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Abstract—Early-warning dashboards in higher education typ-
ically stop at tagging students as “at-risk,” offering no concrete
guidance for remedial action; this limitation contributes to the
loss of thousands of learners each year. Approach. We propose
an integrated framework that (i) uses a class-balanced Condi-
tional GAN to augment sparse attrition data, and (ii) couples
the resulting XGBoost predictor with a four-mode intervention
engine—rule-based, few-shot, fine-tuned LLM, and a novel hybrid
strategy—to recommend personalised support. Major findings.
Training on GAN-augmented records raises prediction accuracy
to 92.79% (a 15.46-point gain over non-augmented baselines),
while the hybrid intervention generator attains 94% categorical
coverage and the highest specificity score (0.63) albeit at a
per-student latency of 61s. Impact. By uniting robust risk predic-
tion with high-quality, actionable interventions, the framework
closes the long-standing gap between detection and response,
furnishing institutions with a scalable path to materially reduce
dropout rates across diverse educational settings.
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I. INTRODUCTION

Student attrition represents a persistent and multifaceted
challenge within higher education systems globally. Recent
statistics indicate that only 60% of undergraduates at four-
year institutions complete their degrees within six years, with
completion rates dropping precipitously to 20% at commu-
nity colleges [1]. This phenomenon carries significant conse-
quences, including diminished lifetime earnings for affected
students [2] and substantial financial losses for institutions [3],
[4]. Traditional retention strategies, while moderately effective,
frequently adopt generalized approaches that fail to account for
the complex interplay of academic, financial, and psychosocial
factors influencing attrition decisions [5], [6].

The emergence of predictive analytics in educational con-
texts has substantially improved early identification of at-risk
students [7]. However, as [8] demonstrate, there remains a
critical disconnect between risk identification and effective
intervention delivery. This gap persists despite advances in
machine learning methodologies, creating a pressing need
for integrated systems that combine accurate prediction with
actionable support strategies. Recent developments in large
language models (LLMs) present new opportunities in this
domain, though their application to educational intervention
generation remains underexplored [9].

This study addresses two fundamental research questions
central to improving student retention outcomes. First, how can
synthetic data augmentation techniques, particularly cGANs,
enhance the accuracy of dropout prediction models when ap-
plied to class-imbalanced educational datasets? Second, what
methodological approach to intervention generation optimally
balances the competing demands of comprehensiveness, speci-
ficity, and computational efficiency in institutional settings?
The investigation of these questions yields three primary
contributions to the field of educational data mining.

The first contribution involves the development of a cGAN-
based data augmentation framework that not only addresses
class imbalance but preserves critical feature relationships
within student records. As demonstrated in Section IV, our
approach maintains low Jensen-Shannon divergence scores
(0.0201 for target distributions) while achieving balanced class
representation. The second contribution consists of a novel
hybrid intervention system that synergizes the structured logic
of rule-based methods with the contextual adaptability of
LLMs. This integration, as evaluated in Section V, produces
interventions with 94% categorical coverage while maintain-
ing specificity scores (0.63) significantly higher than single-
method approaches.

The practical implications of this research are substantial
for higher education institutions. Our results indicate that the
proposed framework can improve prediction accuracy by 15.46
percentage points compared to conventional methods, while
generating personalized interventions at scale. Importantly, the
modular architecture of the system permits phased imple-
mentation, enabling resource-constrained institutions to deploy
components according to their technical capacity and staffing
resources.

The remainder of this article is organized as follows.
Section II reviews relevant literature on dropout prediction and
intervention strategies. Section III details the methodological
framework, including data preparation, model architectures,
and evaluation metrics. Sections IV and V present and discuss
the experimental results, respectively. Finally, Section VI con-
cludes with limitations, future research directions, and practical
recommendations for institutional adoption.

II. RELATED WORK

Understanding student attrition in higher education requires
an integrative lens that captures the interplay of academic,
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financial, institutional, personal, and sociocultural forces. Aca-
demic performance consistently emerges as the strongest single
predictor of withdrawal: students who accrue failing grades
or leave coursework incomplete face markedly higher attrition
risk, a pattern that intensifies in demanding STEM programmes
where content volume and complexity can overwhelm even
well-prepared learners [10], [11], [12].

Financial pressures form the second major barrier to per-
sistence. Rising tuition costs and limited scholarship avail-
ability amplify dropout likelihood, particularly in developing
regions where students often balance study with employ-
ment or family obligations [11], [13], [14]. Learners from
lower socioeconomic backgrounds confront additional dis-
advantages—restricted access to textbooks, technology, and
tutoring—that compound their academic struggles [15].

Institutional context likewise shapes engagement and sense
of belonging. Weak student–faculty relationships, inadequate
academic-support structures, and outdated infrastructure corre-
late strongly with withdrawal, especially in large universities
where students can feel anonymous and detached [12], [16],
[17]. Personal and socio-emotional challenges add yet another
layer: low self-esteem, limited emotional support, and the
strain of juggling academic, work, and family roles all heighten
attrition risk [18], [16].

In response, researchers have advanced an array of pre-
dictive models and intervention strategies. Ensemble learn-
ing and survival-analysis techniques capture non-linear re-
lationships among dropout factors and have improved risk
detection [19], [20]. Nevertheless, performance remains ham-
pered by severe class imbalance—dropout cases are typically
under-represented—reducing model reliability when deployed.

Interventions have therefore become the critical next step.
Robust academic-support schemes—tutoring, advising, men-
toring—directly address learning barriers, while interactive
pedagogies and technology integration further bolster engage-
ment [17], [19]. Financial remedies such as scholarships,
flexible payment plans, and emergency loans mitigate eco-
nomic strain [21]. Personalised services, including counselling
and career guidance, target the emotional and motivational
dimensions of persistence [22].
Technology-mediated systems increasingly underpin these ef-
forts. Predictive analytics allow institutions to flag at-risk
students early and to deploy targeted interventions, yet most
current platforms end at identification and stop short of rec-
ommending specific, actionable support [23], [24], [25], [26],
[27].

Important gaps remain. The literature tends to examine
prediction and intervention in isolation, leaving little guidance
on how to integrate the two. Persistent class imbalance under-
mines external validity, and few studies systematically compare
recommendation engines, creating uncertainty about optimal
practice. Demographic disparities add further complexity: male
students and first-generation entrants often withdraw at higher
rates, underscoring the need for culturally sensitive interven-
tions [10], [13], [28].

Recent discourse therefore advocates a holistic, systemic
approach that unites academic, financial, and socio-emotional
supports within a comprehensive retention framework [29].

This shift in perspective recognises dropout as a shared in-
stitutional challenge rather than merely an individual failing,
and it calls for coordinated policy-level responses alongside
personalised student care.

III. METHODOLOGY

The proposed model, shown in Fig. 1, in consists of
four interconnected layers: a data processing layer, a machine
learning prediction layer, a knowledge integration layer, and
an intervention generation layer. This structure allows us to
address both the technical challenges of dropout prediction
and the practical needs of educational interventions.
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Fig. 1. Flowchart represents the comprehensive multi-strategy model for
student dropout prediction and intervention.

A. Data Preparation

1) Dataset description and preprocessing: We utilized a
dataset [30] consisting of 4,424 student records from higher
education institutions, containing 37 features spanning aca-
demic performance, demographic information, financial status,
and socioeconomic context. Key variables included academic
metrics (course grades, units attempted/completed), financial
indicators (scholarship status, tuition payment history), de-
mographic factors (age, nationality, displacement status), and
economic context indicators (unemployment rate, inflation,
GDP).

To address class imbalance (49.93% graduates, 32.12%
dropouts, 17.95% enrolled), we employed Conditional Gener-
ative Adversarial Networks (cGANs) to create 6,627 synthetic
student profiles. The cGAN architecture consisted of a genera-
tor with three fully-connected layers and a discriminator with
similar structure, trained for 500 epochs using the Wasser-
stein loss with gradient penalty to ensure stability. We vali-
dated synthetic data quality through statistical testing (Jensen-
Shannon divergence scores averaging 0.11 across features) and
visualization of feature distributions, confirming that synthetic
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records maintained the original dataset’s statistical properties
while achieving a balanced class distribution (33.33% for each
target category).

Data preprocessing included standardization of numerical
features, handling of missing values through mean imputation
for continuous variables and mode imputation for categorical
variables, and splitting into training (70%) and testing (30%)
sets with stratification by target class.

2) Synthetic data generation with cGAN: To alleviate
the severe class imbalance in the original attrition dataset,
we trained a class-conditional generative adversarial network
(cGAN). The model receives a 100-dimensional latent vector
z ∼ N (0, I) concatenated with the class label and produces
fully synthetic student profiles that preserve the multivariate
dependence structure of the real data. Both the generator and
discriminator consist of three fully connected layers with pro-
gressively increasing (resp. decreasing) widths, LeakyReLU
activations, and batch normalisation. Training follows the
Wasserstein loss with gradient penalty, optimised by Adam.
The full configuration is summarised in Table I.

TABLE I. CGAN TRAINING CONFIGURATION

Hyper-parameter Value / setting

Generator & Discriminator topology 3 fully connected layers each
Latent-vector dimension dz 100
Hidden units (G/D) 128→256→512
Activation LeakyReLU + BatchNorm
Loss function Wasserstein + Gradient Penalty
Optimiser Adam (η = 1×10−4, β1 = 0.5,

β2 = 0.9)
Batch size 256
Training epochs 500

B. Machine Learning Components

Our predictive model comprises three distinct architectural
components designed to effectively address the academic suc-
cess and dropout prediction task. Here’s a detailed analysis of
the models architecture used in our study:

1) Classical machine learning models with rule-based in-
terventions:

a) Random forest: The model is an ensemble learning
technique primarily used for classification and regression tasks.
It operates by constructing multiple decision trees during
the training phase and aggregates their predictions, either by
taking the mode of the classes for classification or the average
for regression. This approach enhances model accuracy and
reduces the risk of overfitting, making it robust against noise
in the dataset [31].

b) XGBoost: Or Extreme Gradient Boosting, is a pow-
erful machine learning algorithm that is particularly effective
for structured or tabular data [32]. It is an implementation
of gradient boosted decision trees designed for speed and
performance.

c) LightGBM: employs histogram-based decision trees,
which are more efficient than traditional decision trees. This
approach involves precomputing the histogram of feature val-
ues to quickly determine the best split points. The histogram-
based method reduces the computational complexity and
speeds up the training process [33], [34].

Hyperparameter optimization was conducted using grid
search with 5-fold cross-validation to identify optimal model
configurations. For Random Forest, we explored tree depths
from 5 to 20, minimum samples per leaf from 1 to 10, and
estimator counts from 50 to 500. Similar parameter spaces
were explored for the other algorithms.

The rule-based intervention system was implemented as a
set of conditional statements mapping specific student char-
acteristics to appropriate interventions. We constructed 16
intervention rules across three categories:

• Academic interventions (5 rules): It is triggered by
grade thresholds, course completion rates, and evalu-
ation participation

• Financial interventions (5 rules): It is triggered by
payment status, scholarship eligibility, and economic
indicators

• Social interventions (6 rules): It is triggered by demo-
graphic factors, displacement status, and attendance
patterns

Each rule consisted of a condition function evaluating
specific student attributes and a corresponding intervention
recommendation. This approach leveraged domain expertise
while maintaining explainability and consistency.

2) Large language model: Qwen2.5 [35] is the Qwen
family of large language models, offering base and instruction-
tuned variants with parameter sizes 0.5B . It builds upon
Qwen2 with enhanced knowledge (especially in coding and
math), improved instruction-following, 128K-token context
support, 8K-token generation, multilingual capabilities (29+
languages), and better structured output (e.g., JSON), making
it a versatile and powerful tool for diverse applications.

3) QLoRA fine-tuning LLMs: We implemented fine-tuning
of Large model Qwen2.5-0.5B. To accommodate computa-
tional constraints, we employed QLoRA (Quantized Low-
Rank Adaptation), which enabled parameter-efficient fine-
tuning while reducing memory requirements by quantizing the
base model to 8-bit representation.

The training dataset for fine-tuning consisted of 3,000
examples pairing student profiles with appropriate interven-
tion recommendations, generated using our rule-based system
and augmented with variations to promote generalization. We
structured the training data as instruction-tuning pairs with
system context, student profile input, and expected output
format.

Fine-tuning hyperparameters included:

• Learning rate: 2e-4 with cosine schedule

• Batch size: 1 with gradient accumulation steps of 8

• Training epochs: 3

• LoRA rank: 16, alpha: 32

• Target modules: query, key, value, and output projec-
tion layers
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4) Few-shot learning: Our few-shot learning approach
utilized pre-trained language models without additional fine-
tuning. We constructed carefully designed prompts containing:

• A system instruction specifying the task and desired
output format

• 3-5 exemplar cases demonstrating expected predic-
tions and interventions for diverse student profiles

• The target student profile for analysis

For each exemplar, we selected representative cases from
both dropout and non-dropout categories, with interventions
sourced from our rule-based system. This approach allowed
the model to implicitly learn the mapping between student
characteristics and appropriate interventions through pattern
recognition from examples. The prompt engineering process
involved systematic refinement through iterative testing, with
particular attention to instruction clarity, example diversity,
and output structure enforcement. We employed temperature
settings of 0.7 and top-p of 0.9 to balance creative generation
with consistency.

C. Evaluation Methodology

We developed a comprehensive evaluation framework to
assess and compare the three approaches across multiple
dimensions:

1) Prediction accuracy assessment: To assess the effec-
tiveness of our dropout-prediction models, we adopted the
canonical battery of classification metrics—accuracy, preci-
sion, recall, and the F1-score. Let TP, TN, FP, and FN denote
the counts of true positives, true negatives, false positives,
and false negatives, respectively; the metrics are computed as
follows:

• Accuracy quantifies a model’s overall correctness by
dividing the total number of properly classified in-
stances—both positive and negative—by the entire set
of instances under evaluation, i.e.,

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

• Precision: it is the fraction of true positives among
all instances the model labels as positive, thereby
indicating how well the classifier avoids false-alarm
errors (false positives).

Precision =
TP

TP + FP
(2)

• Recall: captures a model’s capacity to retrieve positive
instances. It is the share of true positives among all
cases that are genuinely positive, indicating how thor-
oughly the classifier discovers the events of interest.

Recall =
TP

TP + FN
(3)

• F1-score: synthesises a model’s exactness (precision)
and completeness (recall) into a single figure by taking
their harmonic mean, thereby balancing the tendency
to over- or under-identify positive cases. It is com-
puted as.

F1-score = 2× Precision × Recall
Precision + Recall

(4)

Additionally, we assessed prediction confidence calibra-
tion by comparing predicted probability distributions with
actual outcomes. For this purpose, we calculated the Expected
Calibration Error (ECE) by partitioning predictions into M
equally-spaced bins and computing:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (5)

where |Bm| is the number of predictions in bin m, n is the
total number of predictions, acc(Bm) is the accuracy within
bin m, and conf(Bm) is the average confidence within bin m.
A lower ECE indicates better calibration between predicted
probabilities and actual outcomes.

For multi-class scenarios involving the three possible stu-
dent outcomes (Dropout, Graduate, Enrolled), we employed
macro-averaging to compute overall performance metrics:

Macro-Precision =
1

C

C∑
c=1

Precisionc (6)

Macro-Recall =
1

C

C∑
c=1

Recallc (7)

Macro-F1 =
1

C

C∑
c=1

F1-scorec (8)

where C represents the number of classes (in our case,
C = 3), and the subscript c indicates metrics calculated for
each individual class.

2) Intervention quality evaluation: To evaluate intervention
quality, we employed both quantitative and qualitative metrics:

• Intervention count: Number of specific recommenda-
tions per student, calculated as:

ICs =
∑

c∈{a,f,so}

|Is,c| (9)

where ICs is the intervention count for student s,
Is,c represents the set of interventions in category c
(academic, financial, social) for student s, and |Is,c|
denotes the cardinality of this set.

• Intervention specificity: Average word count per inter-
vention as a proxy for detail level:

ISs =
1

ICs

∑
i∈Is

Wi (10)

where ISs is the intervention specificity for student s,
Is is the set of all interventions for student s, and Wi

is the word count of intervention i.
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• Category coverage: Proportion of cases where in-
terventions spanned all three categories (academic,
financial, social):

CC =
1

|S|
∑
s∈S

I(|Is,a| > 0 ∧ |Is,f | > 0 ∧ |Is,so| > 0)

(11)
where S is the set of all students, I is the indicator
function that equals 1 when the condition is true and
0 otherwise.

• Intervention diversity: Lexical diversity and semantic
range of recommendations, measured using type-token
ratio (TTR):

TTR =
|V |
|T |

(12)

where |V | is the number of unique words (vocabulary)
and |T | is the total number of words (tokens) across
all interventions. Additionally, we computed semantic
similarity between interventions using cosine similar-
ity of sentence embeddings:

Sim(i1, i2) =
e⃗i1 · e⃗i2

||e⃗i1 || · ||e⃗i2 ||
(13)

where e⃗i1 and e⃗i2 are the embedding vectors of
interventions i1 and i2 respectively.

IV. RESULTS

Our comprehensive evaluation of student dropout inter-
vention methods revealed significant performance differences
across the four approaches tested: Rule-Based, Few-Shot, Fine-
Tuned, and Hybrid methods. Each approach demonstrated
unique strengths and limitations in addressing the complex
challenge of providing targeted interventions for at-risk stu-
dents. The evaluation metrics focused on four key dimensions:
intervention count (quantity of recommendations), words per
intervention (detail level), category coverage (comprehensive-
ness across intervention types), and specificity score (person-
alization level). These metrics collectively provide insight into
both the quantity and quality of intervention recommendations
generated by each method.

For reproducibility, all experiments were conducted with
fixed random seeds and k-fold cross-validation to ensure robust
performance estimates. Computational resources included an
NVIDIA Tesla T4 GPU with 15.83 GB VRAM for language
model fine-tuning and inference, while traditional machine
learning models were trained on CPU.

A. Dataset Analysis and cGAN Implementation

Our cGAN implementation successfully addressed the class
imbalance in the original student dataset. As shown in Fig. 2,
the original dataset exhibited substantial class imbalance with
49.9% graduates, 32.1% dropouts, and only 17.9% enrolled
students. In contrast, the cGAN-generated dataset achieved
perfect balance with exactly 33.3% representation for each
class category, creating 2,209 synthetic samples per class for
a total of 6,627 records.

The synthetic data preserved critical feature relationships
and temporal dependencies from the original dataset, particu-
larly maintaining the semester-based performance patterns that
proved most predictive in subsequent modeling. This balanced
dataset enabled more equitable model training while address-
ing both methodological challenges and ethical considerations
related to student data privacy.

Fig. 2. Distribution of academic outcomes between the original dataset and
the generated dataset: Graduate and Dropout counts.

The correlation heatmaps in Fig. 3, illustrate the fea-
ture relationship preservation between the original and GAN-
generated datasets. Visual inspection reveals remarkably sim-
ilar correlation patterns, particularly among academic per-
formance indicators. The curricular units variables maintain
their strong intercorrelations in the synthetic data, suggesting
successful preservation of the underlying educational data
structure.

Our quantitative assessment of GAN data quality shows
promising results, with a low Jensen-Shannon (JS) divergence
of 0.0201 between real and generated target distributions as
in Table II. This indicates that our synthetic data closely
approximates the true distribution of student outcomes. The
average feature JS divergence of 0.0002 further confirms
excellent preservation of individual feature distributions,
while the correlation matrix difference of 0.4943 suggests
reasonable maintenance of feature relationships.

TABLE II. OVERALL GAN-QUALITY EVALUATION METRICS. A LOWER
JENSEN–SHANNON (JS) DIVERGENCE DENOTES A CLOSER MATCH

BETWEEN REAL AND GENERATED DISTRIBUTIONS

Metric Value

Target distribution JS divergence 0.0201
Average feature JS divergence 0.0002
Correlation-matrix difference 0.4943

Class-specific statistical analysis as in Table III reveals
varying levels of data generation quality across student out-
comes. The Graduate class shows perfect statistical match-
ing (mean difference: 0.0000, standard deviation difference:
0.0000), while the Dropout and Enrolled classes demonstrate
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Fig. 3. Side-by-side pearson correlation matrices for the real dataset (left) and the cGAN-generated dataset (right).

moderate statistical differences. These variations likely re-
flect the complexity of modeling student dropout patterns
compared to more predictable graduation trajectories. Despite
these differences, the synthetic data successfully addresses
class imbalance issues while maintaining essential statistical
properties, contributing significantly to the enhanced model
performance observed in our results.

TABLE III. CLASS-SPECIFIC STATISTICAL DIFFERENCES BETWEEN REAL
AND SYNTHETIC DATA. SMALLER DIFFERENCES INDICATE A CLOSER

MATCH IN STATISTICAL PROPERTIES

Class Mean Difference Std. Deviation Difference

Dropout 0.8705 1.9247
Graduate 0.0000 0.0000
Enrolled 0.6862 1.1156

B. Best Model Performance

Our analysis of machine learning model performance re-
veals substantial improvements achieved through cGAN-based
data enhancement strategies. As illustrated in Fig. 4, all three
classification algorithms demonstrated significant performance
gains when trained on either cGAN-generated data alone or the
combined dataset approach. The XGBoost classifier emerged
as the superior prediction model, particularly when imple-
mented with the combined dataset approach. This configuration
achieved an outstanding accuracy of 92.79%, representing
a remarkable 15.46 percentage point improvement over the
original data model (77.33%). Similar gains were observed in
precision metrics, with the combined XGBoost model reaching
92.84% precision compared to 76.53% for the original data
model. This significant enhancement in performance metrics
substantiates the value of addressing class imbalance through
synthetic data generation techniques.

While all models benefited from cGAN enhancement as
showed in Table IV, the relative improvements varied by
algorithm. Random Forest showed a 10.52 percentage point
increase in accuracy from original (77.48%) to combined
(88.00%), while LightGBM demonstrated a 12.51 percentage
point improvement (76.66% to 89.17%). These consistent im-

provements across different algorithms reinforce the robustness
of our data enhancement approach.

Fig. 4. F1 Score comparison across models demonstrating performance
improvements.

The confusion matrices presented in Fig. 5 provide deeper
insight into the classification performance across different stu-
dent outcomes. The combined approach implemented with the
XGBoost classifier demonstrated exceptional performance in
correctly identifying all three student categories (Dropout, En-
rolled, Graduate). Most notably, the combined model achieved
remarkable improvement in dropout prediction accuracy, cor-
rectly identifying 985 dropout cases compared to just 396
in the original model. This enhanced ability to identify at-
risk students is particularly valuable for intervention plan-
ning, as it enables institutions to target support resources
more effectively. Similarly, the model’s improved accuracy in
classifying enrolled students (823 correct classifications) and
graduates (1269 correct classifications) provides a more com-
prehensive understanding of student trajectories. The confusion
matrices also reveal a reduction in misclassification errors.
The combined model showed fewer instances of erroneously
classifying dropout students as enrolled or graduated, which
is crucial for minimizing false negatives in dropout prediction.
This precision is essential for educational institutions seeking
to identify all students who might benefit from intervention
support.
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TABLE IV. PERFORMANCE COMPARISON BETWEEN ORIGINAL AND CGAN-ENHANCED MODELS

Model Accuracy Precision Recall Training Time (s)

O CG C O CG C O CG C O CG C

Random Forest 0.7748 0.8788 0.8800 0.7592 0.8828 0.8827 0.7748 0.8788 0.8800 0.5357 0.6903 1.2941
XGBoost 0.7733 0.8819 0.9279 0.7653 0.8853 0.9284 0.7733 0.8819 0.9279 0.2806 0.3223 0.4661
LightGBM 0.7666 0.8622 0.8917 0.7593 0.8672 0.8938 0.7666 0.8622 0.8917 0.3306 0.3697 0.5081

Legend: O = Original, CG = cGAN, C = Combined

Fig. 5. Confusion matrix for the best model showing balanced classification
performance.

C. Comparative Analysis of Intervention Methods

1) Intervention quantity and detail: The quantity and de-
tail of interventions as shown in Fig. 6, varied substantially
across the four methods evaluated. The Rule-Based approach
generated the fewest interventions per student (2.55) with
the shortest average length (8.70 words per intervention).
This brevity limited the detail and actionability of the rec-
ommendations, resulting in generic guidance that may not
adequately address student-specific challenges. In contrast,
the Few-Shot method produced a substantially higher number
of interventions (13.18) with moderate detail (38.89 words
per intervention). The Fine-Tuned approach prioritized depth
over breadth, generating a moderate number of interventions
(8.64) but with the highest level of detail (61.61 words per
intervention). This reflected the Fine-Tuned model’s ability to
elaborate on specific interventions with contextual information
and implementation guidance. The Hybrid method achieved
the highest intervention count (15.09) while maintaining a
strong level of detail (41.49 words per intervention). This bal-
anced approach suggests that the Hybrid method successfully
combines the generative capacity of language models with
the structured framework of rule-based systems to produce
numerous detailed recommendations.

2) Comprehensiveness and Specificity: The category cover-
age metric as shown in Fig. 6, revealed important differences in
how comprehensively each method addressed the various inter-
vention domains (academic, financial, and social). The Hybrid
method demonstrated exceptional coverage (0.94), addressing
nearly all relevant intervention categories for each student. The
Few-Shot approach achieved moderate coverage (0.79), while
the Rule-Based (0.64) and Fine-Tuned (0.52) methods showed
more limited scope.

The Fine-Tuned method’s lower category coverage was par-
ticularly notable, suggesting that while it excelled in generating
detailed interventions, it sometimes focused too narrowly on
certain intervention types while neglecting others that might

be relevant to a student’s situation. Regarding specificity, the
Hybrid approach again outperformed other methods with a
score of 0.63, indicating a high degree of personalization in its
recommendations. The Few-Shot (0.49) and Fine-Tuned (0.48)
methods demonstrated moderate specificity, while the Rule-
Based approach (0.41) generated more generic interventions
with limited tailoring to individual student circumstances.

3) Computational efficiency: The computational efficiency
analysis, as shown in Fig. 6, illustrates a pronounced dispar-
ity in runtime efficiency across the evaluated methods. The
rule-based engine produced recommendations almost instanta-
neously (≈ 0s per student), a speed that makes it well suited
to large-scale or real-time deployments. In sharp contrast, the
hybrid model required an average of 61.34 s per student,
imposing a sizeable computational overhead that could hamper
implementation in settings with limited hardware resources or
stringent latency demands. This divergence underscores a fun-
damental trade-off: the hybrid approach delivers more nuanced
and context-rich guidance, but its resource intensity may oblige
institutions to generate recommendations in scheduled batches
rather than on demand.

Fig. 6. Quantitative comparison of four student dropout intervention methods
across six key performance metrics.
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D. Qualitative Analysis of Intervention Content

Beyond quantitative metrics, we conducted qualitative anal-
yses of the intervention content generated by each method,
examining the language patterns and recommendation themes
through word cloud visualizations.

1) Rule-based method content: The Rule-Based method
produced highly structured but limited interventions. The word
cloud as shown in Fig. 7, analysis revealed a narrow vo-
cabulary focused primarily on basic academic support terms.
Interventions typically followed rigid templates with minimal
personalization, such as “attend tutoring sessions” or “meet
with academic advisor.” While consistently addressing core
academic concerns, these interventions lacked depth and con-
textual relevance to specific student situations.

Fig. 7. Word cloud visualization of common terms in rule based method
intervention recommendations.

2) Few-shot method content: The Few-Shot method gen-
erated interventions with more diverse language and recom-
mendation types. The word cloud as shown in Fig. 8, showed
a broader vocabulary spanning academic, financial, and social
support domains. Interventions demonstrated increased contex-
tual awareness but sometimes lacked the specificity necessary
for highly personalized support. The method excelled in gen-
erating a wide range of intervention types but with moderate
depth in each.

Fig. 8. Word cloud visualization of common terms in few shot method
intervention recommendations.

3) Fine-tuned method content: The Fine-Tuned approach
produced the most detailed and linguistically sophisticated
interventions. The word cloud as shown in Fig. 9, revealed rich,
specialized vocabulary related to academic support strategies

and student success. These interventions often included spe-
cific implementation steps and contextual information, such
as detailed tutoring recommendations with scheduling sugges-
tions and expected outcomes. However, the method sometimes
overemphasized certain intervention categories while neglect-
ing others, resulting in lower overall category coverage.

Fig. 9. Word cloud visualization of common terms in fine tuned method
intervention recommendations.

4) Hybrid method content: The Hybrid method demon-
strated the most balanced intervention content, combining
comprehensive coverage with strong specificity. The word
cloud as shown in Fig. 10, analysis revealed diverse vocab-
ulary across all intervention domains, with terms related to
academic support, financial assistance, and social integration
appearing prominently. Interventions were both numerous and
substantive, providing specific, actionable recommendations
tailored to individual student profiles while addressing the full
spectrum of potential support needs.

Fig. 10. Word cloud visualization of common terms in hybrid method
intervention recommendations.

E. Strengths and Weaknesses Analysis

Our comprehensive evaluation revealed distinct patterns
of strengths and limitations as shown in Table V for each
intervention method:

1) The Rule-based: method’s primary advantage lies in
its computational efficiency, making it suitable for resource-
constrained environments or large-scale deployment where
processing time is a critical concern. However, its limited
recommendation quality restricts its effectiveness in providing
personalized, actionable support.
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TABLE V. COMPARATIVE ANALYSIS OF STUDENT DROPOUT INTERVENTION METHODS: STRENGTHS AND WEAKNESSES

Method Strengths Weaknesses

Rule-Based - Exceptional computational efficiency (0.00s)
- Consistent structure across recommendations
- Predictable output format

- Limited intervention count (2.55)
- Minimal detail (8.70 words)
- Low specificity (0.41)
- Restricted vocabulary and variety

Few-Shot - Strong intervention count (13.18)
- Good category coverage (0.79)
- Moderate specificity (0.49)
- Diverse recommendation types

- Moderate detail (38.89 words)
- Less precise personalization
- Higher computational requirements than Rule-Based

Fine-Tuned - Exceptional detail (61.61 words)
- Rich, sophisticated language
- Strong contextual information
- Detailed implementation guidance

- Limited category coverage (0.52)
- Moderate intervention count (8.64)
- Tendency to focus on specific intervention types

Hybrid - Superior intervention count (15.09)
- Excellent category coverage (0.94)
- Highest specificity (0.63)
- Strong balance between quantity and quality

- Substantial processing time (61.34s)
- Higher implementation complexity
- Resource-intensive deployment

2) The Few-shot: This method represents a balanced ap-
proach that performs reasonably well across all metrics without
excelling in any specific dimension. It offers a viable com-
promise between recommendation quality and computational
requirements.

3) The Fine-tuned: This method’s strength in generating
detailed, context-rich interventions makes it particularly valu-
able when in-depth support in specific areas is prioritized
over comprehensive coverage across all potential intervention
categories.

4) The Hybrid method: This consistently outperformed
other approaches across most evaluation metrics, demonstrat-
ing its effectiveness in generating numerous, comprehensive,
and personalized interventions. However, its significant com-
putational requirements represent an important practical limi-
tation that must be considered for implementation.

V. DISCUSSION AND RESULTS

This study set out to examine whether an integrated
framework that couples class-balanced dropout prediction with
personalised intervention generation can meaningfully reduce
student attrition. The empirical evidence supports this premise.
By alleviating class imbalance with cGAN-generated sam-
ples, the predictive component—most notably the XGBoost
classifier—achieved 92.79% accuracy and 92.84% precision,
an improvement of 15.46 percentage points over its baseline
performance, while maintaining a modest training time of 0.47
seconds. These results confirm that synthetic data augmen-
tation can unlock substantial gains for established machine-
learning algorithms.

Equally important, the analysis of intervention strate-
gies showed that methodological integration offers advantages
unattainable by any single paradigm. The hybrid engine, which
blends rule-based scaffolding with the contextual agility of
large language models, produced an average of 15.09 tailored
recommendations per student, covered 94% of intervention
categories, and attained the highest specificity score (0.63).
Although this approach demands greater computational re-
sources—approximately 61 seconds to generate interventions

for each student—it consistently delivered the most compre-
hensive and contextually appropriate guidance. In contrast,
the purely rule-based system ran almost instantaneously but
lacked depth, while the fine-tuned model generated lengthy,
sophisticated advice without achieving comparable breadth
across academic, financial and social domains.

Several limitations temper these findings. The evaluation
focused on recommendation quality rather than direct mea-
surement of retention outcomes, and the computational require-
ments of the more sophisticated methods may restrict adoption
in resource-constrained settings. Furthermore, certain qualita-
tive dimensions of recommendation relevance are difficult to
quantify and therefore fall outside the scope of the current
metric suite. Future work should undertake longitudinal field
studies to gauge real-world impact, explore optimisation tech-
niques that reduce computational overhead, and incorporate
reinforcement-learning feedback loops to refine interventions
over time.

VI. CONCLUSION

This research developed an integrated framework com-
bining class-balanced dropout prediction with personalized
intervention generation to enhance student retention in higher
education. The approach addresses a critical gap in educational
technology by moving beyond risk identification to provide
actionable remediation strategies.

The cGAN-enhanced XGBoost classifier achieved 92.79%
accuracy, a 15.46 percentage point improvement over baseline
performance, demonstrating that synthetic data augmentation
can significantly improve predictive capabilities when address-
ing class imbalance in educational datasets.

The hybrid intervention engine, combining rule-based
methods with large language models, outperformed individual
approaches by generating 15.09 tailored recommendations per
student with 94% category coverage and the highest specificity
score (0.63). However, this comprehensive approach required
61 seconds per student compared to near-instantaneous rule-
based processing, presenting important trade-offs for practical
implementation.
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The evaluation focused on recommendation quality rather
than longitudinal retention outcomes, and computational re-
quirements may limit adoption in resource-constrained en-
vironments. Future research should prioritize field studies
measuring actual retention rates and explore optimization
techniques to reduce processing overhead.

This integrated framework demonstrates that combining
cGAN-enhanced prediction with hybrid intervention genera-
tion offers institutions a scalable pathway to reduce attrition
while maintaining personalized support. The system bridges
the critical gap between risk detection and remedial action,
representing a significant advancement in educational technol-
ogy for improving student persistence and academic success
outcomes.
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[8] A. Hawlitschek, V. Köppen, A. Dietrich, and S. Zug, “Drop-out in
programming courses – prediction and prevention,” J. Applied Re-
search in Higher Education, vol. 12, no. 1, pp. 124–136, 2019. doi:
10.1108/JARHE-02-2019-0035

[9] D. Xu et al., “Large language models for generative information
extraction: a survey,” arXiv preprint arXiv:2312.17617, 2023. doi:
10.48550/arXiv.2312.17617

[10] S. I. Doyaoen, “Analysis of education student retention rates: basis for
policy formation,” Int. J. Social Science and Education Research Studies,
vol. 4, no. 12, 2024. doi: 10.55677/ijssers/v04i12y2024-07
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