5 SCALE): 1=SINGLE POPULATION, 5=GLOBALLY
REPRESENTATIVE

Dataset Type Median Sample Size Demographic Diversity* Usage Frequency

ISBI 2015 400 1.2 55.30%
Private Institutional 723 (range: 163–9,870) 1.7 34.20%
Multi-center 1,872 (range: 950–3,150) 2.3 10.50%

2) Limited interchangeability with human experts: No
commercial system achieved the clinically required reliability
threshold (ICC> 0.95) across all cephalometric measurements
necessary for complete diagnostic interchangeability with hu-
man experts.

3) Insufficient transparency: Commercial systems often
lack methodological transparency regarding their underlying
architectures, training protocols, and dataset characteristics,
complicating clinical validation efforts.

Anatomical variability adds to the problems, especially
when it comes to soft tissue landmarks like the soft tissue
pogonion, which have many different structures and make
predictions less accurate. The closeness of landmarks inside
the skull makes automation harder because there aren’t clear
lines between structures that are next to each other. This can
lead to unclear predictions, which lowers the accuracy of
medical care.

Besides basic landmark detection, effective clinical integra-
tion needs more features, like measuring angles and distances,
and should work well with common orthodontic software.
Even though it works very well in controlled environments,
how widely it is used in busy clinical settings depends a lot
on things like how easy it is to use, how fast the computer can
process data, and how well it works with other imaging sys-
tems. The computational resource demands for model training
and deployment hinder the widespread adoption of AI-based
approaches in clinical settings, despite their demonstrated
promise.

VI. FUTURE DIRECTIONS

Given the significant challenges identified, various research
directions require focus. The creation of extensive, multi-ethnic
cephalometric datasets that include pathological diversity and
are annotated with standardized protocols is crucial for en-
hancing model generalizability and fairness .

The establishment of unified benchmarking frameworks
that include diverse test cohorts, clinically relevant evaluation
metrics, and rigorous statistical analyses would greatly enhance
the field’s cross-study comparability.

Third, the design of parameter-efficient Deep Learning
architectures specifically for clinical hardware deployment is

essential for enabling real-world integration. Fourth, enhanc-
ing human–AI collaboration through interactive systems that
use the complementary strengths of expert clinicians and AI
models may facilitate adoption in standard practice.

Finally, the clinical utility of AI-driven cephalometric tools
must be substantiated through prospective trials evaluating
their impact on diagnostic accuracy, treatment planning, and
patient outcomes.

VII. CONCLUSION

Artificial intelligence (AI) is progressively incorporated
into orthodontic treatment, serving as a valuable tool for
automating cephalometric landmark tracing in routine clinical
practice. AI-powered systems are transforming contemporary
orthodontic workflows by aiding clinicians in orthodontic treat-
ment planning and decreasing the time needed for radiological
diagnoses. Cephalometric analysis is an important way to
assess the bones and structures of the face, making it a great
option for using AI to automate processes in orthodontics,
maxillofacial surgery, and craniofacial treatment.

However, the trustworthiness of AI in cephalometry varies,
affected by different things like how accurately landmarks are
identified by hand, the skill level of the person using it, the
quality and number of X-rays, and the kind of algorithm used.
These factors must be meticulously considered when analyzing
AI-generated outcomes.

This scoping review indicates that although AI-powered
cephalometric analysis has considerable potential, notable lim-
itations persist, including issues related to accuracy, accessi-
bility, expertise, ethical considerations, costs, and regulatory
challenges.

Future research and technology should focus on improving
accuracy, increasing the variety of data used, and tackling
clinical validation issues to make sure that AI effectively
helps and supports human skills in orthodontic and craniofacial
diagnostics.
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cephalometric measurements using digital manual and web-based artifi-
cial intelligence cephalometric tracing software,” Dental Press Journal
of Orthodontics, vol. 27, no. 4, p. e222112, 2022.

[70] M. Davidovitch, T. Sella-Tunis, L. Abramovicz, S. Reiter, S. Matalon,
and N. Shpack, “Verification of convolutional neural network cephalo-
metric landmark identification,” Applied Sciences, vol. 12, no. 24,
p. 12784, 2022.

[71] H. Bao, K. Zhang, C. Yu, H. Li, D. Cao, H. Shu, L. Liu, and B. Yan,
“Evaluating the accuracy of automated cephalometric analysis based on
artificial intelligence,” BMC Oral Health, vol. 23, no. 1, p. 191, 2023.

[72] H. Ye, Z. Cheng, N. Ungvijanpunya, W. Chen, L. Cao, and Y. Gou, “Is
automatic cephalometric software using artificial intelligence better than
orthodontist experts in landmark identification?,” BMC Oral Health,
vol. 23, no. 1, p. 467, 2023.

[73] S. Panesar, A. Zhao, E. Hollensbe, A. Wong, S. S. Bhamidipalli,
G. Eckert, V. Dutra, and H. Turkkahraman, “Precision and accuracy
assessment of cephalometric analyses performed by deep learning
artificial intelligence with and without human augmentation,” Applied
Sciences, vol. 13, no. 12, p. 6921, 2023.

[74] F. Kunz, A. Stellzig-Eisenhauer, L. M. Widmaier, F. Zeman, and
J. Boldt, “Assessment of the quality of different commercial providers
using artificial intelligence for automated cephalometric analysis com-
pared to human orthodontic experts,” Journal of Orofacial Orthopedic-
s/Fortschritte der Kieferorthopädie, pp. 1–16, 2023.
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