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Abstract—Large Language Models (LLMs) have demon-
strated remarkable capabilities in generating human-like text;
however, their effectiveness in abstractive summarization across
diverse domains remains underexplored. This study conducts a
comprehensive evaluation of six open source LLMs across four
datasets: CNN / Daily Mail and NewsRoom (news), SAMSum
(dialogue) and ArXiv (scientific) using zero shot and in-context
learning techniques. Performance was assessed using ROUGE
and BERTScore metrics, and inference time was measured to
examine the trade-off between accuracy and efficiency. For long
documents, a sentence-based chunking strategy is introduced
to overcome context limitations. Results reveal that in-context
learning consistently enhances summarization quality, and chunk-
ing improves performance on long scientific texts. The model
performance varies according to architecture, scale, prompt de-
sign, and dataset characteristics. The qualitative analysis further
demonstrates that the top-performing models produce summaries
that are coherent, informative, and contextually aligned with
human-written references, despite occasional lexical divergence
or factual omissions. These findings provide practical insights into
designing instruction-based summarization systems using open-
source LLMs.
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I. INTRODUCTION

With the continued explosion of digital content from online
news, scientific research, and conversational platforms, the
demand for automated methods of condensed textual infor-
mation has increased. Automatic Text Summarization (ATS)
has become an essential tool in Natural Language Processing
(NLP), reducing cognitive load and enabling users to quickly
grasp key information quickly [1]. In recent years, the task of
summarization has gained significance with the rise of Large
Language Models (LLMs), which demonstrate remarkable flu-
ency in generating human-like text across a variety of domains
[2], [3].

Efforts in text summarization have evolved from traditional
heuristic-based methods [4] to more sophisticated approaches
to cover different types of text summarization including
generic [5], domain-aware [6], multi-document [7], multimodal
[8], extractive [9] and abstractive text summarization [10],
[11]. Various techniques are used in text summarization to
enhance the produced summary, including machine learning
approaches [12], deep learning-based approaches [13], [14].

The advent of transformer-based models [15], [16] further
advanced the quality of summarization by improving semantic
understanding and text generation.

A major shift in NLP occurred with the development of
instruction-tuned LLMs, which are pretrained on vast corpora
and require no task-specific fine-tuning. Instead, they rely
on prompt-based interactions, enabling paradigms such as
zero-shot and in-context learning [17], [2]. Despite these ad-
vancements, there is limited understanding of how instruction-
tuned, open-source LLMs perform across various domains
of summarization—especially in contexts such as scientific
documents and informal dialogues.

Prompt Engineering is a sophisticated AI engineering
methodology [18]. This involves augmenting LLMs by giv-
ing them customized cues and modifying the source text to
produce the intended result. Prompt engineering is crucial in
LLMs because it is essential for unlocking the full potential
of such models. In addition, prompt engineering uses prior
knowledge and the logical reasoning of the input to influ-
ence the outputs generated by the Models [19]. Wide-ranging
techniques have been developed as a result of recent notable
advancements in the field of prompt engineering [20]. The
range of these developments includes basic techniques and
more advanced strategies intended to manage challenging jobs
[21].

This work contributes to the NLP field by offering domain-
aware benchmarking of LLMs under prompt-based conditions.
This study also explores the relationship between model archi-
tecture, parameter count, and performance across different tex-
tual formats. Ultimately, the study provides practical insights
for researchers and developers seeking to leverage LLMs for
summarization tasks in real-world scenarios without relying on
extensive fine-tuning pipelines. Our primary contributions are
summarized as follows:

• An evaluation of six open-source LLMs across four
benchmark datasets: CNN/DailyMail, NewsRoom,
SAMSum, and ArXiv, providing insights into their
cross-domain summarization abilities.

• A comparative assessment of prompting strategies,
including Zero-Shot Learning (ZSL) and In-Context
Learning (ICL), to evaluate the effect of prompt de-
sign, context length, and number of demonstrations on
model performance.
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• An empirical analysis of model scale and architecture
to examine the impact of parameter size and design
on summarization quality across different domains.

• A dedicated investigation of long-document summa-
rization, introducing a chunking strategy to mitigate
the limitations imposed by context window size, and
evaluating its influence on summary coherence and
quality.

• A detailed efficiency and cost analysis measuring
inference time for each model, highlighting trade-offs
between performance and deployment feasibility.

The remainder of this paper is organized as follows: Section
II introduces related works on text summarization and LLMs.
Section III describes in detail the experimental setup and
methods, Section IV interprets the results, Section V provides
Discussion, Finally, Section VI provides a concise conclusion
and future work.

II. LITERATURE REVIEW

Text summarization research has evolved considerably ,
with two primary paradigms: extractive and abstractive sum-
marization [4]. Extractive methods select sentences or phrases
directly from the source document to form summaries [9],
while abstractive approaches generate novel sentences by in-
terpreting the core meaning of the input [10].

Early summarization systems, such as the Lead-3 baseline,
extracted the first few sentences to generate reliable summaries
for news datasets [22]. More advanced neural models treated
sentence selection as a classification problem using hierar-
chical RNNs [23] or applied encoder-decoder architectures
with attention mechanisms to improve sentence representation
and relevance scoring [24]. The introduction of transformer
architectures [25] further enhanced abstractive summarization
by capturing long-range dependencies in text. Fine-tuning
transformer-based models like BERT [26] for summarization
tasks demonstrated strong performance in both extractive [27]
and abstractive [28] settings.

State-of-the-art models like BART [29] and PEGASUS
[30] have since advanced abstractive summarization. BART’s
bidirectional encoding and autoregressive decoding enables
robust generation, while PEGASUS’s gap-sentence genera-
tion objective improves content selection and coherence in
generated summaries. Variants like Hi-BART further integrate
hierarchical encoders to improve the structural understanding
of long documents [31].

With the rise of LLMs, prompt-based summarization has
gained traction. Instruction-tuned LLMs, such as GPT-3,
LLaMA, and Mistral, demonstrate strong zero-shot and few-
shot capabilities without the need for task-specific training [2].
Studies like [32] and [33] evaluated such models on standard
datasets (e.g., CNN/DailyMail, XSum), demonstrating superior
performance for models like text-davinci-003. Other research
expanded this assessment to clinical summarization tasks and
reported mixed results across radiology reports, patient dia-
logues, and medical questions [34].

Prompt Engineering is a sophisticated AI engineering
methodology [18]. This involves augmenting LLMs by giv-
ing them customized cues and modifying the source text to

produce the intended result. Prompt engineering is crucial in
LLMs because it is essential for unlocking the full potential
of such models. In addition, prompt engineering uses prior
knowledge and the logical reasoning of the input to influ-
ence the outputs generated by the Models [19]. Wide-ranging
techniques have been developed as a result of recent notable
advancements in the field of prompt engineering [20].

Despite these advancements, long-document summariza-
tion remains a key challenge. Standard LLMs struggle to
process entire scientific articles due to limited input windows.
Techniques such as hierarchical summarization [7] and chunk-
ing [35] have been proposed to segment inputs and generate
localized summaries prior to merging them. Although effective,
these methods often introduce trade-offs between coherence
and inference efficiency.

Our study advances previous works by systematically eval-
uating six open-source LLMs across diverse domains using
both zero-shot and in-context prompting strategies. In con-
trast to studies focused on single-domain tasks or isolated
techniques, we offer a unified assessment of summary quality
and computational efficiency. In addition, we introduce and
empirically evaluate a sentence-level chunking strategy for
long document summarization that has not been evaluated
systematically in text summarization across instruction-tuned
models.

III. METHODOLOGY AND EXPERIMENTAL SETUP

This study evaluates the performance of open-source LLMs
in text summarization across multiple domains. To ensure
reproducibility, this section outlines the datasets, models, and
inference settings used.

A. Datasets

We employed four benchmark datasets encompassing news,
dialogue, and scientific texts, which were selected to enable
comprehensive cross-domain evaluation. Dataset statistics are
summarized in Table I.

1) CNN/Dailymail: The CNN/DailyMail dataset [36] com-
prises over 300 K news articles from CNN and the Daily
Mail, which are commonly used for training and evaluating
summarization models.

2) Cornell NEWSROOM: The NEWSROOM dataset [37]
includes summaries from 38 news publishers collected via
search and social media metadata (1998–2017), encompassing
diverse summarization strategies across extractive and abstrac-
tive styles.

3) SAMSum corpus: SAMSum [38] contains 16 K an-
notated chat dialogues with human-written abstractive sum-
maries, which were designed to support dialogue summariza-
tion in informal communication settings.

4) ArXiv dataset: The ArXiv dataset [39] features full-text
research papers across disciplines such as physics, biology, and
computer science, accompanied by human-generated abstracts.
The long document structure poses significant challenges for
LLM summarization.

In our experiments, we sampled 2 K test instances per
dataset, except SAMSum, where all test samples were used.
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For few-shot prompting, examples were drawn from each
dataset’s training set.

TABLE I. STATISTICS OF THE USED DATASETS (K=THOUSANDS)

Dataset Domain Documents Sum Len

Train Valid Test (words)

CNN/DM News 287K 13K 11K 52

NEWSROOM News 995K 108K 108K 26

SAMSum Dialogue 14K 818 819 –

ArXiv Scientific 203K 6K 6K 220

B. Prompt Engineering Techniques

As introduced in Section I, prompt engineering involves
crafting input instructions to guide LLM behavior. This study
applies two primary strategies—zero-shot learning (ZSL)
and in-context learning (ICL)—to investigate how prompt
formats affect summarization performance across different
models and datasets.

1) Zero-Shot Learning (ZSL) [40]: ZSL is the simplest
form of prompting, where a model receives only natural
language instructions without any prior examples. The model
relies entirely on internal knowledge to perform the task.
Formally, a ZSL prompt can be expressed as follows:

P = fprompt(TD, xtest) (1)

where:

• TD is the task description,

• xtest is the test input,

• fprompt is the function that transforms these into a
natural language prompt.

2) In-Context Learning (ICL) [41]: In ICL, the model
observes a few input-output pairs (demonstrations) directly in
the prompt and then predicts the output for a new test input.
This process can be described as follows:

P (ytest | xtest, Dk) = LLM([x1, y1, . . . , xk, yk, xtest]) (2)

where Dk = {(x1, y1), (x2, y2), . . . , (xk, yk)} denotes k
demonstrations. The LLM uses these in-context examples
to condition its prediction for xtest without updating model
parameters.

C. Large Language Models Selection

This study focuses on autoregressive language mod-
els—specifically decoder-only architectures—which have be-
come the dominant paradigm in open-source LLM develop-
ment (Table II). These models generate text by sequentially
predicting the next token based on preceding tokens; thus,
they are well-suited for text generation tasks, such as summa-
rization. Unlike sequence-to-sequence models, which use an
encoder-decoder framework and were originally designed for
translation [42], autoregressive models rely solely on a decoder

and are optimized for unsupervised learning and generative
tasks [43].

We evaluated six decoder-only models, including three
from the LLaMA-2 family [44]—LLaMA-2-7B-chat, LLaMA-
2-13B-chat, and LLaMA-2-70B-chat—to investigate the effect
of scaling on summarization performance. These models are
widely adopted due to their open-source availability and strong
instruction-tuning capabilities.

In addition, we include Mistral-7B-Instruct-v0.1 [45] and
Gemma-7B-it [46], both lightweight instruction-tuned models
with 7B parameters. To explore architectural variations, we
incorporated Mixtral-8x7B-Instruct-v0.1 [47], a 47B-parameter
Mixture-of-Experts (MoE) model that activates only relevant
subnetworks during inference, thereby reducing computational
costs [48].

This curated selection enabled both intra-scale comparisons
between the 7B models and cross-scale evaluations involving
larger models. By analyzing these models under uniform
evaluation settings, we assess how instruction tuning, archi-
tectural innovations, and scaling affect summarization quality
and efficiency.

Proprietary models were excluded to ensure reproducibility
and mitigate biases associated with closed-source data or
opaque updates. The experiments were conducted on two
NVIDIA A100 GPUs using mixed-precision (fp16), model
parallelism, and quantization techniques to optimize memory
usage.

TABLE II. CHARACTERISTICS OF DIFFERENT LLMS UTILIZED IN OUR
WORK

Model Name # Parameters Context-Length

Llama-2-7b-chat 7B 4K

gemma-7b-it 7B 8K

Mistral-7B-Instruct-v0.1 7B 8K

Llama-2-13b-chat 13B 4K

Mixtral-8x7B-Instruct-v0.1 47B 32K

Llama-2-70b-chat 70B 4K

D. Long Document Processing via Chunking Strategy

Summarizing long documents, such as scientific papers
from the ArXiv dataset, presents challenges due to the limited
context window of LLMs. Initially, we addressed this by
trimming articles to fit the model’s maximum context length.
Although effective for compatibility, this approach risks omit-
ting important details.

Although extended-context models offer potential solu-
tions, they are not universally available or efficient. To address
this issue, we adopt a chunking strategy that divides documents
into semantically coherent segments—such as paragraphs or
fixed-length chunks. Each chunk is summarized independently,
and the resulting summaries are then merged and refined to
form a coherent global summary [49].

To improve chunk relevance, we used the Natural Language
Toolkit (NLTK)1 to segment documents into sentences. This

1https://www.nltk.org/
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ensures semantic integrity in each chunk and ensures that key
content is retained during summarization. This process allows
for effective handling of long documents while aligning with
the input constraints of the models.

E. Evaluation Metrics

The evaluation of summarization quality requires robust
metrics that capture both surface-level similarity and deeper
semantic alignment. Accordingly, we employ two metric cat-
egories: Word Overlap and Semantic Similarity.

1) Word overlap metrics: These metrics compare the token
overlap between the generated and reference summaries. We
adopt ROUGE [50], a standard suite for this purpose.

ROUGE-N measures the overlap of n-grams (contiguous
sequences of n words) between the system and reference
summaries, which indicates lexical similarity.

ROUGE-L evaluates the Longest Common Subsequence
(LCS) between summaries, reflecting structural and sequential
alignments.

Higher ROUGE scores suggest greater textual overlap and
structural resemblance to reference summaries.

2) Semantic similarity metrics: These metrics assess how
well a summary preserves the meaning of the original text. We
use BERTScore [51], which leverages contextual embeddings
from BERT [26] to compute token-level semantic similarity.

Unlike ROUGE, BERTScore captures nuanced paraphras-
ing and long-range dependencies by evaluating contextual
token embeddings. In addition, it excels when n-gram methods
are short, particularly in abstractive summarization scenarios.

F. Inference Parameters

This section outlines the inference settings and prompt con-
figurations used in our experiments. Given that the underlying
mechanisms of ZSL and ICL were previously detailed, we
focused on their practical deployment and tuning.

For ZSL, we employed diverse task-specific prompts tai-
lored to each dataset. In ICL, we varied the number of
demonstrations: 1, 3, 5, and 7 to explore the trade-off between
contextual guidance and token budget, guided by previous
studies [41], [35].

Temperature is a critical generation hyperparameter that
controls randomness during decoding [52]. Lower values yield
more deterministic and factual outputs, whereas higher values
encourage diverse but potentially less accurate generations. Be-
fore the full evaluation, temperatures of 0.1, 0.5, and 0.9 were
tested. The results in Table III indicate that 0.1 consistently
produced the highest ROUGE scores, especially ROUGE-L;
thus, it was adopted for all final evaluations.

To leverage the potential of LLMs with ZSL, the different
models are guided using a variety of prompts, aiming to assess
the results across different prompts to fully utilize the models’
capabilities. The prompts are customized based on the diversity
of each dataset to provide summaries and assess the output of
each model against the reference summaries. The prompts for
zero-shot prompting are available in Table IV.

TABLE III. PERFORMANCE ACROSS ALL DATASETS AND TEMPERATURE
VALUES. P=PRECISION, R=RECALL, F1=F1-SCORE, RL=ROUGE-L.
BOLD VALUES INDICATE BEST PERFORMANCE PER METRIC GROUP

Temp Metric Dataset P/R1 R/R2 F1/RL

0.1

BERT

CNNDM 88.76 86.13 87.41
NewsRoom 86.99 87.67 87.31
SAMSum 89.31 91.48 90.37
ArXiv 86.86 80.09 83.33

ROUGE

CNNDM 37.44 16.42 24.53
NewsRoom 25.38 8.82 19.96
SAMSum 39.35 14.61 30.70
ArXiv 49.74 32.47 33.98

0.5

BERT

CNNDM 86.35 88.03 87.16
NewsRoom 87.11 87.30 87.28
SAMSum 90.54 88.76 89.62
ArXiv 85.67 81.85 83.70

ROUGE

CNNDM 38.38 14.73 24.49
NewsRoom 24.42 8.19 18.41
SAMSum 39.08 14.13 30.25
ArXiv 40.20 12.92 22.09

0.9

BERT

CNNDM 88.40 86.13 87.24
NewsRoom 87.02 87.40 87.19
SAMSum 90.30 88.51 89.38
ArXiv 85.67 82.03 83.80

ROUGE

CNNDM 36.87 13.03 23.64
NewsRoom 24.28 80.01 18.91
SAMSum 39.34 14.36 30.53
ArXiv 39.29 12.19 21.61

IV. RESULTS

This section presents the performance of the evaluated
LLMs in producing accurate and coherent summaries. All gen-
erated outputs were cleaned to eliminate noise and formatting
artifacts before evaluation.

A. Comparison of Prompting Techniques

We evaluated the impact of prompting strategies—ZSL and
ICL—on summarization performance across different models
and datasets. This analysis highlights how prompting format
influences the quality and consistency of the generated sum-
maries.

1) ZSL Results: Multiple zero-shot prompts were tested
to instruct the models to generate concise summaries without
training examples. Fig. 1 shows the comparative performance
of LLMs using BERTScore F1 and ROUGE-1 metrics on
the four datasets. Subfigure (a) presents BERTScore F1; (b)
presents ROUGE-1.

a) CNN/DM Results in ZSL: 2 Table III summarizes the
prompt types tested. As shown in Table V, the results can be
explored in two ways:

(i) Length-constrained prompts (e.g., Prompts 3, 4, 5),
which restrict summary length based on the dataset’s average
(see Table I); and

(ii) Structured prompts, which provide directive phrasing
to guide model output without specifying length.

2Only top-performing prompts are shown. Full list available at: https:
//anonymous.4open.science/r/TextSummarizationCode-5BCB/README.md
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Fig. 1. Performance of LLMs across datasets in the zero-shot setting. X-axis: datasets; Y-axis: ROUGE-1 and BERTScore F1 scores.

These variations help assess how instruction format impacts
zero-shot summarization performance.

Comparing models on the same prompt shows that Mistral-
7B-Instruct-v0.1 achieved the best ROUGE score on Prompt#1.
For BERTScore, Llama-2-70B-chat leads in Recall and F1,
while Llama-2-13B-chat scores highest in Precision. Prompt#2
results favor Llama-2-13B-chat across all metrics except Re-
call, where Llama-2-7B-chat excels. Prompts 3 and 4, being
more descriptive, yield varied performance: Mistral-7B and
Llama-2-70B lead in ROUGE, while BERTScore is shared
among gemma-7b-it, Llama-2 variants, and Mistral-7B, high-
lighting that some models capture semantic meaning well even
if lexical similarity is lower.

Comparing prompts within each model shows that gemma-
7b-it performed best on Prompt#3, with top scores in
ROUGE-1, ROUGE-L, and BERTScore F1. The Llama-2-
7B and Llama-2-13B chats achieved the highest metrics with
Prompts#5 and #2 respectively. For Mistral-7B-Instruct-v0.1
and Mixtral-8x7B-Instruct-v0.1, Prompts#3 and #2 are most
effective, with Mixtral also showing strong F1 with Prompt#5.
These findings underscore the critical role of prompt design in
shaping LLM performance.

b) NewsRoom results in ZSL: The NewsRoom dataset
includes both extractive and abstractive summaries. In this
study, we focus solely on articles with abstractive summaries
to align with the goal of evaluating the LLMs’ ability to
generate coherent, human-like outputs [37]. This provides a
more rigorous benchmark for testing generative capabilities.
Table VI presents the ZSL results for all models and prompts.

In BERTScore, gemma-7b-it consistently performed well,
achieving the highest Precision (86.99), Recall (87.67), and
F1 (87.31) with Prompt#1. Llama-2-70B-chat closely follows,
particularly in terms of F1 score (86.97), while Mistral-7B-
Instruct-v0.1 excels in Recall (88.17) and Precision across
several prompts.

For ROUGE, gemma-7b-it again leads with top scores in
ROUGE-1 (25.38), ROUGE-2 (8.82), and ROUGE-L (19.96)
using Prompt#1. Llama-2-13B-chat and Llama-2-70B-chat
demonstrated competitive ROUGE scores across prompts,
while Mistral-7B-Instruct-v0.1 achieved its highest ROUGE-
1 (23.59) also with Prompt#1.

Overall, Prompts#1 and #2 yield the highest ROUGE and
BERTScore results for most models, likely due to their clear
and direct instructions. Slight variations in other prompts result
in marginally lower performance, illustrating how prompt
phrasing influences model output.

In summary, gemma-7b-it performed best on BERTScore,
Llama-2-70B-chat demonstrated robust performance across
prompts, and Mistral-7B-Instruct-v0.1 proved versatile with
strong scores in both lexical and semantic metrics, particularly
under well-structured prompt settings.

c) SAMSum results in ZSL: The proposed SAMSum
dataset presents challenges for LLMs because of its con-
versational structure. Table VII compares model outputs for
different prompts. The models achieved higher ROUGE scores
on news datasets, reflecting the distinct nature of dialogue
summarization.

The BERTScore and ROUGE metrics generally agreed.
Mixtral-8x7B-Instruct-v0.1 achieved the highest BERT F1
with Prompts#2 and #4, while Llama-2-13B-chat yielded the
top ROUGE-1 scores with the same prompts, reinforcing
metric consistency.

Simpler prompts (e.g., Prompts#1 and #2) lead to higher
ROUGE scores across models, suggesting that clear, con-
cise instructions are more effective. The descriptive prompts
(#3–#5) show mixed performance, indicating that overly de-
tailed instructions did not always enhance the results.

Overall, Mistral-7B-Instruct-v0.1 demonstrated robust per-
formance across prompts, demonstrating adaptability for sum-
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TABLE IV. COMPLETE LIST OF ALL PROMPTS USED ACROSS DATASETS
(P=PROMPT). FULL TEXT PRESERVED EXACTLY

ID Prompt Text

CNN/DailyMail Prompts

P#1 Write a concise and comprehensive summary of this news article.

P#2 Provide an abstract of this news article in a direct and concise
summary.

P#3 I want you to act as a text summarizer to help me create a concise
summary of the provided text. The summary can be up to 3 sentences
in length, expressing the key points and concepts written in the original
text without adding your interpretations.

P#4 I want you to act as a text summarizer to help me create a concise
summary of the provided text. The summary can be up to 2 sentences
in length, expressing the key points and concepts written in the original
text without adding your interpretations.

P#5 Please summarize the following news article in an informative extrac-
tive summary with two sentences.

NewsRoom Prompts

P#1 Summarize this news article in one sentence.

P#2 Write a concise and comprehensive summary of this news article in
one sentence.

P#3 I want you to act as a text summarizer to help me create a concise
summary of the following article.

P#4 Provide an abstract of this news article in a direct and concise summary
in a few words.

P#5 You are a helpful assistant. Please summarize the following text in
one sentence.

SAMSum Prompts

P#1 Summarize the following dialogue.

P#2 Summarize the following dialogue in a few words.

P#3 Summarize the following dialogue into an abstractive summary with-
out any explanation.

P#4 In short, what’s going on in this conversation?

P#5 Summarize the following conversation.

P#6 Summarize this conversation in one or two sentences.

ArXiv Prompts

P#1 Provide an abstract of the following research article.

P#2 Summarize the main points and findings of the scientific paper.

P#3 I want you to act as a research paper summarizer to get an abstract
for this research paper.

P#4 Given this research article, create a TLDR to be used as a formal
abstract for this paper.

marizing dialogues. Llama-2-13B-chat also performed well,
particularly with direct prompts, indicating its suitability for
concise summarization.

d) ArXiv results in ZSL: The ArXiv dataset includes
scientific papers and human-written abstracts; thus, it is ideal
for testing abstractive summarization. Because of the context-
length limitations, documents were trimmed before inference.
Table VIII presents model performance across prompts.

Prompt#2 consistently yields high ROUGE scores, es-
pecially for Llama-2-13B-chat and Mistral-7B-Instruct-v0.1,
demonstrating its effectiveness in guiding models to capture
key information. Prompt#3 performs well in F1/RL scores,
indicating the value of explicit summarization instructions.
Prompt#4 balances BERT and ROUGE scores, helping models
generate concise and relevant abstracts. Overall, the ROUGE
scores varied more than the BERT scores, highlighting differ-
ences in lexical alignment across models.

Llama-2-7B-chat performed best overall, particularly on
Prompt#2, confirming its strength in abstractive summariza-
tion. Mistral-7B-Instruct-v0.1 excels with Prompt#3, demon-
strating consistency in semantic capture. In contrast, gemma-
7b-it outperformed the other models, which suggests its lim-
itations in handling longform texts. The variability across
prompts and metrics underscores the complexity of long-
document summarization and the impact of input trimming
on model comprehension.

2) ICL Results: ICL uses example-summary pairs to guide
models in generating new outputs. Based on the prompt
formulation in Section III, we evaluate ICL performance on
each dataset.

a) CNN/DM results in ICL: Table IX presents results
with varying numbers of demonstrations. BERT metrics are
relatively stable across shot counts, with minor gains from
more examples. ROUGE metrics show greater sensitivity:
Mistral-7B, Mixtral-8x7B, and Llama-2-70B benefit notably
as shots increase.

Llama-2-70B-chat achieves the highest overall scores with
7-shot prompts, and it excels in both BERT and ROUGE.
Mixtral-8x7B also performs well. Gemma-7b-it shows limited
gains from more demonstrations, indicating constraints in
leveraging ICL effectively.

b) NewsRoom results in ICL: Table X summarizes the
ICL results obtained on the NewsRoom dataset. Mixtral-
8x7B-Instruct-v0.1 shows the most consistent improvement,
particularly with 5-shot prompts, achieving strong performance
in both ROUGE and BERTScore metrics. The ROUGE scores
varied more across shot counts than the BERT metrics. The
Llama family models performed competitively, especially in
7-shot settings, although they were slightly less consistent
across fewer examples. Overall, increasing the number of
demonstrations generally enhanced the performance across the
models.

c) SAMSum results With ICL: when working with ICL
on the SAMSum dataset, Table XI showed that Mixtral-8x7B-
Instruct-v0.1 got the best results in terms of BERTScore and
Rouge score with seven examples to learn from, which means
that it learned the context of the dialogues better than others.
The more examples given to the model, the more the result
improved, Table XI shows that the results improved when the
number of demonstrations in most models was increased.

d) ArXiv results in ICL: Table XII shows ICL results
obtained on the ArXiv dataset. Across varying numbers of
demonstrations, the Llama models consistently outperformed
the other models in terms of both ROUGE and BERT metrics.
The performance generally improved as the number of in-
context examples increased, reflecting better adaptation to the
complex summarization task. However, due to input trimming
(required by context length constraints), variations in model
performance are more pronounced, as some models may
struggle to retain contextual coherence after truncation.

e) Overall comparison (ICL vs. ZSL): ICL consistently
enhances LLM performance across datasets compared to ZSL
by providing contextual demonstrations that improve task
understanding. Our experiments demonstrate that increasing
the number of in-context examples leads to steady performance
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TABLE V. PERFORMANCE OF LLMS ON CNN/DM DATASET USING ZSL. BOLD INDICATES BEST PERFORMANCE PER METRIC GROUP

Prompts Prompt #1 Prompt #2 Prompt #3 Prompt #4
Metric BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b-it
P/R1 85.73 31.69 85.99 34.52 88.76 36.66 88.23 35.26
R/R2 88.24 12.37 87.51 13.04 86.13 13.62 85.91 12.38
F1/RL 86.96 20.17 86.72 24.99 87.41 24.48 87.04 23.74

Llama-2-7b-chat
P/R1 84.84 28.95 86.24 32.29 86.73 36.41 86.98 37.19
R/R2 88.28 11.66 88.23 11.13 88.11 14.59 87.88 14.21
F1/RL 86.51 19.84 87.22 19.47 87.41 23.55 87.71 23.51

Llama-2-13b-chat
P/R1 85.98 32.13 86.89 37.87 87.41 37.21 87.85 37.48
R/R2 88.17 13.45 88.06 17.07 87.56 13.57 86.71 13.36
F1/RL 87.05 21.58 87.46 25.99 87.47 24.01 87.39 24.15

Llama-2-70b-chat
P/R1 85.95 29.44 86.81 35.31 87.39 37.08 87.92 37.76
R/R2 88.53 11.02 88.07 15.12 87.96 14.19 87.56 14.82
F1/RL 87.21 18.39 87.42 25.29 87.66 24.03 87.72 25.08

Mistral-7B-Instruct-v0.1
P/R1 85.89 37.02 86.57 37.44 86.82 37.44 86.91 36.78
R/R2 88.05 16.50 87.88 15.14 88.38 16.42 87.83 14.56
F1/RL 86.94 24.35 87.21 24.08 87.58 24.53 87.36 23.85

Mixtral-8x7B-Instruct-v0.1
P/R1 85.38 33.88 86.33 37.18 86.96 35.54 86.91 35.48
R/R2 88.25 13.94 88.06 15.13 87.25 13.04 86.95 12.28
F1/RL 86.77 22.12 87.17 24.93 87.09 22.79 86.91 22.02

TABLE VI. PERFORMANCE OF LLMS ON NEWSROOM DATASET USING ZSL

Prompts Prompt #1 Prompt #2 Prompt #3 Prompt #4
Metrics BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b-it
P/R1 86.99 25.38 86.72 24.28 85.63 21.85 85.93 22.89
R/R2 87.67 8.82 87.71 8.14 87.75 6.99 87.74 7.59
F1/RL 87.31 19.96 87.19 18.81 86.65 16.44 86.81 17.18

Llama-2-7b-chat
P/R1 85.19 22.78 84.71 21.69 84.51 20.13 85.38 22.15
R/R2 88.23 7.81 88.29 7.45 88.23 6.72 88.04 6.87
F1/RL 86.67 17.07 86.44 15.97 86.31 14.73 86.67 16.15

Llama-2-13b-chat
P/R1 85.42 24.02 85.07 22.99 84.88 21.38 85.69 21.76
R/R2 88.34 8.19 88.41 8.05 88.41 7.02 87.72 6.78
F1/RL 86.83 17.89 86.68 17.17 86.58 15.61 86.68 16.26

Llama-2-70b-chat
P/R1 85.71 23.71 85.37 23.47 84.75 21.17 85.40 21.81
R/R2 88.31 8.25 88.39 8.04 88.25 7.16 88.11 7.17
F1/RL 86.97 18.19 86.84 17.51 86.44 15.59 86.71 16.03

Mistral-7B-Instruct-v0.1
P/R1 85.40 23.59 84.42 20.59 83.43 17.33 83.56 17.44
R/R2 88.17 9.10 88.09 7.52 88.01 6.01 88.56 6.02
F1/RL 86.74 18.34 86.18 15.61 85.63 12.84 85.69 12.95

Mixtral-8x7B-Instruct-v0.1
P/R1 85.39 23.32 84.57 21.62 83.96 19.12 83.98 19.52
R/R2 88.11 7.72 88.17 7.06 88.07 6.37 88.86 7.52
F1/RL 86.71 17.21 86.32 15.83 85.95 13.97 86.01 14.23

TABLE VII. PERFORMANCE OF LLMS ON THE SAMSUM DATASET WITH ZSL

Prompts Prompt #1 Prompt #2 Prompt #3 Prompt #4
Metrics BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b-it
P/R1 86.24 33.16 88.21 34.31 86.41 32.05 88.76 35.23
R/R2 91.05 11.48 90.10 11.70 90.68 10.29 90.62 12.14
F1/RL 88.58 25.25 89.02 26.02 88.48 24.29 89.66 26.72

Llama-2-7b-chat
P/R1 85.12 32.72 89.48 37.75 86.94 34.22 88.76 37.73
R/R2 90.51 10.80 90.64 13.35 90.55 11.31 90.62 13.47
F1/RL 87.72 24.86 90.04 29.90 88.69 26.09 89.66 30.00

Llama-2-13b-chat
P/R1 86.09 34.48 89.23 38.96 88.29 36.66 89.16 39.35
R/R2 90.55 12.41 90.72 14.22 91.27 12.41 90.78 14.61
F1/RL 88.26 26.70 89.95 30.47 89.74 27.68 89.88 30.70

Llama-2-70b-chat
P/R1 87.02 35.11 89.09 38.31 88.56 37.40 89.09 38.82
R/R2 91.14 12.32 90.14 14.21 91.34 13.47 90.89 14.97
F1/RL 89.02 26.98 89.59 30.20 89.91 29.03 89.96 30.59

Mistral-7B-Instruct-v0.1
P/R1 87.01 34.24 89.11 38.56 87.64 34.85 89.07 38.55
R/R2 91.51 11.91 90.92 13.94 91.12 12.03 90.71 14.31
F1/RL 89.19 26.51 89.98 30.26 89.33 26.64 89.86 30.38

Mixtral-8x7B-Instruct-v0.1
P/R1 86.83 33.67 89.31 38.81 87.65 35.07 89.38 37.97
R/R2 91.18 10.78 91.48 13.89 91.19 11.27 91.14 13.58
F1/RL 88.93 25.28 90.37 30.16 89.37 26.85 90.23 29.60
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TABLE VIII. PERFORMANCE OF LLMS ON THE ARXIV DATASET WITH ZSL

Prompts Prompt #1 Prompt #2 Prompt #3 Prompt #4
Metrics BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b-it
P/R1 84.27 25.72 84.51 40.05 86.14 24.73 86.09 22.52
R/R2 77.81 15.76 79.46 25.64 78.69 13.45 78.45 12.04
F1/RL 80.89 18.61 81.89 27.81 82.24 18.05 82.09 16.59

Llama-2-7b-chat
P/R1 83.86 39.61 83.92 49.74 86.86 38.25 84.73 36.19
R/R2 79.56 21.52 80.41 32.47 80.09 19.43 79.79 18.84
F1/RL 81.64 27.03 82.12 33.98 83.33 24.25 82.17 24.13

Llama-2-13b-chat
P/R1 84.84 35.47 84.21 47.92 84.94 37.87 85.89 23.33
R/R2 79.14 20.63 79.96 29.73 79.95 19.35 78.48 12.01
F1/RL 81.88 24.48 82.02 32.43 82.36 23.93 82.01 15.65

Llama-2-70b-chat
P/R1 84.39 39.31 84.26 35.48 85.33 35.29 85.40 25.64
R/R2 78.34 25.09 79.25 17.61 79.94 18.30 78.41 12.56
F1/RL 81.24 27.38 81.67 21.65 82.54 22.85 81.74 16.70

Mistral-7B-Instruct-v0.1
P/R1 85.29 31.89 85.61 36.64 86.86 30.59 86.26 29.47
R/R2 79.14 20.81 79.38 25.77 80.09 18.49 79.74 17.98
F1/RL 82.08 25.18 82.37 30.05 83.33 23.98 82.85 23.15

Mixtral-8x7B-Instruct-v0.1
P/R1 84.89 35.45 84.73 37.43 85.23 34.34 85.28 31.18
R/R2 79.29 19.92 79.74 21.84 79.95 18.23 79.34 16.63
F1/RL 81.98 25.39 82.15 27.07 82.49 24.39 82.19 22.06

TABLE IX. PERFORMANCE OF LLMS ON CNN/DM DATASET WITH ICL

Prompts 1-Shot 3-Shots 5-Shots 7-Shots
Metrics BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b-it
P/R1 84.04 21.78 87.92 33.70 85.40 27.55 85.19 28.36
R/R2 82.27 7.75 86.43 12.37 85.59 9.36 87.30 10.68
F1/RL 83.14 12.60 87.16 22.06 85.47 17.96 86.22 18.55

Llama-2-7b-chat
P/R1 86.91 35.92 86.14 32.58 87.27 34.35 88.19 39.45
R/R2 87.52 13.55 88.08 12.77 87.41 14.62 88.59 16.49
F1/RL 87.20 23.01 87.09 20.85 87.29 23.16 88.37 26.25

Llama-2-13b-chat
P/R1 87.54 36.31 86.15 32.37 87.41 33.95 88.63 39.43
R/R2 87.84 13.71 87.94 12.63 87.16 14.24 89.12 16.48
F1/RL 87.67 23.11 87.02 20.70 87.24 22.62 88.86 26.22

Llama-2-70b-chat
P/R1 87.63 38.26 85.31 29.80 87.09 33.11 88.97 40.98
R/R2 87.68 14.51 88.03 11.91 87.62 14.11 88.45 17.23
F1/RL 87.65 24.22 86.63 19.23 87.31 22.32 88.70 27.52

Mistral-7B-Instruct-v0.1
P/R1 85.87 32.47 87.40 36.02 87.45 35.90 87.55 34.41
R/R2 88.26 13.59 87.60 15.70 88.21 14.79 87.22 14.52
F1/RL 87.02 21.19 87.47 23.80 87.81 23.70 87.36 23.26

Mixtral-8x7B-Instruct-v0.1
P/R1 86.75 34.34 88.03 37.53 87.59 37.12 87.37 36.60
R/R2 86.31 12.74 88.90 16.01 88.95 15.49 89.52 15.74
F1/RL 86.51 21.57 88.44 24.79 88.24 24.58 88.41 24.25

gains, particularly for the ROUGE and BERT metrics. These
findings underscore the importance of demonstration-based
prompting, reinforcing ICL’s effectiveness in leveraging LLM
capabilities for summarization.

B. Comparisons with State-of-the-Art Models

To situate LLMs within the broader landscape of text
summarization, we compared their results with earlier state-
of-the-art neural models across datasets Tables XIII and XIV.
We focus on the highest-performing LLMs in our study in each
dataset and contrast them with earlier existing models.

On news summarization (CNN/DM, NEWSROOM) in
Table XIII, LLMs like Llama-2-70b-chat underperform models
such as PEGASUS but eliminate dataset-specific training costs,
as seen in Gemma-7b-it’s NEWSROOM results.

For dialogue summarization, Table XIV shows that while
Mixtral-8x7B demonstrates moderate performance, it slightly
lags behind specialized models like SICK. This suggests that

LLMs require further optimization for conversational coher-
ence. On scientific documents, Table XIV shows that Llama-
2-7b-chat achieves a high ROUGE-1 (49.74) but struggles with
coherence (ROUGE-L: 33.98), reflecting sensitivity to prompts
and context truncation.

These results highlight LLMs’ potential for multi-domain
adaptability but underscore the need for tailored prompts
and hybrid architectures to balance semantic flexibility with
syntactic precision.

C. Summarization with Chunking Strategy

To evaluate the impact of chunking, we tested it on the
ArXiv dataset. Table XV reports ROUGE-1 and BERTScore
F1 results before and after applying chunking.

Results show notable improvements for the Llama-2-70B-
chat and Mixtral-8x7B-Instruct-v0.1 models in terms of both
lexical and semantic metrics. However, models like Llama-2-
13B-chat and gemma-7b-it did not consistently benefit, which
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TABLE X. PERFORMANCE OF LLMS ON NEWSROOM DATASET WITH ICL

Examples 1 Shot 3 Shots 5 Shots 7 Shots
Metric BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b
P/R1 84.4 13.1 86.4 20.3 85.4 18.0 80.7 10.7
R/R2 84.1 3.0 86.6 5.8 87.1 5.6 86.7 3.7
F1/RL 84.2 11.1 86.5 15.9 86.2 13.8 83.5 8.1

Llama2-7b
P/R1 82.4 16.6 85.1 21.6 86.6 20.9 86.3 26.6
R/R2 85.5 5.0 88.2 7.1 85.8 6.2 88.4 10.4
F1/RL 83.9 13.6 86.6 16.1 86.1 17.2 87.3 21.2

Llama2-13b
P/R1 82.3 16.8 84.7 22.0 83.6 23.0 86.9 26.3
R/R2 85.5 5.0 87.8 7.2 84.8 9.3 88.8 10.0
F1/RL 83.8 13.4 86.2 16.4 84.1 18.3 87.8 20.8

Llama2-70b
P/R1 82.7 17.3 85.3 20.9 84.5 22.6 87.3 26.0
R/R2 85.8 5.2 88.1 6.6 86.3 7.7 88.5 9.2
F1/RL 84.2 13.8 86.6 15.6 85.4 17.5 87.9 20.2

Mistral-7B
P/R1 85.0 19.1 85.8 23.4 86.2 23.6 87.2 22.8
R/R2 86.6 6.6 87.4 8.3 87.8 8.8 86.0 8.4
F1/RL 85.8 15.0 86.5 17.9 87.0 18.4 86.6 19.1

Mixtral-8x7B
P/R1 84.8 20.6 86.3 23.7 85.9 24.3 84.0 21.1
R/R2 86.3 6.2 88.6 8.0 88.4 9.2 87.5 8.0
F1/RL 85.5 16.3 87.4 18.0 87.1 18.3 85.6 16.3

TABLE XI. PERFORMANCE OF LLMS ON SAMSUM DATASET WITH ICL

1 Shot 3 Shots 5 Shots 7 Shots
BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b
P/R1 84.4 8.6 89.4 34.2 90.3 36.1 84.2 23.3
R/R2 85.6 3.4 89.2 11.6 89.7 12.5 89.6 8.1
F1/RL 85.0 6.7 89.3 27.1 90.0 28.8 86.8 17.4

Llama2-7b
P/R1 89.3 39.1 88.2 35.1 88.4 36.5 90.7 42.5
R/R2 90.4 14.1 91.5 13.5 90.4 13.5 91.7 17.8
F1/RL 89.9 31.0 89.8 27.0 89.4 28.2 91.2 34.2

Llama2-13b
P/R1 89.3 39.1 88.9 39.4 88.7 39.3 90.1 42.5
R/R2 90.3 14.1 91.3 15.9 90.6 15.5 91.3 17.7
F1/RL 89.8 31.1 90.1 30.8 89.6 30.5 90.6 34.0

Llama2-70b
P/R1 89.8 39.3 88.1 36.4 88.9 37.9 90.8 44.1
R/R2 90.8 13.7 91.9 14.7 91.2 14.4 91.7 18.6
F1/RL 90.3 31.0 89.9 28.2 90.0 29.5 91.2 35.7

Mistral-7B
P/R1 89.5 40.8 90.0 42.3 90.5 42.0 90.4 44.8
R/R2 91.6 16.5 91.5 18.3 91.1 17.6 91.8 20.5
F1/RL 90.5 32.2 90.7 34.0 90.8 33.7 91.0 36.0

Mixtral-8x7B
P/R1 90.4 41.6 90.4 43.2 91.0 44.4 91.0 45.9
R/R2 92.1 16.2 91.9 18.5 92.1 20.0 92.2 20.8
F1/RL 91.2 32.6 91.1 34.6 91.6 35.8 91.6 37.0

indicates that the chunking effectiveness may depend on the
model architecture and input handling.

V. DISCUSSION

A. Prompt Diversity and In-Context Learning Effects

The datasets used in this study span distinct summarization
domains—news (CNN/DM, NewsRoom), scientific documents
(ArXiv), and dialogues (SAMSum)—each requiring tailored
summarization strategies. To account for this variability, mul-
tiple prompts were designed and tested for each dataset to
explore their influence on LLM behavior.

Fig. 2 illustrates how prompt variation affects ZSL per-

formance. The results confirm that LLMs are highly sensitive
to prompt phrasing: some prompts elicit more effective re-
sponses, improving both lexical and semantic quality, whereas
others underperform. This highlights the critical role of prompt
formulation in guiding LLMs across domains.

Our findings also demonstrate the adaptability of LLMs to
different prompts and tasks. Their ability to generalize without
fine-tuning highlights the potential of prompt engineering as
a flexible tool. In addition, in-context learning (ICL) signifi-
cantly boosts performance by providing demonstration pairs,
especially as the number of examples increases. This reinforces
the value of contextual learning in terms of improving model
comprehension and summary generation quality.
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TABLE XII. PERFORMANCE OF LLMS ON ARXIV DATASET WITH ICL

Prompts 1 Shot 3 Shots 5 Shots 7 Shots
Metrics BERT ROUGE BERT ROUGE BERT ROUGE BERT ROUGE

gemma-7b
P/R1 81.5 22.4 83.7 30.1 85.4 35.2 83.2 29.6
R/R2 78.5 2.6 81.5 7.5 82.3 10.7 81.2 7.1
F1/RL 80.0 13.5 82.6 17.2 83.8 20.6 82.2 17.7

Llama2-7b
P/R1 85.7 40.8 86.7 42.2 86.1 48.3 86.9 39.8
R/R2 82.1 13.7 84.2 15.0 83.9 17.8 84.0 14.3
F1/RL 83.8 22.6 85.4 24.0 85.0 22.5 85.4 23.3

Llama2-13b
P/R1 85.8 40.7 86.7 42.1 86.7 47.9 87.0 40.0
R/R2 81.8 13.7 84.1 15.1 83.6 19.4 83.9 14.5
F1/RL 83.7 22.7 85.4 24.0 85.1 22.1 85.4 23.4

Llama2-70b
P/R1 85.9 41.0 86.7 41.7 85.7 39.4 86.5 40.4
R/R2 81.9 13.7 82.8 14.7 82.7 15.7 83.5 14.1
F1/RL 83.8 22.8 84.7 23.8 84.2 18.6 85.0 23.0

Mistral-7B
P/R1 84.0 37.1 84.8 37.5 85.6 38.9 85.2 37.0
R/R2 82.1 12.8 82.8 12.7 82.1 12.9 81.6 12.7
F1/RL 83.1 20.0 83.8 20.6 83.8 21.5 83.3 20.6

Mixtral-8x7B
P/R1 84.5 39.3 85.7 40.4 86.6 40.1 85.9 39.5
R/R2 80.9 13.1 83.6 14.0 83.5 13.9 84.4 13.4
F1/RL 82.6 21.8 84.6 22.3 85.0 22.9 85.1 21.8

TABLE XIII. COMPARISON OF TRADITIONAL SUMMARIZATION MODELS
AND LLMS ACROSS CNN/DM AND SAMSUM DATASETS

Dataset Method R-1 R-2 R-L

CNN/DM

Hie-BART[31] 44.35 21.37 41.05
PEGASUS[30] 44.17 21.47 41.1
Llama-2-70b-chat 40.98 17.23 27.52

NEWSROOM PEGASUS[30] 45.15 33.51 41.33
Gemma-7b-it 25.38 8.52 19.96

TABLE XIV. COMPARISON OF TRADITIONAL SUMMARIZATION MODELS
AND LLMS ON NEWSROOM AND ARXIV DATASETS

Dataset Method R-1 R-2 R-L

SAMSum

SICK[11] 53.73 28.81 49.5
Mixtral-8x7B 45.86 20.78 36.96

ArXiv

PRIMERA[7] 47.60 20.80 42.60
PEGASUS[30] 44.70 17.27 25.80
Llama-2-7b-chat 49.74 32.47 33.98

B. LLMs in Summarizing Long Documents

As shown in Table XV, chunking improved summarization
performance—particularly ROUGE-1 and BERTScore—for
models like Llama-2-70B-chat and Mixtral-8x7B-Instruct-
v0.1, indicating better preservation of contextual and semantic
content. In contrast, models such as Mistral-7B-Instruct-v0.1,
Llama-2-13B-chat, andgemma-7b-it showed minimal or incon-
sistent gains, which suggests that the chunking effectiveness
varies according to the model architecture and context handling
capabilities.

While chunking helps retain key information in lengthy
inputs and improves final summary quality, it introduces addi-
tional inference overhead. This trade-off between performance
and efficiency is particularly important when processing long-
form scientific texts like those in the ArXiv dataset.

TABLE XV. PERFORMANCE COMPARISON BEFORE/AFTER CHUNKING
ON ARXIV DATASET (ROUGE-1 & BERTSCORE F1)

Model
ROUGE-1 BERTScore

Before After Before After
Gemma-7B 40.05 39.91 84.51 83.60

Llama2-7B 49.74 50.30 83.92 84.06
Llama2-13B 47.92 47.01 84.21 82.04

Llama2-70B 35.48 38.12 84.26 86.19
Mistral-7B 36.64 36.90 85.61 85.80
Mixtral-8x7B 37.43 40.02 84.73 87.16

C. Comparison of Generated Summary Lengths with Refer-
ence Summaries

Another analysis is conducted regarding the results sum-
maries generated from the employed models to gain more
insight into the results. Hence, the lengths of the generated
summaries were compared to those of the reference summaries
for all datasets used in this study. Table XVI offers a summary
of the average lengths of the summaries produced by each
model when given different prompts, together with the refer-
ence summary lengths for each dataset. The average length
was calculated by taking the average lengths of the resulting
summaries across the different prompts used. The average
lengths of the generated summaries demonstrate that the LLMs
do not consistently generate summaries that are comparable to
the reference summaries. The results demonstrate that most
models generate summaries that are longer than the reference
summaries.

Overall, these findings imply that the strengths and weak-
nesses of various models vary according to the dataset charac-
teristics, in addition to model’s length, number of parameters,
and prompt building, as previously described. For instance,
Llama-2-13b-chat excels in producing summaries that are
nearly the reference length for datasets like SAMSum and
ArXiv, and gemma-7b-it consistently generates succinct sum-
maries for most datasets.
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Fig. 2. Change in models’ performance in ROUGE-1 across datasets using multiple prompts in zero-shot prompting.

However Mistral-7B-Instruct-v0.1 shows a tendency to pro-
duce longer summaries that may risk verbosity in an attempt
to capture more detail. Consequently, the characteristics of the
particular dataset and the intended ratio of detail to conciseness
should be taken into account when choosing a model for a
summarization task. In conclusion, there is a trade-off between
verbosity and the efficiency of the generated summaries when
using LLMs for ATS, and this trade-off affects how well
these summaries are evaluated in comparison to reference
summaries.

D. Variation in LLM Performance: Insights and Contributing
Factors

Performance variations across models and datasets reflect
the complexity of summarization tasks. Larger models—such

as Llama-2-70B-chat and Mixtral-8x7B—tend to perform bet-
ter, especially on complex datasets like CNN/DM and ArXiv;
however, this trend is not universal [53], [54].

Prompt design significantly affects performance. Here,
structured, summary-specific prompts generally yield more
relevant and coherent outputs than open-ended queries. ICL
further enhances model understanding by providing context-
rich demonstrations, and performance improves as the number
of examples increases [41].

However, no single factor alone accounts for performance
differences. Instead, the interplay among model size, archi-
tecture, prompt formulation, and demonstration count shapes
summarization quality. Continued investigation is needed to
isolate and optimize these factors for improved LLM perfor-
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TABLE XVI. AVERAGE GENERATED SUMMARY LENGTHS OF LLMS
COMPARED TO REFERENCE SUMMARY LENGTHS

Datasets

Models CNN/DM NewsRoom SAMSum ArXiv

gemma-7b-it 53.584 27.672 44.722 143.31

Llama-2-7b-chat 83.456 56.8 47.534 289.3575

Llama-2-13b-chat 65.706 47.67 39.308 208.825

Llama-2-70b-chat 71.864 44.832 40.45 200.4975

Mistral-7B-Instruct-v0.1 108.056 60.46 48.098 168.57

Mixtral-8x7B-Instruct-v0.1 83.704 45.07 46.528 204.71

Reference Length (#Words) 52 26 22 220

mance on abstractive summarization tasks.

E. Qualitative Analysis of Generated Summaries

We further analyzed the summaries of the top-performing
CNNDM, NewsRoom, and SAMSum models. Key qualitative
observations are:

1) Content coverage: Despite lexical differences, sum-
maries often capture core meanings and key facts. Many out-
puts paraphrase reference summaries while retaining relevance.

2) Coherence: Most outputs maintain logical flow and
clarity, even with varied stylistic choices, reflecting LLMs’
capacity for fluent text generation.

3) Error patterns: Common issues include omissions, fac-
tual distortions, and overgeneralizations (e.g., ”more than 200
people” simplified as ”a large crowd”). NewsRoom outputs
sometimes misstate facts; CNNDM examples show reduced
specificity.

In conclusion, LLM-generated summaries generally pre-
serve the intended meaning and demonstrate strong contextual
relevance, even when they diverge from human-written refer-
ences in phrasing. This illustrates their potential to produce
effective abstractive summaries.

F. Inference Time Analysis

We also measured the average inference time required
by each model to generate summaries across the datasets.
Table XVII shows these results.

TABLE XVII. AVERAGE INFERENCE TIME (SECONDS) PER ARTICLE
ACROSS MODELS AND DATASETS

Model CNN/DM NewsRoom ArXiv SAMSum

Llama2-7b-chat 23.34 25.1 61.2 11.5

Llama2-13b-chat 25.7 30.3 68.8 14.9

Llama2-70b-chat 80.6 95.2 148.4 30.7

Gemma-7b-it 21.1 23.8 63.4 10.2

Mistral-7b-instruct 17.9 20.5 52.9 8.3

Mixtral-8×7b-instruct-v0.1 31.5 36.8 100.3 15.4

Three key patterns emerged: (1) Larger models incur
higher latency—e.g., Llama2-70B-chat significantly outpaces
its smaller variants; (2) Inference time scales with in-
put length—ArXiv documents take longer to process than

shorter SAMSum dialogues; and (3) Architectural optimization
matters—Mixtral-8x7B, despite its size, is faster than Llama2-
70B on ArXiv due to its sparse MoE design.

These findings emphasize the trade-off between perfor-
mance and efficiency and highlight the need to balance quality
and latency in practical deployments.

VI. CONCLUSION

This study presents a comprehensive evaluation of locally
hosted LLMs on news, dialogue, and scientific text summariza-
tion tasks using zero-shot learning (ZSL), in-context learning
(ICL), and chunking strategies. Our findings highlight sev-
eral key insights. First, LLM performance varies significantly
across domains and models. While models like Mixtral-8x7B-
Instruct and Llama-2-70B-chat demonstrated strong results in
dialogue and scientific summarization, smaller models such as
Gemma-7b-it struggled with long-form inputs. Second, ICL
consistently outperformed ZSL in terms of providing contex-
tual examples, which resulted in improved lexical and semantic
alignment. Third, the chunking strategy proved beneficial for
handling long scientific documents, particularly enhancing
outputs from models constrained by limited context windows.
Additionally, qualitative analysis of the generated summaries
revealed that many LLMs effectively preserved the intended
meaning and maintained contextual coherence even when their
outputs diverged lexically from human references. Common
error patterns—such as omissions, generalizations, and factual
distortions—were identified, providing further guidance for
model refinement and deployment. Performance differences
were influenced by factors such as models architectural con-
siderations, scale, prompt tuning, and the number of in-context
examples. Overall, this work underscores the promise of open-
source LLMs as adaptable tools for abstractive summarization
and offers both quantitative and qualitative insights into their
effective use across varied textual domains. Future research
could examine optimizing LLMs for domain-specific sum-
marization, particularly for long-form scientific texts where
chunking introduces coherence challenges. In addition, explor-
ing retrieval-augmented and integrating external knowledge
sources may improve factuality and context awareness. Op-
timizing the inference efficiency in real-time or low-resource
environments will continue to be a crucial area for practical
deployment considerations.
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