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Abstract—The emerging confluence between artificial intelli-
gence and ecology has generated a new research frontier, which
we refer to as habitat intelligence, aiming to unveil species
environment relationships through data-driven approaches. This
SLR aims to summarise the pass to the current year (2025) of the
research on the use of ML and DL models to represent species
preferences, habitat suitability and ecological niches. Based on
365 peer-reviewed papers extracted from SCOPUS, Web of
Science and OpenAlex, we identify four main areas of innovation
which encompass: automated species identification and ecological
monitoring; Al-enhanced species distribution models (SDMs);
advanced data collection and processing for ecological research;
and conservation-oriented decision support systems. Our review
shows that Al has the potential for a more precise and scalable
approach to biodiversity investigations in the age of integrated
remote sensing, acoustics, citizen science, and environmental data.
But we also point out pressing challenges such as data paucity,
model interpretability and computational limitations. We suggest
that future advancements in this branch of the food web could
come from interdisciplinary cooperation using explainable AI
(xAI) and the construction of bridging hybrid models between
prediction and ecological interpretability. In the end, this review
offers a conceptual and methodological ‘roadmap’ to other
researchers and conservation practitioners who wish to apply
Al to the service of global biodiversity aims.
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I. INTRODUCTION

Biodiversity erosion, habitat degradation and the increas-
ing consequences of global climate change represent ma-
jor challenges for conservation science and environmental
management. Knowledge of the preferences that species ex-
hibit for particular habitats (hereafter referred to as species—
environment relationships or ecological affinities) is critical
to both effective biodiversity conservation,5 ecological fore-
casting, and spatial planning. Conventionally these preferences
are investigated with ecological niche models (ENMs), species
distribution models (SDMs), and empirical field observations.
However, these methods are often limited by insufficient
data, linear assumptions, and difficulty in extrapolation across
ecosystems or taxonomic groups.

The past few years have seen accelerating interest in
artificial intelligence (AI), and in machine learning (ML)

3

and deep learning (DL) more specifically, in ecology. These
approaches provide unparalleled functionality for analyzing
complex, non-linear data with high dimensionality, which
enable more accurate and higher spatial resolution predictions
and models for species’ habitat preferences. Al has begun to be
applied in diverse fields such as remote sensing and automated
ecological monitoring to manipulate patterns from largescale
environmental datasets, amalgamate heterogeneous sources of
data (e.g., climate, land cover, biotic interactions), and discover
ecological patterns that were overlooked or impractical to
quantify before.

This nascent field what we will call here “Habitat In-
telligence” represents a synthesis of fields: ecological mod-
eling, computer vision, geospatial science, and conservation
biology. The increasing amount of works that employ ML
algorithms for species preference analysis suggests that a
structured research topic has come to the fore, for which
no synthesis is nevertheless available. However previous re-
views focus on Al applications to biodiversity in general and
do not directly analyze modelling species habitat preference
across various ecosystems and taxa. This review introduces
the concept of habitat intelligence, defined as the integrative
use of artificial intelligence techniques to uncover, interpret,
and model species—environment relationships for conservation
purposes. This emerging field synthesizes ecological modeling,
computer vision, geospatial science, and conservation policy.
The objective of this paper is to map this interdisciplinary
domain through a systematic literature review (SLR) of 365
peer-reviewed studies published between 1996 and 2025. The
following sections present the methodology of the review,
a synthesis of Al applications across four thematic axes, a
discussion of their implications, and key challenges and future
perspectives.

The following research questions are considered throughout
the review:

e  How is Al helping to identify species and monitor the
natural world?

e  What are the current best machine learning techniques
used for the species distribution models (SDM) and
habitat suitability models?

e What are the types of data, sources, and prepro-
cessing techniques employed to facilitate artificial
intelligence-driven ecology modeling?
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e How do Al-based models assist with conservation
planning, biodiversity management, and ecosystem
resilience?

Through asking these questions and following the IMRAD
approach , the current review seeks to chart the intellectual ter-
rain of this fast-developing area, scope current research themes
and lacunae, and suggest directions for future interdisciplinary
efforts at the Al and conservation science boundary.

II. RELATED WORK

Previous reviews have explored the use of machine learning
and deep learning in ecological contexts, including species
distribution modeling (SDMs), environmental monitoring, and
biodiversity prediction [1], [7], [8], [35]. However, these re-
views typically focus on specific techniques or limited ecolog-
ical domains. None provide a comprehensive synthesis of the
integration of Al with ecological preference modeling across
data types and ecosystems. Moreover, the conceptual emer-
gence of “habitat intelligence” as a unified research direction
has not been formalized. This article addresses this gap by
combining methodological mapping, taxonomic classification
of AI applications, and a focus on implementation value for
conservation and policy planning.

III. METHODOLOGY

This study follows the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) Figurel
framework to ensure methodological rigor, transparency, and
reproducibility. The systematic literature review (SLR) was
designed to capture and synthesize scholarly work that applies
artificial intelligence(Al) including machine learning(ML) and
deep learning(DL) to species habitat preference modeling,
species distribution, and conservation planning.

[ Identification of studies via SCOPUS, Web of Science and OpenAlex }

—

Query :("artificial intelligence" OR "machine learning" OR "deep learning")
AND ("species preference" OR "habitat suitability" OR "species distribution" OR
"niche modeling" OR "ecological modeling" OR "environmental suitability")
AND ("conservation" OR "biodiversity" OR "ecological planning" OR

"environmental monitoring")
1 N =455
0 I1C

Total des Articles Limitation on articles, Conference Papers,
N =455
Chapter Books
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conservation. The query string was as follows: (artificial in-
telligence” OR “machine learning” OR “deep learning”) AND
(species preference” OR “habitat suitability” OR “species
distribution” OR “niche modeling” OR “ecological modeling”
OR “environmental suitability”) AND (“conservation” OR
“biodiversity” OR “ecological planning” OR “environmental
monitoring”)

A. Screening Process

The screening was conducted in two main stages:
e Initial Screening (Inclusion Criteria - IC):

The first filter excluded irrelevant publication types such as
non-peer-reviewed documents, book chapters, theses, editori-
als, and workshop summaries. Only journal articles, conference
papers, and reviews published in peer-reviewed venues were
retained. After this stage, 394 articles were considered eligible.

e Secondary Screening (Exclusion Criteria - EC):
The eligible articles were further examined to remove:

e  Duplicate records across databases;

e Articles that did not directly address the use of Al
for modeling species preferences or conservation plan-
ning;

e  Studies focusing on unrelated applications of Al in

biology or agriculture without ecological modeling
relevance.

After applying these criteria Tablel, a final set of 365

articles was retained for full analysis.

TABLE I. INCLUSION AND EXCLUSION CRITERIA FOR ARTICLE
SELECTION

Criteria Type Description

Inclusion Criteria (IC)

. Peer-reviewed articles using AI/ML/DL for
species distribution modeling, habitat suit-
ability, or conservation planning;

° Published between 1996-2025;

. Indexed in SCOPUS, Web of Science, or

OpenAlex.
Exclusion Criteria (EC)
. Non-English articles, duplicates, and non-
ecological Al studies;
. Articles not focusing on

species—environment interactions or

habitat modeling.

EC
Duplicats articles and articlas out of
scope

Articles éligibles
N =394

Included
—

Articles inclus dans I’étude
N =365

Fig. 1. PRISMA Aproach.

The bibliographic data were collected from three major
academic databases: SCOPUS, Web of Science, and Ope-
nAlex. A unified query was applied across all three platforms,
targeting articles that addressed the intersection of Al and
ecological modeling with a focus on species preference and

IV. RESULTS

The intersection of artificial intelligence (AI) and machine
learning (ML) with ecological research is a transformative
technological advancement that is reshaping how scientists
study biodiversity and ecological systems. An aspect of ma-
chine learning is deep learning, which is widely used as a
fundamental part of ecological data science for interpreting
complex patterns not easy to capture using classical statistical
methods [1][2]. This technological merging is especially useful
in the current era of unprecedented challenges to ecology such
as biodiversity loss, effects of climate change, and diseases
outbreaks [3].
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Al In Ecology The modern wave of Al knowledge and
techniques are now being more commonly adopted within
ecological research due to the increasing computing power
to run standard learning [4]. Machine learning methods are
powerful in recognizing complex patterns generated by higher-
order interactions and are applied to identify patterns of
genetic regulatory networks and patterns of species coexistence
[5][6]. These skills have been especially useful in handling
the increasingly large data sets produced through automated
surveillance of populations and communities [7].

Al based applications in ecological domain cover wide
range of applications such as automatic species identifica-
tion, ecology modeling, behavioral analysis, DNA sequencing,
and population genetics [8]. Good the In particular, these
technologies support the study of the organism-environment
interaction using camera and acoustic, animal behavior using
deep learning and satellite data to ecological functions [3]. In
the context of the marine environment, Al is contributing to
relieve data processing bottlenecks in coral reef surveys by
applying machine learning that can efficiently process large
quantities of image data [9][10].

One especially exciting use is for overcoming data gaps
in conservation status assessments. The conservation status of
data deficient species may be inferred using machine learning
models that can predict this, and data deficient species for
which such models can be developed removed from lists
of potential species for which the conservation status is
unresolved [1][11]. Ecological niche models have also been
advanced and expanded upon through the use of machine
learning, informing our understanding of species distributions
and habitat suitability and having applications for conservation
biology and climate change [12].

With the further development of these technologies, how-
ever, they are becoming the most advanced tools available for
ecological research, allowing for new methods of monitoring,
understanding and conserving biodiversity in the context of
global environmental change [3][4].

A. Al Applications in Species Identification and Monitoring

The use of artificial intelligence has changed the strategy
of how ecologists discover or track species, deep learning
provides us with an efficient method to analyze the massive
data produced by recent ecodging monitoring systems [13-
15]. The camera trap is one of the most important monitor-
ing technologies that has been revolutionized by AI, which
is critical for tracking wildlife distribution and activities at
large spatial and temporal scales, showing great potential for
wildlife community studies [16][17]. The biggest impediment
with camera trap experiments, namely transferring millions of
images, is being overcome thanks to the implementation of
deep learning techniques, especially for what concearns the
Convolutional Neural Networks (CNN), that can automatically
identify wild animals and assign them to taxonomic entities
with outstanding accuracy [18].

Such Al-based systems show remarkable results in species
identification works. Deep neural networks have been demon-
strated to automatically recognize animals with more than
93.8% accuracy, andnovel demonstrations validate that net-
works which are forced to select purely on high-confidence
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predictions of high confidence are as accurate as human vol-
unteers in identifying taxa (96.6% accuracy) while being more
than two orders of magnitude faster, processing thousands of
images in less than a second without any training in this
taxonomic category [18][19] Figure2. This substantially sped
up processing (approximately 2000 images per minute on
typical computing hardware) amounts to a revolution in our
capacity for ecological research [20]. By incorporating Al with
citizen science collaboration, it has been demonstrated that
human effort can be minimized by as much as 43% without
losing overall accuracy interms of detecting webs [21].

Additional
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Fig. 2. Exemple of Deep Neural Networks (DNNs) can successfully identify,
count, and describe animals in camera-trap images.

Apart from camera traps, Al is also changing monitoring of
marine ecosystems with automatic species identification from
diverse platforms such as moored observatories, AUVs and
satellite imagery [22]. Deep learning models allow automated
classification of marine species using a variety of information
sources such as citizen science observations, benthic photo
quadrats, cabled video observatories and acoustic sensors [22-
24]. For instance, with acoustic data, 98.69% is achieved by
CNN-based systems to recognize animal calls since marine
mammal calls recorded from the sea from acoustic data instead
of using a traditional method [25].

Al and species monitoring have been used for whale de-
tection from satellite images [26], automated community ecol-
ogy of planktonic foraminifera [27], as well as conservation-
oriented platforms that identify animals, humans and poaching
activities [28]. In particular, Al approaches have been found to
be useful in predicting species interactions by trait-matching,
with better performance of ML models as compared to statis-
tical models in capturing complex ecological interactions [29].
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Al and participation is is emerging direction, with some
projects that use citizen science data to train Al for auto-
matic species identification [30]. They have been described as
democratizing advanced ecological monitoring through open
source, low-cost, and low-powered developments [30][31] that
facilitate communities’ participation in biodiversity research.

With ongoing development of these capabilities, it is hoped
that they will revolutionise ecological and conservation re-
search by making analysis of large data sets more efficient,
offering real time species identification, as a tool for education
and by providing data which will be valuable in conservation
planning and policy development [32]. Importance of these ad-
vances for science The sleeve is in the flexibility of being able
to use advances like these to scale up biodiversity monitoring
to levels never before seen and at a level of information that
may be crucial for conservation in the inevitable face of rapid
global environmental change [33][34].

B. Ai-Powered Species Distribution Models and Habitat Suit-
ability Analysis

The use of Species Distribution Models (SDMs) has
become popular in the field of ecology, biogeography and
conservation biology to understand relationships between envi-
ronmental predictors and species distribution. In the last twenty
years, this field has embraced more and more machine learning
features leading to a series of incremental model improve-
ments [35]. Such Al-augmented SDMs can be used to model
ecological niches and to predict suitable habitats more accu-
rately as compared to classical statistical techniques, although
there is a considerable variation among performance of the
methodologies with respect to different ecological parameters,
with predictions for presence—absence (53%) performing better
than predictions of abundance, population fitness, and genetic
diversity [36].

Al methodologies, including neural networks as well as
ensemble learning, have substantially enhanced the accuracy
of SDMs by revealing intricate associations among species and
their environments [36]. MaxEnt, a popular machine learning
approach to the modeling of species distributions when data are
only present, has in different settings impressed with its perfor-
mance with a 74.7% success rate at predicting the presence of
disease-carrying mosquitos in the study of [36] Figure3. These
advanced modelling approaches have employed tools like deep
neural networks, GIS and CNN to predict potential habitats
under existing and future environmental conditions [37].

The coupling of machine learning approaches and remote
sensing has proved especially useful in habitat mapping and
monitoring. These two tools offer major benefits to conser-
vation practitioners allowing informed decisions to be made
and targeted interventions to be taken to conserve threatened
species and habitats [38]. For instance, spatial researchers
have applied GIS and machine learning to understand the
effect of urbanization on bobcat habitats in San Jose,CA by
creating an original Habitat Suitability Model (HSM) that
combines several environmental aspects to pinpoint critical
conservation areas [39]. Similarly, in Leipzig, Germany, data
from high-resolution Earth Observation and machine learning
was employed to model hotspots of 44 bird species achieving
59-90% accuracy, and halting species richness of urban birds
[39].
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Fig. 3. Wolbachia-based population replacement strategy for mosquito-borne
disease control.

Despite these developments, SDMs should be regarded as
hypotheses that require testing with independent data, partic-
ularly in relation to conservation planning [36][40]. As a first
step in overcoming interpretability problems associated with
complex models, a new subfield known as explainable Al (xAl)
provides a hope for improved understanding and interpretation
of SDMs [35].

The conservation utility of AI-SDM/HSM is extensive.
These technologies can process ecological data to identify
hotspots of biodiversity point at risk of extinction and decide
conservation priorities [41]. By participating in efforts to
save endangered species, conserve biodiversity, and restore
degraded habitats, Al is increasingly proving to be an essential
tool in the conservation toolbox, enabling scientists and practi-
tioners to tackle these types of complex ecological challenges
in the face of a rapidly changing world.

To assist conservation practitioners in selecting appropriate
Al techniques, we compare different models based on their
accuracy and resource requirements. Table 2 Comparative
performance and resource demand of selected Al models in
ecological modeling.

This comparison illustrates the trade-offs between model
complexity, interpretability, and operational costs, which are
key to real-world adoption in conservation contexts.

C. Data Collection and Processing Methods for Ecological
Research

Contemporary ecological study is more and more domi-
nated by new ways of capturing and treating data fueled by A.L
These methods have revolutionized the way ecologists collect
and interpret population level data:

DCNNs favor automatic analyses of images in ecology with
an automatic detection of a high number of cells allowing, for
example, quantitative wood anatomical investigations and ac-
counting for the biological feature variance that needs manual
handling in the past [42].

Audio Analysis and Classification methods leverage ma-
chine learning for the processing and classification of sounds
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TABLE II. COMPARATIVE PERFORMANCE AND RESOURCE DEMAND OF SELECTED AI MODELS IN ECOLOGICAL MODELING

Model Accuracy Range | Training Time | Hardware Requirements Interpretability
MaxEnt 60-80% Low Standard PC High
Random Forest 70-90% Medium Standard PC Medium
CNN 80-98% High GPU Low
DNN + xAl 85-95% High GPU/TPU Medium to High

characteristic of wildlife, such as amphibian calls. These
solutions use digital speech algorithms and filtering analysis
to identify species according to their acoustic signatures [43]
Figure4.

I 7 Deep Neural Network
: (ONN)
i Python
: h PCA available
E Long Short-Term Memory
; (@LST™)
" Classification process

Fig. 4. The Structure of the experimental process for anuran bioacoustic
classification.

Camera Trap Image Processing utilizes deep learning
techniques to help sift through the millions of images and
automatically identify wildlife. Such systems are capable to
process around 2,000 images per minute on standard hardware,
and they attain accuracy equal or greater than 98% in species
classification [44][20].

Acoustic Monitoring Systems have employed convolutional
neural networks for the detection and classification of echolo-
cation calls produced by bats and other animals, with the latter
being important for the processing of recordings collected in
noisy field environments [44][45].

Integration of Remote Sensing and GIS: Remote Sens-
ing and GIS Integration utilizes artificial intelligence, remote
sensing imagery and GIS data to assess biodiversity at the
landscape level. This integration supports generation of habitat
maps, detection of ecological change, and identification of
conservation priorities [46].

Plant Functional Trait Mapping applies deep learning mod-
els to field data or even photographs to map plant traits across
landscapes. Recent development encompassmodels integrating
field data with spectral information, and even use citizen
science to map plant functional diversity [47-49].

(Field-deployed) Autonomous Environmental Sensors with
embedded Al processing can process video imagery or acoustic
streams on-site to identify and classify organisms to species
level without external intrusion [50].

The use of deep learning in Earth Observation Data Pro-
cessing permits higher resolution habitat classification, which
is a prerequisite for the generation of fine-grained distributions
of species across large spatial and temporal extents. Recent
studies have been able to map global canopy height at 10m
resolution using LiDAR data from satellite [SO][51] Figure5.
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Fig. 5. Spatial distribution of the BatDetect CNNs training and testing
datasets.

Multi-spectral Imaging Flow Cytometry combined with
deep learning for rapid pollen identification and enumeration
with high accuracy (96% species average accuracy), and mor-
phology characterization (size, symmetry, and structure) [52].

Together these advancements have dramatically changed
how ecological data are gathered and processed and, in the
process, have allowed researchers to analyse extremely large
datasets at scales unattainable through other measures, deriving
significant patterns that would be unrecoverable by traditional
means [7] [53]. The following table2 prensent differnt use
cases of data collection and processing methods powered by
artificial intelligence.

D. Conservation and Biodiversity Management Applications

Artificial Intelligence (AI) has become a very powerful
force in the discipline of Conservation Biology and biodiver-
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TABLE III. SUMMARY OF STUDIES APPLYING Al IN BIODIVERSITY MONITORING AND ECOLOGICAL PREDICTION

Papers Data Collection Method AI Technique Used | Ecological Appli- | Species or Habitat Fo- | Data Processing Ap- | Model Performance
cation cus proach Evaluation
[42] Images from transversal | DCNN, Mask- | Quantitative wood | Alnus glutinosa, Fagus | Mask-RCNN for image | Compared with U-Net
wood anatomical sections, | RCNN anatomical analyses sylvatica, Quercus pe- segmentation, compared | and ROXAS; evaluated
manual cell area outputs traea, and four conifer | with U-Net and ROXAS | cell detection and pixel
species accuracy
[43] Data collected from 32 frog | DNN and LSTM Species 35 amphibian species in | LPC, MFCC for filter- | Accuracy, training time,
and 3 toad species using identification Taiwan, including frogs | ing; PCA for dimen- and comparison of DNN
bioacoustic recordings and biodiversity | and toads sional reduction and LSTM with PCA
monitoring through
amphibian  sound
classification
[20] Camera traps used to collect | CNN, ResNet-18 Classifying wildlife | Wildlife in US, ungu- | CNN (ResNet-18), R | 98% accuracy in U.S.,,
wildlife images from five species from cam- | lates in Canada, Tanza- | package MLWIC 82% in Canada, 94% de-
US states era trap images nia’s faunal community tection in Tanzania
[45] Citizen science, ultrasonic | CNN Biodiversity Echolocating bats in Ro- | CNN (CNN FULL, CNN | Higher precision and re-
audio from road transects, monitoring through | mania and Bulgaria FAST) for detecting ul- | call in detecting search-
iBats programme automatic detection trasonic bat calls phase echolocation calls
of bat echolocation
calls
[33] Continent-wide  database, | Ensemble of ML | Crop yield | Ten major crop species | Ensemble ML using R? prediction accuracy
machine-phenotyped models prediction across a continent weather, soil, and | exceeding 0.8
populations, weather, soil, understanding satellite data
satellite data agronomic traits
[49] Photos from citizen science CNN ensembles Automated Plants; across growth CNN, CNN ensembles, Accuracy enhanced us-
(iNaturalist) and trait obser- assessment forms, taxa, and global | trait plasticity, climate | ing CNN ensembles and
vations (TRY database) plant functional | biomes factors prior knowledge on trait
diversity  through plasticity
trait prediction

sity management, where many new innovative solutions are
applied to complex environmental problems. Artificial Intelli-
gence (Al) algorithms are revolutionizing wildlife surveillance
by scanning through camera trap footage, while droids send
back pictures of poachers from the air, analyzing the imagery
and GPS data to recognize species and provide estimates of
their abundance risking extinction, depending on humans ” de-
cisions and Al algorithms scanning camera traps [54] Figure6.
These technologies allow conservation biologists analyze huge
amounts of ecological data, which would be infeasible to pro-
cess manually, in an automated way, extensively improving the
assessment of habitat health and the monitoring of populations
[55].
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Fig. 6. Flowchart explaining methodolgy of anti-poaching system (Kuruppu,
2023).

Al combined with remote sensing instruments is seen
to be particularly useful in habitat evaluation and resource
preservation. Machine learning models with satellite imagery

to identify forest cover changes, deforestation patterns and
areas in need of environmental restoration can be used for
this purpose [55]. This combination provides dense spatial
and temporal information for otherwise poorly studied areas,
with the analyses showing that even common methods like
RF and GLM can predict relatively well different metrics of
biodiversity [56][57] Figure7.
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Fig. 7. Potential plant species richness estimated from S-SDMs in South
Korea (Left) and estimated by th deep learning model in the Kor an Pe
insula (Right).

Al’s capability to handle multiple types of data, including
acoustic recordings, eDNA, and imagery for species identifi-
cation, to estimate biodiversity levels, and to identify new or
threatened species has revolutionized biodiversity monitoring
([54]). Machine learning-type algorithms can monitor changes
in population dynamics and evaluate the response of biodi-
versity to changes in the environment, which is important to
design conservation programs and to determine how loss of
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biodiversity will impact ecosystem function [58].

Arguably most importantly, predictive modeling enabled
by Al can inform effective proactive conservation efforts
by predicting the impacts of interventions on environmental
changes and the dynamics of animal populations [55]. By
combining historical and contemporary measures of decline or
rate of increase of numbers of certain species and incorporating
environmental change into the models, they can be used to
predict potential future threatened species, thereby providing
early warning of invasive species imbalance in ecosystems [
59 ]. The ability to construct predictive models at these vast
scales has the potential to transform ecology and environmental
sciences in the way that statistics did over the course of the
twentieth century.

Al is also improving conservation through integration of
data and support of decision making. Al-supported analytics
help to integrate various sources of data and present insights
to support evidence-based decisions for conservation [55].
Methodological learning from comparative exercises with Al
models such as ours is one way to support the development of
stronger and generalisable solutions to biodiversity and habitat
management [60]. Apart from direct conservation applications,
machine learning also add value to conservation learning and
education through the analysis of complex ecosystem data,
such as climate data, soil property, and human action [59].

With overlaid environmental issues of climate change,
loss of biodiversity, and zoonotic disease spread and how
they intertwine the solutions, Al may provide useful tools to
address such complexity [61]. Al technologies are increasingly
indispensable tools within the context of modern conservation,
as they allow us to automate monitoring of wildlife, improve
habitat assessment, conduct advanced analyses of biodiversity,
and build predictive models of species’ distributions.

In a successful real-world application, a deep learning
system deployed in Tanzania’s Serengeti region processed over
one million camera trap images to identify mammal species
with 94% accuracy, significantly reducing manual labor for
field researchers [20]. Similarly, Al-enhanced drones have
been used in South Asia to detect and deter illegal poaching
activities by combining object detection with real-time GPS
alerts [28]. These examples illustrate the practical benefits and
impact of Al-powered conservation tools.

E. Limitation and Future Directions

Although AT has greatly reshaped ecological and in particu-
lar biodiversity research, there are still major incomplete of Al
approach and some challenging. The primary challenge is the
data dependency of machine learning methods that need long
high-quality well-balanced datasets that are rarely available in
ecosystem contexts. This is especially problematic for the rarer
species or the less studied ecosystems, as the data scarcity
might result in model bias or low generalization. In addition,
most ecological data sets are subject to biases introduced
by selective sampling, taxonomic preferences, and geographic
imbalances that may be amplified by Al models and result in
erroneous conclusions.

There is also one important challenge to remain unan-
swered: “black box” property that belongs to many popular
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deep learning methods, because complex models are often
“opaque” to a variety how they make the prediction by
themselves and solvers, and it is hard for ecologists to interpret
how those identified patterns may be relevant to the ecological
process. This interpretability issue has driven the need for
explainable Al (xAI) models that are able to offer explanations
over decision making while retaining the skills of prediction.

From a practical point of view computational prerequisites
are still, in most cases, out of reach of most performing
(not computer scientists) research groups in ecology, since
the “standard” training of complex neural networks requires
special hardware and, in some cases, specific technical know-
how, that it is not going to be part of the one found in a normal
ecology department. Such a technical hurdle not only restricts
wider access, but also may amplify the existing disparities in
the availability of research capacity.

More fundamentally, there is a gulf between statistical
prediction and ecological understanding. Although AI can
learn patterns exceptionally well, as Al it may not advance
ecological theory or mechanistic understanding in the absence
of domain integration. It’s part and parcel of the machine-
learning world.” Critics, however, point out that machine learn-
ing models can prioritize prediction at the cost of explanation,
raising questions about their scientific value.

In the future, there are several promising avenues to tackle
these issues. First among these is the emergence of easier-to-
use tools and platforms that greatly lower the technical barriers
to entry to Al-based ecological research. Projects like Wildlife
Insights and iNaturalist show that user-friendly interfaces can
democratize the use of powerful Al tools.

Transfer learning and few-shot learning methods are
promising for addressing the constraint of few data by trans-
ferring models trained on data-rich species to closely related
yet data-poor species. Such methods could potentially be used
to transfer Al benefits to poorly studied taxonomic groups or
ecosystems.

Reinforcing the interface between ecologists, computer
scientists and statisticians is another important way forward,
which should lead to better consideration of the ecology when
designing Al tools, instead of just running a generic algorithm
on ecological data. This partnership is particularly relevant for
hybrid model development where the complementary strengths
of machine learning, predictive performance, and mechanistic
models, theoretical and interpretability related, need to be
integrated.

The future for Al in ecology may involve the develop-
ment of frameworks that combine multiple AI approaches
with domain knowledge to satisfy both predictive needs and
mechanistic understanding. For application purposes, however,
it is desirable that researchers can interpret models within
theoretical frameworks other than the one in which they were
developed, by borrowing strengths from alternative modeling
paradigms. With climate change intensifying and biodiversity
decline proceeding, such integrated methodologies will be
paramount to achieving effective conservation management
informed bydata-driven knowledge and ecological understand-
ing.

To mitigate geographic and taxonomic biases in training
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datasets, several strategies have been proposed. These include
transfer learning, where models trained on data-rich species
are adapted to underrepresented taxa, and the use of synthetic
data generation to augment sparse datasets.

Explainable AI (xAl) can address the black-box limitation
of deep learning models. For example, SHAP (SHapley Addi-
tive exPlanations) values allow researchers to identify which
environmental variables most influence a model’s prediction
of species presence, enhancing trust and transparency for
ecologists and decision-makers alike.

V. KEY TAKEAWAYS

* Neural networks enhance prediction of habitat suitability
across ecosystems,

* Models like MaxEnt remain relevant due to simplicity
and transparency,

* XAl offers promising solutions to bridge interpretability
gaps,

* Resource needs vary widely; GPU-based models may
limit accessibility.

VI. CONCLUSION

The augmentation of artificial intelligence with ecology
research represents a state-of-the-art tool in the study, monitor-
ing, and protection of biodiversity. In this systematic review,
we have aggregated almost thirty years of worldwide research
that applies Al (in particular ML and DL) to species pref-
erence analyses, ecological niche modelling and conservation
recommendations.

Our review, therefore, underscores a dynamic, cross-
disciplinary field that has grown exponentially since 2015
due to rapid technological development, enhanced ecological
importance, and the increase in big environmental data. There
are applications ranging from automated species identification
in terrestrial and marine environments to sophisticated habitat
suitability modelling and decision support systems. Thanks to
machine learning and artificial intelligence, researchers today
are able to keep track of what is happening to biodiversity
across space and time at a faster and truer pace than ever be-
fore, turning static ecological censuses into dynamic feedback
loops.

However, there is still much more to be done. Ecological
data-sets are frequently incomplete, imbalanced or biased
towards certain geographies —attributes that may limit the
accuracy and generalization of predictive models. In addition,
the black-box nature of a lot of Al systems is an issue for inter-
pretability, transparency, and trust, especially in conservation
where decision making has real worlds ecological and ethical
consequences. There is greater urgency for explainable Al
(xAlI), for more equitable access to computational resources,
and for more interdisciplinarity.

In the context of habitat intelligence, the future will in-
volve hybrid frameworks that combine the predictive power of
Al with mechanistic ecological theory. Recent developments
including transfer learning, citizen science linkage, and low-
cost sensing are leading to an increasing degree of involvement
and translation, especially in underrepresented geographies and

Vol. 16, No. 6, 2025

ecosystems. By fostering collaboration among ecologists, data
scientists, and decision-makers, the community can develop
scalable, interpretable and actionable tools that address the
twin crises of climate warming and biodiversity loss.

Together, they illustrate that Al has the potential to truly
revolutionize ecological science as an exciting complement to
its traditional iteration, not a replacement. By exposing previ-
ously hidden patterns in species—environment interactions, Al
supports better, faster and more strategic conservation action.
While this area is still emerging, it is clear that it will be
fundamental in the future of biodiversity and the management
of life on the planet.
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