
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Foreign Key Constraints to Maintain Referential
Integrity in Distributed Database in Microservices

Architecture

Shamsa Kanwal1, Nauman Riaz Chaudhry2, Reema Choudhary3,
Younus Ahamad Shaik4, Pankaj Yadav5, Ayesha Rashid6

Department of Computer Science, University of Gujrat, Gujrat, Pakistan1,2,6

Department of Software Engineering, University of Gujrat, Gujrat, Pakistan3

Jawaharlal Nehru Technology University, Anantapur, India4

Data Center and Artificial Intelligence Group, Intel Technology India Pvt Ltd, Bangalore, India5

Abstract—In the world of modern software development,
microservices architecture has become increasingly popular due
to its ability to help developers to build large and complex
applications that are more agile, faster and more scalable. In
large scale applications (such as e-commerce, healthcare, finance,
social media, inventory management, travel booking, content
management, and customer relationship management systems
etc.) with many interconnected services, it is tough to keep the
data accurate and consistent. The concept of referential integrity
is applied to validate the data. Referential integrity refers to the
preservation of relationships between tables. In a monolithic ar-
chitecture, where the application and database are closely linked
and co-located on the same server, referential integrity via foreign
key constraints makes it feasible to preserve consistent and
accurate data. But in the microservices architecture, maintaining
referential integrity across distributed databases poses significant
challenges due to its decentralized nature of data management.
This study utilizes a hybrid research methodology, combining
empirical research and design science research to discover and
address the challenges of maintaining referential integrity in
distributed databases in microservice architecture and calculate
the response time by comparing and analyzing with existing
models. The results of the evolution in term of response time
are presented in this work.

Keywords—Foreign key constraints; relational mapping; ref-
erential integrity; saga pattern; event driven architecture; APIs;
microservice; distributed database

I. INTRODUCTION

In modern cloud-native applications, distributed databases
are an important part of microservices architecture, as they
offer availability, reliability and scalability [1]. In large ap-
plication with many interconnected links, it’s hard to keep the
data correct and consistent. For that the concept of “Referential
integrity Constraints” is used to keep the data correct.

In a monolithic architecture, where the application and
database are closely linked and co-located on the same server,
referential integrity via foreign key constraints makes it fea-
sible to preserve consistent and accurate data [2]. But in
the microservices architecture, maintaining referential integrity
across distributed databases poses significant challenges due to
its decentralized nature of data management.

A. Database in Monolithic Architecture

Monolithic architecture is an outdated software design
method where whole application or system is made as a
single, interconnected unit [3]. In this architectural style, all the
components, modules, and functionalities of the application are
tightly integrated and run as a single codebase within a single
process [4]. In monolithic architecture, CRUD operations di-
rectly perform in centralized relational database [5]. When new
data is Create into a table that contains a foreign key column,
the referenced value should first be checked to ensure that it
exists in the referenced table’s primary key. If not, the data is
not allowed. For Read operation, foreign keys don’t affect the
process directly, but they help to make sure the data is correct.
When deleting data from a parent table that is referenced by
a foreign key constraint in another table, database checks if
related child record exist. It can either delete the child records
or stop the deletion too, depending on the rules. When updating
data in the parent table, database updates the related records
according to rules or stop the change to avoid breaking the
link.

A monolithic system is hard to grow and update quickly
because all components and modules are tightly connected.
This approach contrasts with modern microservice architecture
for handling large applications which offer better availability,
well organized use of resources and scalability, making them
a better option.

B. Distributed Databases in Microservices Architecture

Large-scale applications can be developed by dividing them
into smaller, autonomous services thanks to microservices
architecture [6]. These services have their own unique business
logic and database. Each service is updated, tested, deployed,
and scaled independently of the others [7]. This method fre-
quently makes use of databases with different schemas, shared
database, and distributed databases, each of which fulfills a
distinct purpose. Shared database and databases per service
are the two primary categories of distributed database. When it
comes to databases for individual services, every microservice
has a unique database [8].

1) Shared databases in microservices architecture: In a
shared database approach, all services use a single database.

www.ijacsa.thesai.org 974 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

This means that multiple services can write data to the same
database, and each service has access to data written by the
other services. Services can conveniently access and share data
since they all contribute to the same database [9]. With all
services operating within a single database for reading and
writing, data sharing is simplified. This eliminates the need
for complex data synchronization or replication procedures, as
all services have direct access to the same dataset.

In a shared database model, multiple microservices access
and function on the same database. Although this simplifies
data consistency and relational integrity implementation, it
basically violates key microservices principles such as service
autonomy, scalability, and independent deployment.

Service autonomy is negotiated because microservices be-
come tightly coupled through the shared schema, meaning
that changes in one service’s database tables can accidentally
impact others. This dependency increases the risk of breaking
changes and requires coordinated deployments, reducing the
flexibility and agility that microservices are meant to provide.
Scalability is also stuck, as the shared database can become a
bottleneck; scaling services independently is more challenging
when all trust on the same data store. Moreover, operational
complexity grows when services must negotiate over shared
resources, and fault isolation becomes difficult. If one service
causes a database failure or locks essential tables, it can
affect all other services connected to that database. These
limitations run contrary to the core goals of microservices
architecture, which emphasize loose coupling, independent
scaling, resilience, and continuous delivery. Therefore, while
the shared database approach may offer short-term gains in
performance and development simplicity, it imposes long-
term constraints on maintainability, scalability, and system
robustness.

2) Databases per service in microservices architecture:
In the database-per-service pattern within a distributed
database architecture, each microservice has its own dedicated
databases. These services manage their own data independently
[1] without interference from other service. Each services can
deploy, scale and update independently. Both synchronous and
asynchronous [10] method used for communication between
the services. Synchronous communication means that a service
sending a request to another service and pausing its operation
until response is received. Typically, this method is realized
through protocols like HTTP/REST or gRPC [11]. While
asynchronous communication occurs when a service sends a
request or message to another service and continues its opera-
tion without waiting for an immediate response. This method is
often facilitated by message brokers like RabbitMQ or Kafka.
This procedure make it simple for various microservices to
exchange and access data across many platforms.

In microservices architecture with distributed databases,
maintaining data consistency particularly using foreign key
constraints for referential integrity is a major challenge. Unlike
traditional systems where databases impose these rules directly,
microservices have separate databases, making this execution
tough. The CAP theorem describes that distributed systems
can only attain two out of three: Consistency, Availability,
and Partition Tolerance. Meanwhile microservices must handle
network issues (partition tolerance), they often choose between
strong consistency or high availability.

Some researchers propose the BAC model (Backup, Avail-
ability, Consistency) [12] to better handle real-world failures.
Systems that focus on consistency (CP) ensure correct data but
may be slower or unavailable during issues, while systems that
focus on availability (AP) respond faster but rely on eventual
consistency, requiring extra logic to maintain data integrity.
In such cases, referential integrity is often managed through
custom validation, events, or shared read-only views instead
of traditional foreign key constraints.

C. Background

The term “Referential integrity” and “Foreign key con-
straints” are the two central concepts for ensuring data consis-
tency, accuracy and validity across related tables in relational
database system. A relational database is a key element for
storing, managing, and retrieving data for the entire program
in a monolithic architecture. The architecture uses structured
tables to store data [12] from multiple application modules
in a single, centralized relational database. A centralized data
schema defines the organization of the database by specifying
tables, relationships, columns, data types, and constraints to
ensure consistent data storage.

In relational database each database table has a PRIMARY
KEY that uniquely identifies its records. A FOREIGN KEY
serves as a database key designed, which consists of one
or more columns in a table, references the primary key in
another table, thereby creating relationships between the tables.
The term “FOREIGN KEY CONSTRAINTS” is a column (or
combination of columns) in a table whose values must match
values of a column in some other table. This [12] foreign key
constraint connects the child table’s foreign key to the parent
table’s primary key, maintaining referential integrity.

Fig. 1. Foreign key relationships in monolithic architecture.

Fig. 1 illustrates how foreign key constraints are openly
imposed within a monolithic architecture, where all mod-
ules share a single centralized database. In this setup, rela-
tional integrity between entities (e.g., Product and Product-
Category) is maintained through native database-level foreign
keys.Distributed database is a type of database system where
data is stored through multiple physical locations, frequently
on different servers, regions, or even data centers, but appears
to users as a single, unified database. Each location may
manage part of the data independently, but the system ensures
coordination so users can access and manipulate data as if it
were stored in one place.

www.ijacsa.thesai.org 975 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Fig. 2. Shared database and databases per service patterns.

Fig. 2 shows the difference between Shared Database and
Database per Service. Shared Database use single database
but doesn’t scale well, while Database per Service gives each
service its own data and needs extra steps to keep data linked.

Microservice architecture is a software development strat-
egy [24] that differs from monolithic architectures. Rather
than having one large application, it involves breaking down
an application into several small, independent services that
are not tightly integrated with one another. One of the key
feature of this architecture is the use of multiple, independent
services that communicate with each other over the network.
Each service is created to perform a specific business task and
interacts with other services through clearly defined APIs.

Fig. 3. Foreign key relationships in shared database using multiple
microservices.

In Fig. 3 multiple services, such as ProductService and Pro-
ductCategoryService, interact with a single, unified database.
ProductCategory service manage product category in the Pro-
ductCategory table, while ProductService manage individual
products in the Product table. Both tables are linked through a
foreign key relationship, ProductCategory table as the parent
and the Product table as the child, ensuring referential integrity
[12] and consistent data relationships across services. On the
other hand, microservices also interact with each other via
events. For instance, ProductService can produce the event
exposed by ProductCategoryService to fetch category details.

For example in Fig. 4, consider two microservices: Prod-
uctService and ProductCategoryService. Each of these mi-
croservices manages its own separate database, but they are
linked through a foreign key relationship to maintain referential
integrity.

Fig. 4. Database-per-service in microservices architecture.

Synchronous communication is ideal for real-time interac-
tions requiring immediate responses, offering simplicity and
directness. In contrast, asynchronous communication excels
in scalability and resilience, making it suitable for tasks that
can be handled independently over time. In large application
with many interconnected links, it’s hard to keep the data
correct and consistence. For that the concept of “Referential
integrity Constraints” is used to keep the data correct. Still,
the complexity of handling inter-service communication and
ensuring data consistency across multiple services increases.

D. Purpose of the Research

The purpose of this research is to discover how referential
integrity can be sustained in distributed databases within
microservices architecture, where traditional foreign key con-
straints cannot span across service boundaries. Using a case
study with separate Product and ProductCategory services, the
study evaluates and compares practical methods such as shared
databases, API validation, event-driven communication, and
saga pattern to preserve data relationships while balancing
scalability, fault tolerance, and system complexity.

E. Research Objectives

• To handle foreign key constraints in distributed
database in microservices architecture.

• To improve response time during CRUD operation in
distributed database in microservices architecture.

• To analyze and compare the existing model in a
distributed database in microservices architecture.

In the introduction section the paper addresses the chal-
lenges of maintaining referential integrity in distributed
databases within microservices architecture, this research ex-
plores the application of foreign key constraints across dif-
ferent architectural patterns. It investigates how referential
integrity is preserved in both shared databases and database-
per-service designs using three distinct implementation meth-
ods: Shared Database Pattern using APIs, Saga Choreography
Pattern with database-per-service, and an Event-Driven Archi-
tecture with database-per-service. Each method offers different
trade-offs in terms of consistency, performance, and decou-
pling, which are critical factors in distributed environments.

www.ijacsa.thesai.org 976 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

The remainder of this paper is structured as follows:
Section II presents a comprehensive literature review covering
the evolution from monolithic systems to microservices, and
analyzes the implications for database design and schema evo-
lution. Section III outlines the research methodology, detailing
the experimental setup for each of the three architectural pat-
terns. Section IV presents the results, including a comparative
analysis of referential integrity, response time, and behavior
under CRUD operations. Finally, Section V concludes the
findings and provides recommendations for selecting appropri-
ate patterns to maintain referential integrity based on system
requirements.

II. LITERATURE REVIEW

This chapter gives us a closer look at what’s happening
in research right now and what we already know about the
topic. It shows us what different authors have to say about the
subject based on what’s already been written.

A. Evolution to Microservices and Distributed Databases

Microservice-based architecture, which is used for de-
veloping software systems with independent maintainability
and scalability [13]. Many companies migrate their existing
monolithic software systems towards microservice-based ar-
chitectures [14]. The paper [15] proposes a data-centric process
to identify microservices by decomposing the database (on the
bases of foreign key relationship) into clusters and identifying
topics that correspond to potential microservices. This process
performs database schema analysis and clustering.

Migrating from a monolithic to microservice architecture
with a shared database and then to multiple databases based on
the database-per-microservice pattern. The migration process
involves identifying microservice boundaries, decomposing the
application into multiple entities. Framework called Architect,
which is based on a domain-specific language for building
dependable distributed systems [16], to ensure the data con-
sistency of distributed transactions using the Saga pattern to
reduce complexity and attain eventual consistency.

The saga pattern is a technique used to ensure data consis-
tency across multiple microservices [17]. It uses sequential
transactions that trigger subsequent ones and compensatory
transaction when failures occur. However, it lacks isola-
tion, allowing access to ongoing transactions. An improved
version[18] of the saga pattern addresses this issue by using a
quota cache and commit-sync service to rollback modifications
in case of failures without affecting the database layer. The
database is committed once all transactions are successful.

Event-driven architecture used for building a distributed
database for microservices that is scale and flexible. In EDA,
the communication between different components of the sys-
tem happen through events. EDA can be used to ensure that
change to the data are propagated to all the microservices
that depend on it. By decoupling the components of the
system through events which ensure that changes are propa-
gated quickly [19] and efficiently, while also maintaining data
consistency across the system . Identified multiple instances
were enforcing foreign key constraints between microservices
is essential to ensure accuracy.

Architectural trade-off analysis based on patterns to as-
sist software architects in selecting appropriate pattern for
foreign key relationship between different microservices us-
ing immutable event by conducted a study [20] to identify
architectural patterns of microservices that affect structural
design decision related to the size of services, database sharing,
and level of service coupling. Software architects can better
understand and choose the most appropriate pattern for foreign
key relationship between different microservices by using
Command Query Responsibility Segregation(CQRS), which
can guide the architecture in the desired direction.

Adoption of microservice-based event-driven architecture
for data-intensive systems, also known as big data sys-
tem(BDS) in which microservices communicate through APIs.
The authors conducted action research [21] which are Ques-
tionnaire to investigate the reasons for the adoption of this
architecture and to document the challenges and lessons
learned. The resulting architecture was found to enable easier
maintenance and fault isolation.

Recovering microservices that use polyglot persistence,
which means they use multiple data storage techniques. When
backups are taken independently, it becomes difficult to recover
them in a consistent state, and references across microservice
boundaries may break after disaster recovery. The authors [22]
propose a weak global consistency definition for microservice
architectures and a recovery protocol that utilizes cached
referenced data to reduce the time interval after the most recent
backup, during which state changes may have been lost.

The widespread adoption [23] of microservices and event-
driven software applications, which favor the separation of
databases into independent silos of data owned by a single
service. It mention that microservices communicate via syn-
chronous REST API calls and introduces the concept of virtual
actors, The only way for a microservice to get data from
another microservice is to make a call on an endpoint.

In study [27] Paper offers a modest way to design and
evaluate microservices that focus on data, keeping in mind the
limitations of the CAP theorem, which applies to distributed
systems like microservices. It helps developers and architects
compare different design and database patterns to find the
best mix of cost and performance. The CAP theorem is not
used as a strict rule but as a monitor to group systems as
CA (Consistency–Availability), CP (Consistency–Partition tol-
erance), or AP (Availability–Partition tolerance). The approach
is explained with three real-world examples, each showing how
different choices affect system design, making it easier to make
smart architecture and database decisions. Comparison table is
shown in Table I.

B. Database Schema Analysis

A dominant model for cloud based application, consist
of integrated, independently deployed and occasionally dis-
tributed services that communicate with each other through
API calls and maintain their own databases. While enabling
software development is a key motivation for implementing
microservices, latest surveys[25] highlight database schema
evolution as an important challenge. The main aim of this
thesis is to reduce the burden which evolve in cloud based
application and provide developers automated database schema

www.ijacsa.thesai.org 977 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

TABLE I. COMPARISON TABLE

Paper Names and References Isolation Scalability Consistency

Towards Migrating Legacy Soft-
ware Systems to Microservice [15].

Yes Yes Yes

A Framework for the Migration to
Microservices [16].

Yes Yes

Enhancing Saga Pattern for Dis-
tributed Transactions within a Mi-
croservices [18]

Yes Yes Yes

A distributed database system for
event-based microservices [19]

Yes Yes Yes

Data Management in Microser-
vices

Yes Yes

A Method for Architectural Trade-
off Analysis Based on Patterns
[20].

Yes

From Monolithic Big Data Sys-
tem to a Microservices Event-Drive
[21].

Yes Yes Yes

Microservice Disaster Crash Re-
covery.

Yes Yes

Operational Stream Processing
[23].

Yes Yes

Performance Engineering for Mi-
croservices: Challenges & Direc-
tions [24].

Yes Yes

evolution with tools. This research[26] mainly focused on
modeling, generation, evolution, visualization and monitoring
of database schema in microservices.

Microservice-based architecture, which is used for devel-
oping software systems with independent maintainability and
scalability. Many companies migrate their existing monolithic
software systems towards microservice-based architectures.
The paper [4] proposes a data-centric process to identify
microservices by decomposing the database (on the bases of
foreign key relationship) into clusters and identifying topics
that correspond to potential microservices. This process per-
forms database schema analysis and clustering.

The abstraction of software components from legacy sys-
tem, is an active research area within microservices archi-
tecture. Domain driven business dataflow diagram have been
proposed using different approaches such as static and dynamic
code analysis. Legacy systems, which are typically monolithic
in nature, usually come with inherited database schemas and
data, resulting limited code opportunities for code reused.
To identify the database object for microservices extraction,
analyze these artifacts, types and usage are aim of this research.
A systematic mapping study [27] in legacy system discovered
using database artifacts to identify services or component, the
result concentrate on using database schema, data state and
dependencies to identify separate business unit that could be
transformed to potential microservices.

Event-driven architecture(EDA) used for building a dis-
tributed database for microservices that is scale and flexible
[28]. In EDA, the communication between different com-
ponents of the system happens through events, which are
messages that are generated when certain actions or changes
occur. EDA can be used to ensure that change to the data
are propagated to all the microservices that depend on it.
By decoupling the components of the system [19]through

events which ensure that changes are propagated quickly and
efficiently, while also maintaining data consistency across the
system.

A microservice architecture built an application which are
independently deployable, loosely coupled services focused on
business capabilities, need careful data storage consideration
[29]. Evaluating RDBMS and document store data stores
through prototypes and performance test using simplified
Electronic Medical Record (EMR) studies [30] five different
data storage pattern for microservices in this research such
as document store microservice overtake RDBMS, shared
database overtake databases per services, CQRS overtake
shared database all pattern have minor resource impact. Re-
gardless have conflicts with modularity, the CQRS with event
sourcing pattern could alleviate issues. In future may use
hybrid pattern to discover data related operation in shared
database and databases per services.

When migrating from monolithic application to microser-
vices architecture various challenges occur, mostly with split-
ting and sharing databases. In [31] this article show frame-
work where managing database splitting among different
microservices to achieve data consistency and independent
deployment while addressing latency problems. The offered
solution improve performance, improved response time and
handle messaging in evaluation. This framework maintains
constructing services with better database independence.

Demand for data driven features has led to complicated
networks of services which communicate each other without
integrated architecture in Modern web applications. For large
scale web services, synapse helps easy to used strong seman-
tic system [32], allowing isolated, scalable and independent
services to share data across different databases. In MVC-
based applications that force high level data models using
scalable replication mechanism that synchronizes read only
view of shared data in real time, enabling data replication
using different databases such as MYSQL, MongoDB, Oracle
and PostgreSQL. Data duplication among different databases
SQL and NoSQL supports in this synapse. For data integration
use different models and ORMs to guarantee compatibility
between SQL and NoSQL, without compromising scalability
to maintain consistency. Synapse determine good performance
and scalability. Table II shows database schema analysis in
microservices.

III. RESEARCH METHODOLOGY

This section describes the methodology we followed when
lot of literature review has been discussed to support the
hypothesis of this research study and gap in the literature is
also identified. The primary goal to study literature review was
to collect experiences on distributed databases in microser-
vice and how foreign key constraints work in microservices
architecture, reporting best practices, and identify the problems
occur during development processes. This study utilizes a hy-
brid research methodology, combining empirical research and
design science research to discover and address the challenges
of maintaining referential integrity in distributed databases in
microservice architecture. This dual approach allows us to
first observe and analyze real-world systems (empirical) and
then propose and evaluate a novel design framework (design

www.ijacsa.thesai.org 978 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

TABLE II. DATABASE SCHEMA ANALYSIS IN MICROSERVICES

Research Papers Name Distributed Database

Automated Database Schema Evolution in Microser-
vices [26]

Database-Per-Service

Towards Migrating Legacy Software Systems to
Microservice-based Architectures [4]

Database-Per-Service

Using Database Schemas of Legacy Applications for
Microservices Identification: A Mapping Study [27]

Database-Per-Service

A Distributed Database System for Event-based Mi-
croservices [19]

Database-Per-Service

Data Management in Microservices: State of the Prac-
tice, Challenges, and Research Directions [7]

Database-Per-Service &
shared database

Evaluation of Data Storage Patterns in Microservices
Architecture [30]

Database-Per-Service &
shared database

Framework for Interaction Between Databases and Mi-
croservice Architecture [31]

Database-Per-Service &
shared database

Synapse: A Microservices Architecture for
Heterogeneous-Database Web Applications [32]

Database-Per-Service

science), ensuring both theoretical consistency and practical
relevance.

A. Proposed Framework

Subsequent steps have been followed for the proposed
Framework in Fig. 5.

Fig. 5. Proposed framework.

1) Feasible solutions: This research is conducted using
hybrid research methodology, combining empirical research
and design science research supports the development of robust
methods and techniques such as event-driven architecture, the
saga choreography pattern, and APIs using a shared database
technique which is based on hypothesis and evidences col-
lected from the literature that address the challenges of en-
forcing foreign key constraints in distributed databases within
microservices architecture.

B. Requirements for the Framework Implementation

This section provides an overview on which methods and
tools were used.

1) Software requirements: Since this research is focused on
foreign key constraints in distributed databases in microser-
vices architecture the software used for the development of
proposed framework is Spring tool Suite (STS) is an Eclipse-
based development environment design for developing spring
based application. This tool used for creating and managing
spring projects, validation for spring configuration files and
graphical boot dashboard to manage spring boot application.
For validation Postman is an excellent tool that API developers
and tester can use for guaranteeing API performance and func-
tionality. In order to test RESTful APIs, create and run HTTP
requests such as PUT, DELETE, GET, POST etc. In addition
MYSQL is a common Relational database management system
that helps for quick read/write operations and Xampp is the
most commonly used free and open-source web server solution
packages that work across multiple platforms. It is suitable for
developers, when establishing a local web server environment
for PHP development.

2) System requirements: Windows operating system is re-
quired for experimental purpose.

C. Implementation of Framework

After analysis the literature review we discuss some method
which are used in this research.

1) Shared database pattern using APIs: In microservices
design, a shared database is a designed pattern in which
multiple microservice share the same central database, as
opposed to databases per service pattern. All services interacts
with a common set of tables or schema, usually within single
database pattern. This structure makes it possible to store
data centrally. In this pattern, multiple services shared the
same database and each service get data from the same pool.
Both services product and ProductCategory microservices
communicate with each other through APIs and shared the
same database.

Fig. 6. Shared database pattern using APIs.

MYSQL was used to create and implemented distributed
database such as shared databases. For this model, first step
to create product and ProductCategory microservices in spring
tool suit(STS) IDE. The dependencies as shown in Fig. 7 were
managed using maven and pom.xml file in project directory.

The simplified shared database pattern of product and
ProductCategory is shown in above Fig. 6, where both mi-

www.ijacsa.thesai.org 979 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Fig. 7. Shared database dependencies.

croservices shared the same database. Java persistence API
was used to connect to a MYSQL database such as shared
database with product and ProductCategory microservices.

Fig. 8. Database connectivity.

Database connectivity in Fig. 8 discusses to the mecha-
nisms and protocols that allow an application or service to
establish and maintain a connection with a database system for
executing operations such as data retrieval, insertion, updates,
and deletion.

This pattern was implemented using STS and create prod-
uct and product-category microservices. for each microservice,
Create Entity class which is all about tables, Repository is an
interface that define the presentation part of the database, Rest
Controller classes define APIs so that request can be accept
and provide the response. Microservices communicate with
each other through APIs. Both microservices Perform CRUD
operation and calculate response time. Product microservice
send request to ProductCategory microservice to get data.
Product-category microservices accept request, if required data
available in product-category microservices using Request
Mapping.

2) Saga choreography pattern using database per services:
The Saga Choreography Pattern (Fig. 9) is a distributed
coordination mechanism in microservices architecture that
manage distributed communication across several services
without depending on a central orchestrator. In this pattern,
every service waits for particular events and having finished
its activity, posts an event that other services respond to,
carrying on the sequence until the whole business process
is over. Microservices basically follow the pattern called
database per services pattern. Where product service has its
own database similarly product category microservices have
its own database. so if you observe, there is two microservices
and they are pointing to two different databases. If it is a single
database, then the approach will be same as monolithic. In

this pattern, microservices communicate with each other using
asynchronous way such as events.

Fig. 9. Saga choreography pattern.

At the very first, to Setup apache kafka environment such
as message broker to manage publish and subscribe the events.
After that, create product and product-category microservices
and added required dependencies in Fig. 10.

Fig. 10. Dependencies in saga choreography pattern.

For each microservices add Connection Properties in Ap-
plication properties files to connect microservice with its own
database in Fig. 11.

Fig. 11. Database connectivity.

Product services will receive the request from the product-
category microservice then again product service will redi-
rect that request to the product-category services to validate
whether that required category is available or not in Product-
Category microservices. Microservice Communicate with each
other using events. Any change occurs in microservices was
handle using Event.

www.ijacsa.thesai.org 980 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

3) Event driven architecture using database per services:
Event-driven architecture (EDA) using database per service
is a paradigm for designing and building software systems
where events are central to communication between different
components or services. Event driven architecture using
asynchronous way to communicate with each. Event driven
architecture (EDA) using database per service, components
react to events asynchronously, enabling loose coupling,
scalability, and flexibility.

Event driven architecture use apache Kafka as a message
broker for asynchronous way to communicate with each. A
kafka Broker is a server that hosts Kafka partitions. It is
responsible for managing the storage, retrieval, and replication
of the data (messages) produced by Kafka producers and
consumed by Kafka consumers is a server that hosts Kafka
partitions. It is responsible for managing the storage, retrieval,
and replication of the data (messages) produced by Kafka
producers and consumed by Kafka consumers. A Kafka Topic
is a logical channel to which producers publish messages
and from which consumers read messages. A topic is like a
category or feed name to which records are sent as shown in
Fig. 12.

Fig. 12. Event driven architecture using apache kafka.

First step to Setup apache kafka environment such as
message broker for asynchronously communication to manage
publish and subscribe the events. Start zookeeper service using
command.

Fig. 13. Start zookeeper service command.

Start Kafka Broker using command (see Fig. 13 and Fig.
14)

Fig. 14. Start kafka broker command.

In EDA, product service has its own database which is
responsible for managing the product similarly product cate-
gory microservices has its own database which is responsible
for managing product category. At the very first, create product

Fig. 15. Dependencies in event driven architecture.

and product-category microservices and added required depen-
dencies.

Event driven architecture use event producer and event
consumer while communication. Event Producer that produce
event when state changes occur. Producers publish events to
the event broker. while event consumer consumes event and
perform action according to the request. Performing CRUD
operations in event driven architecture (Fig. 15) using database
per services pattern and validate foreign key relationship.

Fig. 16. Event producer in EDA.

Product microservices create a new entity in its local
database such as product. After that, product microservices
publish an event with the entity data to Apache kafka. After
that kafka broker publish an event and send event to the related
microservice. Then productcategory microservices consume
the event and creates a related entity in its local database such
as Productcategory services with a foreign key referencing the
product entity in product microservices database (Fig. 16).

In event-driven systems using the database-per-service
pattern, enforcing foreign key constraints across services is
not possible through traditional relational resources. Instead,
referential integrity is maintained asynchronously using events.
However, this approach must handle the realities of network
partitioning, as defined in the CAP theorem, which states
that in a distributed system, it is difficult to simultaneously
guarantee Consistency, Availability, and Partition Tolerance.
Event-driven architectures usually prioritize availability and
partition tolerance, which means consistency is eventually
achieved rather than immediately enforced. This trade-off
affects CRUD operations, especially create and delete, where

www.ijacsa.thesai.org 981 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

integrity checks must rely on event messages from the owning
service (e.g., ensuring a ProductCategory exists before creating
an Order). In such cases, idempotency becomes essential.
Since events can be delayed, duplicated, or retried, systems
must be designed to safely handle the same event more than
once without corrupting data. This adds operational complexity
but is crucial to ensure reliable referential integrity in the
absence of direct foreign key enforcement. Thus, network
partition handling and idempotent design are key pillars in
using event-driven architectures to maintain data consistency
across microservices.

IV. RESULTS AND DISCUSSION

A. Overview

This section contains the experimentation of the proposed
framework to evaluate how foreign key constraints can be
used to maintain referential integrity in distributed databases
within a microservices architecture. To test our approach, we
designed a case study involving two central microservices:
ProductCategoryService and ProductService, which simulate a
real-world e-commerce scenario. These services are logically
connected through a foreign key relationship, where each
product belongs to a specific product category.

B. Case Study

In the designed case study, we implemented a distributed
database system using the Database per Service pattern. The
ProductCategoryService manages the ProductCategory entity
and its database, while the ProductService manages the Prod-
uct entity. A logical foreign key constraint is defined between
the Productcategory-id field and the ProductCategory-id, en-
suring that each product must belong to a valid category.

In this section the results of Response time of the three
distributed database patterns are presented. For clarity, we
presented the most-significant results obtains. In the first
section, we examine how distributed database patterns compare
with each other and in the last section we observed the
response time while performing CRUD operation in distributed
databases and we define the performance for all the patterns
considered. The response time of the three pattern were
compared in a pairwise such as:

• Shared database using APIs vs. Event Driven Archi-
tecture.

• Shared DB Using APIs vs. choreography saga pattern.

• Event driven Architecture vs. Saga Choreography pat-
tern.

• Response time for all the pattern.

C. Evaluation Criteria

Microservices architecture can be evaluated using variety
of criteria such as data integrity, data availability, data scal-
ability, transaction management and response time. In this
research, we will mainly focus on how response time and
critical aspects such as scalability, fault isolation, and opera-
tional complexity behave when performing CRUD operations.
Response time within a distributed database in microservices

architecture, refer to the duration when the request is send
to and when the client receive the response. This include
numerous stages such as transmission time (time for request to
reach the target microservices), service processing time (time
which involve business logic and database CRUD operations
on the distributed database) which consist of data access, data
consistency and communication across the node or replica,
inter services communication alongside response transmission
time back to client.

D. Shared Database vs. Event Driven Architecture

The result in below Table III shows the response time for
distributed database pattern. Some test cases were executed
against the deployed patterns. Each test case consists of a
HTTP request which consists a server side overview for data
access. In this case, each test cases were executed using well
defined APIs in shared database. This was carried out turn by
turn. First shared database using APIs/HTTP and then database
per service pattern such as event driven architecture using
events were carried out and perform CRUD operation and
calculate the average response time.

TABLE III. COMPARISON BETWEEN EVENT DRIVEN ARCHITECTURE VS.
SHARED DB

DB

Operation

Event Driven Pattern Shared DB

Number of Request (ms)

10 100 1000 10 100 1000

CREATE 73.17 695.47 7155.34 43.89 428.65 3987.45

READ 40.23 385.51 3993.04 35.33 359.09 3367.77

UPDATE 92.45 859.44 8967.71 58.2 575.17 5734.63

DELETE 89.88 887.04 8852.08 59.91 603.45 6072.11

Avg.

Response

Time

73.93 507.10 7242.04 49.33 491.59 4790.49

Fig. 17. Avg. Response time between shared DB VS Event driven
architecture.

Taking an average of all the tests carried out indicates
that shared database pattern performed better than database
per services (EDA) while performing CRUD operation. Shared
database pattern have relatively Fast response time as compare
to event driven Architecture. Response time in Shared database
is Fast due to access of same database. While event driven
architecture takes time for coordination between different ser-
vices, performing CRUD operations and inter-communication
services and many more. Due this reason event driven archi-
tecture takes more time as show in Fig-17.

www.ijacsa.thesai.org 982 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

While analyzing other factors shared Database has limited
scalability because all services depend on a single database,
which becomes a bottleneck as traffic increases. It also has
weak fault isolation. If one service or its database fails, it can
affect others since everything is tightly connected. While it’s
easy to manage at first, complexity grows with more services
due to shared schema and organization needs. In contrast,
Event-Driven Architecture offers very high scalability because
services and messaging systems can grow independently. It
provides excellent fault isolation, as services are decoupled
and communicate through events that can be retried if one fails.
However, it brings very high operational complexity, requiring
careful handling of events, retries, and monitoring, which adds
to the system’s management effort.

E. Shared Database vs. Saga Choreography Pattern

The result presented in table shows the response time
of distributed database between the shared database using
APIs/HTTP request and database per services. In this case,
each test cases were executed using SAGA as well as database
per services. This was carried out turn by turn. First shared
database using APIs/HTTP were carried out and perform
CRUD operation and calculate the average response time.
Secondly, SAGA pattern using database per services pattern
was carried out and perform CRUD operations and calculate
the average response time (Table IV).

TABLE IV. COMPARISON BETWEEN SAGA CHOREOGRAPHY PATTERN
VS. SHARED DB

DB

Operation

Saga Pattern Shared DB

Number of Request (ms)

10 100 1000 10 100 1000

CREATE 67.19 598.43 6495.35 43.89 428.65 3987.45

READ 37.48 332.29 3577.61 35.33 359.09 3367.77

UPDATE 83.67 789.11 7982.47 58.2 575.17 5734.63

DELETE 75.89 668.56 6830.03 59.91 603.45 6072.11

Avg.

Response

Time

66.05 597.09 6221.36 49.33 491.59 4790.49

The comparison between shared database and Saga chore-
ography pattern using database per services pattern were
carried out on the bases of average response time while
performing CRUD operations.

Taking an average of all the tests carried out in fig. 18
that shared database pattern performed better than saga chore-
ography pattern while performing CRUD operation. Shared
database pattern have relatively Fast response time as compare
to SAGA. Response time in Shared database is Fast due to
access of same database. While saga choreography pattern
involved stages such as transmission time, service process-
ing time which involve business logic and database CRUD
operations and global coordination time alongside response
transmission time back to client. Due to this reason Saga
choreography takes more time as compare to shared DB.

In terms of scalability, the Shared Database is harder to
scale because all services trust on a single database, which
can become a bottleneck as the system grows. In contrast, Saga

Fig. 18. Avg. Response time between shared DB vs. Saga choreography
pattern.

Choreography scales more easily since each service has its own
database and can grow independently. For fault isolation, the
Shared Database is weaker. Issues in one service or changes
to the shared schema can affect others. Saga Choreography,
however, offers stronger fault isolation, as services are decou-
pled and operate independently. When it comes to operational
complexity, the Shared Database is easier to manage at first
due to its simplicity, but complexity grows as more services
are added. Saga Choreography is more complex from the be-
ginning, as it requires managing inter-service communication
and ensuring data consistency through event handling.

F. Database Per Services (Choreography Saga Pattern) vs.
Database Per Services (EDA)

The result presented in the table shows the response time
between distributed databases. Both distributed databases used
database per services pattern. The results of the table indicate
an average response time of choreography saga pattern and
event driven architecture.

TABLE V. COMPARISON BETWEEN SAGA CHOREOGRAPHY PATTERN VS.
EVENT DRIVEN ARCHITECTURE

DB

Operation

Saga Pattern Event Driven Pattern

Number of Request (ms)

10 100 1000 10 100 1000

CREATE 67.19 598.43 6495.35 73.17 695.47 7155.34

READ 37.48 332.29 3577.61 40.23 385.51 3993.04

UPDATE 83.67 789.11 7982.47 92.45 859.44 8967.71

DELETE 75.89 668.56 6830.03 89.88 887.04 8852.08

Avg.

Response

Time

66.05 597.09 6221.36 73.93 507.10 7242.04

The data in Table V: shows that Event Driven Architecture
performed better for each batch update, deletion, insertion,
then Saga choreography pattern.

Saga choreography design pattern choose asynchronous
communication between the services and many other factors
such as network latency may low their response time. In the

www.ijacsa.thesai.org 983 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

Fig. 19. Avg. Response time between event driven Architecture vs. Saga
choreography pattern.

TABLE VI. COMPARISON BETWEEN SAGA CHOREOGRAPHY PATTERN
VS. EVENT DRIVEN VS SHARED DB

DB

Op

Saga Pattern Event Driven Pattern Shared DB

Number of Request (ms)

10 100 1000 10 100 1000 10 100 1000

C 67 598 6495 73 695 7155 43 428 3987

R 37 332 3577 40 385 3993 35 359 3367

U 83 789 7982 92 859 8967 58 575 5734

D 75 668 6830 89 887 8852 59 603 6072

Avg

RT
66 597 6221 73 507 7242 49 491 4790

above graph clear show that in each test case event driven
architecture perform better then saga choreography pattern.
The comparison between Saga Choreography Pattern and
Event-Driven Architecture (EDA)—both using the database-
per-service approach—shows that while both patterns offer
good scalability and fault isolation, EDA takes these aspects
further. Saga Choreography provides high scalability, as ser-
vices operate with their own databases and coordinate through
events, and offers strong fault isolation through loose coupling.
However, it requires managing compensating transactions and
choreography logic, making it operationally complex. On the
other hand, EDA achieves very high scalability and fault
isolation, thanks to full service decoupling and asynchronous
communication. But this comes at the cost of very high oper-
ational complexity, involving advanced event design, ensuring
idempotency, managing retries, and implementing distributed
tracing to monitor the system.

While comparison between the three patterns of distributed
database. We observe each test case with each three pattern
such as shared database, saga choreography and event driven
architecture as shown in the Table VI.

After observing each test with 10,100,1000 number of re-
quest respectively, we conclude that shared database performed
faster as compare to other two patterns. While Event driven
architecture performs better then saga choreography pattern
while performing CRUD operation. For more clarity in the
results we represent the result in graphical representation in

Fig. 20. Avg. Response time of different methods.

Fig. 19 and Fig. 20.

V. CONCLUSION AND RECOMMENDATION

In this research distributed databases in microservices has
been broadly analyze while performing CRUD operations and
how we achieve loose coupling between the services while
maintaining data integrity and very efficient data access perfor-
mance. Furthermore, an evaluation of foreign key constraints
to maintain referential integrity in distributed databases (shared
database, database per services) as shown in this research bring
out one of the core challenge of microservices. This research
further proven that shared database pattern give better perfor-
mance then database per services while performing simple data
related operation such as simple CRUD operation.

In this research after examined the test case, it could
be deduced that foreign key constraints in a database per
services pattern does not carried out at database level. While
future could find a way to mitigate this challenge. When
designing data driven microservices, it remains a crucial factor
to consider.

REFERENCES

[1] S. Li, H. Zhang, Z. Jia, C. Zhong, C. Zhang, Z. Shan, J. Shen,
and M. A. Babar, “Understanding and addressing quality attributes of
microservices architecture: A systematic literature review,” Information
and software technology, vol. 131, p. 106449, 2021.

[2] L. Jiang and F. Naumann, “Holistic primary key and foreign key
detection,” Journal of Intelligent Information Systems, vol. 54, pp. 439–
461, 2020.

[3] W. Lu, “Replacing a monolithic web application with a new backend
framework,” 2018.

[4] C. K. Rudrabhatla, “Impacts of decomposition techniques on perfor-
mance and latency of microservices,” International Journal of Advanced
Computer Science and Applications, vol. 11, no. 8, 2020.

[5] X. Liu, S. Jiang, X. Zhao, and Y. Jin, “A shortest-response-time
assured microservices selection framework,” in 2017 IEEE International
Symposium on Parallel and Distributed Processing with Applications
and 2017 IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC). IEEE, 2017, pp. 1266–1268.

[6] B. Barua, M. Whaiduzzaman, M. Mesbahuddin Sarker,
M. Shamim Kaiser, and A. Barros, “Designing and implementing a
distributed database for microservices cloud-based online travel portal,”
in Sentiment Analysis and Deep Learning: Proceedings of ICSADL
2022. Springer, 2023, pp. 295–314.

www.ijacsa.thesai.org 984 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

[7] R. Laigner, Y. Zhou, M. A. V. Salles, Y. Liu, and M. Kalinowski, “Data
management in microservices: State of the practice, challenges, and
research directions,” arXiv preprint arXiv:2103.00170, 2021.

[8] X. Wu, N. Wang, and H. Liu, “Discovering foreign keys on web tables
with the crowd,” Computing and Informatics, vol. 38, no. 3, pp. 621–
646, 2019.

[9] M.-D. Pham, L. Passing, O. Erling, and P. Boncz, “Deriving an
emergent relational schema from rdf data,” in Proceedings of the 24th
International Conference on World Wide Web, 2015, pp. 864–874.

[10] L. M. D. S. dos Santos et al., “Data distribution and access in a
microservices architecture,” 2024.

[11] O. Al-Debagy and P. Martinek, “A comparative review of microservices
and monolithic architectures,” in 2018 IEEE 18th International Sympo-
sium on Computational Intelligence and Informatics (CINTI). IEEE,
2018, pp. 000 149–000 154.

[12] J. Motl and P. Kordı́k, “Foreign key constraint identification in relational
databases.” in ITAT, 2017, pp. 106–111.

[13] G. Blinowski, A. Ojdowska, and A. Przybyłek, “Monolithic vs. mi-
croservice architecture: A performance and scalability evaluation,” IEEE
access, vol. 10, pp. 20 357–20 374, 2022.

[14] V. Talaver and T. A. Vakaliuk, “Reliable distributed systems: review
of modern approaches,” Journal of edge computing, vol. 2, no. 1, pp.
84–101, 2023.

[15] Y. Romani, O. Tibermacine, and C. Tibermacine, “Towards migrating
legacy software systems to microservice-based architectures: a data-
centric process for microservice identification,” in 2022 IEEE 19th
International Conference on Software Architecture Companion (ICSA-
C). IEEE, 2022, pp. 15–19.

[16] E. Volynsky, M. Mehmed, and S. Krusche, “Architect: A framework
for the migration to microservices,” in 2022 International Conference
on Computing, Electronics & Communications Engineering (iCCECE).
IEEE, 2022, pp. 71–76.

[17] S. Lungu and M. Nyirenda, “Current trends in the management of
distributed transactions in micro-services architectures: A systematic
literature review,” Open Journal of Applied Sciences, vol. 14, no. 9, pp.
2519–2543, 2024.

[18] E. Daraghmi, C.-P. Zhang, and S.-M. Yuan, “Enhancing saga pattern
for distributed transactions within a microservices architecture,” Applied
Sciences, vol. 12, no. 12, p. 6242, 2022.

[19] R. Laigner, Y. Zhou, and M. A. V. Salles, “A distributed database
system for event-based microservices,” in Proceedings of the 15th
ACM International Conference on Distributed and Event-based Systems,
2021, pp. 25–30.

[20] T. de Oliveira Rosa, J. F. L. Daniel, E. M. Guerra, and A. Goldman, “A

method for architectural trade-off analysis based on patterns: Evaluating
microservices structural attributes,” in Proceedings of the European
Conference on Pattern Languages of Programs 2020, 2020, pp. 1–8.

[21] R. Laigner, M. Kalinowski, P. Diniz, L. Barros, C. Cassino, M. Lemos,
D. Arruda, S. Lifschitz, and Y. Zhou, “From a monolithic big data
system to a microservices event-driven architecture,” in 2020 46th Eu-
romicro conference on software engineering and advanced applications
(SEAA). IEEE, 2020, pp. 213–220.

[22] M. Manouvrier, C. Pautasso, and M. Rukoz, “Microservice disaster
crash recovery: a weak global referential integrity management,” in
International Conference on Computational Science. Springer, 2020,
pp. 482–495.

[23] A. Katsifodimos and M. Fragkoulis, “Operational stream processing:
Towards scalable and consistent event-driven applications.” in EDBT,
2019, pp. 682–685.

[24] R. Heinrich, A. Van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl,
S. Schulte, and J. Wettinger, “Performance engineering for microser-
vices: research challenges and directions,” in Proceedings of the 8th
ACM/SPEC on international conference on performance engineering
companion, 2017, pp. 223–226.

[25] S. R. Vangala, R. K. Mallidi, and V. P. Appili, “Micro-services transac-
tions resilience across bounded domains: An architecture perspective,”
International Journal of Computer Applications, vol. 975, p. 8887.

[26] M. André, “Automated database schema evolution in microservices,” in
Conference on Very Large Data Bases (VLDB 2023), 2023.

[27] A. Mparmpoutis and G. Kakarontzas, “Using database schemas of
legacy applications for microservices identification: A mapping study,”
in Proceedings of the 6th International Conference on Algorithms,
Computing and Systems, 2022, pp. 1–7.

[28] A. Singjai, U. Zdun, O. Zimmermann, M. Stocker, and C. Pautasso,
“Patterns on designing api endpoint operations,” 2021.

[29] I. K. Aksakalli, T. Çelik, A. B. Can, and B. Tekinerdoğan, “Deployment
and communication patterns in microservice architectures: A systematic
literature review,” Journal of Systems and Software, vol. 180, p. 111014,
2021.

[30] K. Munonye and P. Martinek, “Evaluation of data storage patterns in
microservices archicture,” in 2020 IEEE 15th International Conference
of System of Systems Engineering (SoSE). IEEE, 2020, pp. 373–380.

[31] M. El Kholy and A. El Fatatry, “Framework for interaction between
databases and microservice architecture,” IT Professional, vol. 21, no. 5,
pp. 57–63, 2019.

[32] N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse:
a microservices architecture for heterogeneous-database web applica-
tions,” in Proceedings of the tenth european conference on computer
systems, 2015, pp. 1–16.

www.ijacsa.thesai.org 985 | P a g e


