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Abstract—Radiological bone age assessment is essential for
diagnosing pediatric growth and developmental disorders. The
conventional Greulich-Pyle Atlas, though widely used, is manual,
time-intensive, and prone to inter-observer variability. While deep
learning methods such as Convolutional Neural Networks (CNNs)
offer automation potential, most existing models rely on transfer
learning from natural image datasets and lack specialization
for medical radiographs. This study aims to address the gap
by developing a domain-specific, custom CNN for pediatric
bone age prediction. This research proposes a customized CNN
architecture trained on the RSNA pediatric bone age dataset,
which includes over 12,000 annotated hand X-ray images labeled
with age and gender. The pipeline incorporates pre-processing
techniques such as image resizing, normalization, and Contrast
Limited Adaptive Histogram Equalization (CLAHE) to enhance
input quality. A YOLOv3 object detector is utilized to localize the
hand region prior to model training, focusing on the most relevant
anatomical structures. Unlike traditional transfer learning models
such as ResNet50, VGG19, and InceptionV3, the proposed CNN is
tailored for radiographic features using optimized convolutional
blocks and domain-aware augmentations. This design improves
generalization and reduces overfitting on small or imbalanced
subsets. The proposed model achieved a Mean Absolute Error
(MAE) of 3.27 months on the test set and 3.08 months on the
validation set, outperforming state-of-the-art transfer learning
approaches. These results demonstrate the model’s potential for
accurate and consistent bone age estimation and highlight its
suitability for integration into clinical decision-support systems
in pediatric radiology.
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I. INTRODUCTION

Pediatric endocrinologists mostly rely on Bone Age
Growth Disease Detection (BAGDD) to detect growth disor-
ders and evaluate a child’s bone development. For conditions
such as growth hormone deficiency, precocious puberty and
delayed growth, it matters a lot [1]. BAGDD is used by
clinicians to understand if a child’s bones are growing at the
appropriate pace for their age and to predict what might happen
in their growth later on. Typically, an X-ray image of the left
hand and wrist is used to view the bones and changes such as
ossification, that reveal the growth status of a child.

Bone age was initially measured using two traditional
methods: the Greulich-Pyle (GP) Atlas [2] and the Tanner-
Whitehouse (TW) approach [3]. A GP Atlas allows a trained
radiologist to use the worksheet to compare a patient’s bone

density to those of reference images based on both gender and
age. Rather than TW, the TW method assigns a score to every
bone depending on its stage of development and the total gives
an estimate for bone age. Despite being around for decades,
these methods are held back by expert interpretations, slow
procedures and the influence of personal opinions [4].

Automating bone age assessment is becoming possible
thanks to the growth in AI and its specialty, Deep Learning.
CNNs have helped smart systems reach the same performance
in image analysis as the human eye in recent times. CNNs
are particularly useful for image recognition since they can
automatically pick out patterns such as edges, textures and
shapes at different parts of an image [5]. Tickmarks depends
on how images are used; they can be used for labeling or
predicting values in both types of tasks. CNNs have been used
successfully in many medical image applications, including
finding tumors, analyzing retinas and, not long ago, evaluating
bone age [6]. In 2017, the Radiological Society of North
America made available the RSNA Bone Age Dataset which
consists of over 12,000 X-rays of children’s hands each labeled
with bone age information and evenly divided by gender.
The information in this dataset aids in the development and
assessment of algorithms designed for automatic bone age
estimation [7].

Such models are pre-set with knowledge from millions
of pictures found in ImageNet of everyday objects like cats,
cars and buildings. These models are mainly used for object
classification because their learned features highlight impor-
tant differences in objects’ shapes, colors and textures. Still,
medical images, including those of hands for assessing bone
age, have very different details regarding bone density, shape
and growth as compared to regular X-rays [8]. The results of
further studies have suggested that development of bone age
is not the same in males and females and males generally
mature slower than females do [9]. Because of this, transfer
learning models may not fit the unique gender differences in
how bones develop. Thus, these models do not always capture
the important information related to each domain and usually
perform poorly on these imaging operations [10].

This work introduces a new CNN model tailored for
computing the bone age from radiographs of hands. Every-
thing is learned directly by the model from scratch, so no
information is transferred from different bone-related picture
datasets and the model is trained explicitly for predicting bone
age. The goal is to improve the certainty and precision of
bone age determination by using the CNN design to meet
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the requirements of this medical imaging task. The proposed
custom CNN model performed well, with the MAE being 3.27
months in the training set and 3.08 months on the validation
set. These results significantly outperform the transfer learning
models evaluated in this work, including ResNet50, VGG19,
and InceptionV3. The custom CNN proves to be effective in
capturing fine-grained features in bone development, allowing
for a more accurate age estimation. These findings support
the conclusion that domain-specific deep learning models can
substantially outperform generic transfer learning approaches
when applied to specialized medical imaging tasks such as
bone age assessment [9].

Whereas deep learning algorithms, especially the ones that
apply the methodology of transfer learning, such as ResNet50,
VGG19, and InceptionV3 models have demonstrated good
potential when it comes to assessing the age of the bones,
the utilized models have been predominantly trained on the
datasets of natural images (e.g., ImageNet) and have not been
optimized to work with the peculiarities of medical radio-
graphs. They do not routinely produce good imaging of the
subtle anatomical markings characteristic of X-ray pediatric
hands required to make precise assessment of the bone-age.
In addition to that, none of the current models often provide
the combination of the domain-specific architecture design
alongside specific preprocessing (e.g., the CLAHE-enhanced
contrast and the ROI extraction using the YOLOv3) to form
a unified framework applicable to the setting of the pediatric
bone age growth disease detection.

The novelty of this work is the modification of the CNN
model into a custom design, which trained on the scratch
available RSNA Bone Age Dataset that consists of data
on bone development provided specifically to be used in
predicting an age. In contrast to transfer learning methods
devised over generically, the proposed CNN includes the task-
specific architectural components, including depth of layers
and dropout regularization, along with the paradigm-specific
preprocessing of medical images. This is more accurate, more
robust and better aligned to the domain compared to current
solutions in bone age estimation.

This research focuses on the architectural design, training,
and performance evaluation of a custom CNN model specif-
ically developed to predict bone age from hand radiographs.
The contributions of this research are as follows:

• A custom Convolutional Neural Network (CNN) is
developed and trained from scratch, incorporating task
oriented design choices such as optimal layer depth,
kernel sizes, ReLU activations, and dropout regular-
ization. Unlike generic models, custom CNN was
tailored to capture fine-grained anatomical features
(e.g. bone edges, growth plates) specific to pediatric
hand radiographs, resulting in improved precision and
robustness.

• The performance of proposed model is significantly
boosted by incorporating Contrast Limited Adaptive
Histogram Equalization (CLAHE) to enhance image
contrast and Region of Interest (ROI) detection using
YOLOv3 to focus the learning on relevant hand struc-
tures.

• The proposed custom CNN was extensively evaluated
using Mean Absolute Error (MAE) and Mean Squared
Error (MSE), and benchmarked against popular pre-
trained models including ResNet50, VGG19, and In-
ceptionV3.

• The proposed model was optimized through man-
ual adjustment of the hyperparameters, including the
learning rate, batch size, and number of training
epochs. In addition, the architecture was refined by
adjusting the depth and number of filters that incor-
porate dropout layers to mitigate overfitting.

The organization of the paper is as follows. Section 2
reviews existing work relevant to the proposed study. Section 3
discusses materials and methods and outlines the development
procedures of the proposed BAGDD system. Section 4 presents
the results and the discussion, while Section 5 concludes the
study.

II. RELATED WORK

Deep learning has played a revolutionary role in medi-
cal imaging, particularly in the diagnosis of musculoskeletal
disorders. The effectiveness of deep learning applications in
bone age prediction has been demonstrated in various contexts,
including fracture identification, osteoarthritis severity evalu-
ation, and pediatric assessments. Recent research highlights
its ability to detect pathological abnormalities in CT and
MRI scans, such as infections, fractures, joint degeneration,
internal derangements, and metastases. However, challenges
remain due to the complexity of CT and MRI datasets, which
often involve varying tissue contrasts. For widespread clinical
adoption, further technological advancements and extensive,
multi-institutional prospective studies are required to ensure
the generalizability, consistency, and reliability of these tech-
niques [11].

New methods for finding and handling different medical
problems have been made possible by using CNNs. Related
to Bone Age Assessment using hand and wrist radiographs,
CNNs have consistently performed better than other common
approaches. This section deals with applying deep learning
principles for medical image analysis, paying special attention
to CNN designs and transfer learning created for BAA [12].

CNNs are very important in medical image analysis, with
a key application in bone age estimation. CNNs built from
the ground up are created to handle the issues that come with
using medical images. During Bone Age Assessment (BAA),
one must make models that are skilled in finding growth
plates and different bone parts so the process is accurate.
Many studies have shown that custom CNN models usually
outperform methods such as the Greulich-Pyle atlas or Tanner-
Whitehouse standards.

Specifically, a custom CNN for estimating bone age from
hand radiographs designed by [13] makes use of different lay-
ers to grab both general and detailed hand and wrist features,
improving the mean error over methods used before. In a
similar way, [14] recommended an automatic deep learning
process to make the process more efficient and less dependant
on human opinion. In their method, they chose key points in
images of 3,000 X-rays, working on the carpal, metacarpal and
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phalangeal bones. Intensity was adjusted using preprocessing
and different models were made for each gender since each
follows a different pattern of growth. Unlike various other
similar studies, this one looked at infants as part of the full
pediatric population that was considered. Using deep learning,
it was possible to create a model with an MAE of 8.890
months.

An improved CNN was built in [15] to be used with the
RSNA Bone Age dataset. Thanks to deep residual learning, the
model had optimized gradient flow and avoided the problem of
overfitting in the larger layer. Using this kind of architecture,
models successfully pointed out main anatomical landmarks
for an MAE of 4.2 months. The team discovered that CNNs
designed to identify certain anatomical features did better than
general architectures in predicting CT results.

Still, building a custom CNN architecture is complicated
and takes a long time. As described in [16], making custom
CNNs for medical imaging tasks draws on expertise in both
radiology and deep learning which presents a problem for
both small healthcare centers and seasoned developers. All the
same, the advantages of custom CNNs in medical areas make
them a good alternative because they can accomplish important
tasks more successfully than standard approaches, for example
bone age estimation [17].

Researchers have recently shown that transfer learning can
successfully estimate bone age. The results presented in [18]
indicate that a fine-tuned EfficientNet model had an MAE
of 4.5 months when used on the RSNA Bone Age dataset.
Training the model with this approach was much faster than
using a custom CNN model with similar results. The study says
that EfficientNet’s design means it functions well for medical
imaging, especially in places where resources are limited.

The authors of [19] used transfer learning by training a
DenseNet on images for recognizing bone age. The authors
managed to train the model quickly and accurately by freezing
the early layers and adding extra training to the last ones.
By using transfer learning on the RSNA Bone Age dataset,
the model showed an MAE of 14.9 months, showing that
transfer learning can be equally successful, while having a
more variable precision [20].

In another study, [21] evaluated a commercial deep learning
based bone age assessment tool (BoneAge, Vuno, Korea) using
left hand X-ray images of 371 healthy Korean children and
adolescents aged 4–17 years. While the estimated bone age
was highly correlated with the actual chronological age (r =
0.96), the overall agreement rate was only 58.8%, and the
model tended to overpredict bone age in younger children,
particularly those under 8.3 years of age.

The work presented by [22] focuses on evaluating age
and sex from computed tomography (CT) images of vertebrae
using computer aided diagnosis. The study utilized a dataset
comprising CT scans from 166 patients of varying genders.
All images were rescaled before feature extraction using the
qMaZda software. The researchers integrated conventional ma-
chine learning algorithms—both regression and classification
with deep convolutional networks. Using the BART algorithm,
the bone age regression model achieved a Mean Absolute Error
(MAE) of 3.14 years. Gender classification accuracy was 69%

with machine learning models and 59% with deep learning
models [23].

In a related study, [24] proposed a regression based, multi-
model deep learning framework for bone age assessment using
hand radiographic images and clinical data (e.g., gender and
chronological age). The approach combined EfficientNetV2S
CNNs for image analysis with a simple deep neural network
(DNN) for processing clinical data, resulting in robust diag-
nostic performance. This study underscored the advantages of
multi-modal learning in improving the precision of bone age
analysis [25].

To address the limitations of traditional methods such as
Greulich–Pyle and Tanner–Whitehouse, which heavily depend
on domain expertise, [26] developed a deep learning model
for osteoporosis classification and bone density prediction
using opportunistic CT scans. The model was validated across
datasets from multiple hospitals and CT scanners. It em-
ployed the VB-Net module for segmentation and DenseNet
for classification and regression. The model demonstrated high
accuracy and strong correlation with Quantitative Computed
Tomography (QCT) reference standards, achieving AUC scores
of 0.999 (training set), 0.970 (test set), and 0.933 (independent
set). The bone density prediction model also performed well,
showing potential as a cost effective, low-radiation solution for
osteoporosis screening [27], [28].

In [29] and [30] review existing Bone Age Assessment
(BAA) methodologies, emphasizing the use of deep learning
algorithms to address the inconsistencies of traditional ap-
proaches. Although deep neural networks have demonstrated
high effectiveness in classifying bone age within specific age
intervals, their complexity and reliance on numerous parame-
ters for each region of interest (ROI) present challenges.

In [31] introduced a novel approach known as the Dual
Attention Dual Path Network (DADPN). Experimental vali-
dation was performed using the RSNA Pediatric Bone Age
Challenge dataset, comparing DADPN with nine other popular
BAA methods. The results showed that DADPN achieved the
highest accuracy, with a Mean Absolute Error (MAE) of 4.76
months.

In a separate study, [32] and [33] proposed a continuous
radiological age assessment method based on clavicle ossifi-
cation in CT scans. Their deep learning model was trained on
4,400 scans from 1,935 patients with a mean age of 24.2 years
and evaluated on a test set of 300 scans from 300 patients. The
model achieved an MAE of 1.65 years. Absolute error values
ranged from 6.40 years for females and 7.32 years for males,
with comparison to human reader estimates yielding errors of
3.40 years for females and 3.78 years for males, resulting in
a comparative MAE of 1.84 years [34].

Although these improvements exist, additional scientist
work is necessary to improve the accuracy and dependability
of BAA methods. A number of CNN and transfer learning
frameworks struggle to perform the same on diverse data which
lowers their stability. Further work is needed to decrease the
errors in bone age predictions and maintain good performance
in every healthcare setting.
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III. MATERIALS AND METHODS

The structure of this study’s research framework empha-
sizes building an effective auto bone age prediction method
using deep learning. There are five main phases in this frame-
work: collecting data, checking the data, preprocessing data,
making features, training the model and assessing the model.
All the data used in this work is taken from the RSNA Bone
Age Dataset which consists of about 12,000 hand X-rays. The
variety of bone growth patterns in this dataset gives it a good
fit for using and assessing deep learning models.

The aim of the research is to create a new CNN model that
can identify and classify bones primarily based on age. To re-
view performance, the proposed model is compared with three
commonly used transfer learning models: ResNet50, VGG19
and InceptionV3. The framework is designed to highlight
how well the custom CNN predicts bone age, while transfer
learning models help understand the comparison.

First, several stage were taken to boost the quality of the
images before supplying them to the CNN models. First, all the
images were sized to 224 × 224 pixels which is a typical input
measurement for most deep learning models, including the
ones employed in this study. Stretching each image to the same
size reduces the amount of processing required and assures
even results during training. Each value was then normalized
by putting it through (255/2) and rescaled to values between 0
and 1 to support more efficient training. Besides, contrast in the
images was improved by applying Contrast Limited Adaptive
Histogram Equalization (CLAHE) only to the bone structures.
Using this method, important anatomical features are made
more visible, so the CNN can recognize and understand them
better during fixing.

In order to enhance the performance of the model in
more situations, this study used various data enhancement
techniques. Examples of applied image transformations were
rotation, flipping and shifting which introduced little changes
in this work. Data augmentation boosts the size of the dataset
and has the side benefit of preventing overfitting due to the
extra input data. So, the model can withstand variations in
real situations better. In addition, ROI detection was completed
with a YOLOv3 model. At this point, the developer removed
information behind the hand, helping the model concentrate on
what it should focus on and therefore improving the training.

Following the preprocessing and feature extraction stages,
the next phase involved model development. The CNN archi-
tecture was customized specifically for the bone age prediction
task. The model consists of multiple convolutional layers that
progressively learn features from low-level edges and textures
to more abstract patterns crucial for bone age estimation. Since
the model was trained from scratch, it was able to focus ex-
clusively on learning features relevant to bone development, as
opposed to transfer learning models that rely on representations
learned from general purpose natural image datasets. This task
specific design allowed the custom CNN to achieve better
performance by concentrating on features uniquely important
for pediatric hand X-ray analysis.

In addition to the custom CNN, this study also em-
ployed pre-trained models using transfer learning, specifically
ResNet50, VGG19, and InceptionV3. These models were
originally trained on the large scale ImageNet dataset and

feature architectures optimized for general image recognition
tasks. For the purpose of this research, they were adapted to
perform bone age estimation, which is framed as a regression
problem. Fine-tuning allowed these models to leverage previ-
ously learned features while adjusting to the specific domain
of pediatric hand X-ray images, ensuring better performance
without complete retraining.

The final component of the research framework involves
model evaluation. Both the custom CNN and the transfer
learning models were assessed using two key performance
metrics: Mean Absolute Error (MAE) and Mean Squared Error
(MSE). These metrics are well suited for regression tasks
such as bone age prediction, as they quantify the deviation
between predicted and actual bone ages. MAE, expressed in
months, was chosen as the primary evaluation metric due to its
straightforward interpretability in clinical contexts lower values
indicate higher model accuracy. MSE was also considered, as
it squares the error terms and therefore assigns greater penalty
to larger prediction errors.

The complete research framework including preprocessing
steps, the custom CNN architecture, transfer learning models,
and evaluation metrics ensures a systematic and robust ap-
proach to designing and testing the bone age prediction system.
The overall methodology of the proposed BAGDD system is
illustrated in Figure 1.

Fig. 1. The Proposed methodology of the presented BAGDD system based
on deep learning.

A. RSNA Bone Age Dataset Presentation

The RSNA Bone Age Dataset is one of the most significant
resources for pediatric radiology and artificial intelligence re-

www.ijacsa.thesai.org 1008 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 16, No. 6, 2025

search. Provided by the Radiological Society of North America
for research purposes, the dataset includes 12,611 right hand
X-ray images of children, each labeled with bone age using
the Greulich-Pyle (GP) method a widely accepted standard in
clinical practice for bone age assessment. The dataset spans a
broad age range, covering children from 0 to 18 years old, and
offers comprehensive variability in growth patterns and bone
development.

Because there are people of all ages, researchers can
analyze both common and unusual bone growth which is
essential for spotting diseases and growth issues in children.
How the RSNA Bone Age Dataset is divided by age and gender
is shown in Figure 2.

Fig. 2. Representation of the RSNA bone age dataset.

The important aspect of the dataset comes from the quality,
its size and how it is relevant to medical care. All of the
subjects have their pictures labeled with the bone age used
to represent when the X-ray was done. They use the GP
technique, a system that compares bone development with
pictures in an atlas. With this relabeling, the data is truly
representative of what doctors do, ideal for helping machines
determine bone age.

Additionally, the dataset includes Many cases, showing
how various health issues can slow bone development in kids.
Having a diverse set of examples in the data ensures it’s useful
for training AI, by providing enough material for in-depth
learning. Figure 3 shows the makeup of the dataset divided
by gender and Figure 4 by age group. You can see the RSNA
Bone Age dataset in Figure 5.

B. Preprocessing

Boosting the efficiency of predictive outcomes from deep
learning models depends largely on careful data preprocessing.
Certain improvement techniques were added to the X-ray
images to enhance their usability:

1) Resizing: All X-ray images were adjusted to be 224
pixels wide and 224 pixels high. Following this standard lets
Convolutional Neural Networks (CNNs) accept exactly these
input images, since they require images of the same size. Being
resized, the images fit better into the training process and avoid
dialing them back in size because they come from different
sources. It allows use of the same feature extraction process
for all the data.

Fig. 3. Representation of the RSNA bone age distribution by gender.

Fig. 4. Representation of the RSNA bone age distribution by age group.

Fig. 5. Pictorial representation of the RSNA bone age dataset.

2) Normalization: All pixel intensity values in the images
were scaled so that they fell between 0 and 1. To learn better,
the model needs input data that is standard across points.
When lighting changes and contrast in the original images are
reduced, normalization allows the training process to be both
stable and faster. This also helps avoid problems like gradient
explosion or disappearance which both damage the model’s
performance.
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3) CLAHE (Contrast Limited Adaptive Histogram Equal-
ization): Since the regions of interest in X-ray images such as
bones and growth plates often exhibit low contrast, CLAHE
was applied to enhance their visibility. This technique enhances
image contrast locally, allowing critical anatomical structures
to stand out more clearly and be more easily identified by
the model. Enhancing these features is essential for accu-
rate bone age prediction, as it highlights subtle differences
associated with bone growth and development. The use of
CLAHE significantly improves the model’s ability to detect
important features that might otherwise be overlooked due to
low contrast in the raw X-ray images. Figure 6 illustrates the
visual improvement in an X-ray image after applying CLAHE.

Fig. 6. Before and After applying CLAHE.

4) Data augmentation: To increase the effective size of
the dataset and reduce the risk of model overfitting, several
data augmentation techniques were employed. These included
random image rotations (0–15 degrees), horizontal and vertical
flipping, shifting, and adjustments to image brightness and
contrast. These transformations introduce variability into the
training data, enabling the model to generalize better to unseen
samples. This approach supports the third objective of the
project by enhancing the model’s robustness and adaptabil-
ity—qualities that are particularly crucial in medical imaging,
where anatomical structures can vary widely across patients.
Data augmentation helps the model retain relevant features
despite spatial or visual alterations, improving its performance
in real world clinical scenarios.

5) ROI Detection: To further enhance model performance,
a pre-trained YOLOv3 model was used for Region of Interest
(ROI) detection in the X-ray images. In this context, the ROI
specifically refers to the hand, which is the key anatomical re-
gion for bone age prediction. YOLOv3 enables semi automatic
segmentation of the hand, allowing the CNN to focus solely
on the most relevant structures. This targeted approach elim-
inates irrelevant background noise, helping the model avoid
distractions and improving prediction accuracy. By reducing
the input to only the essential region, ROI detection also
contributes to computational efficiency and model precision.
Figure 7 illustrates the application of YOLOv3 on an image
enhanced with CLAHE.

6) Image quality assessment: In addition to the preprocess-
ing steps outlined above, image quality assessment was also
considered. This involves evaluating the clarity, contrast, and
overall quality of each X-ray image to ensure that only the

Fig. 7. Before and After Applying YOLOv3 on CLAHE Output.

highest quality images are used for training and validation.
Since image quality directly affects model performance, fil-
tering for optimal image clarity enhances the effectiveness of
feature extraction and improves the overall learning process.

Application of these methods allowed for better data prepa-
ration in the RSNA Bone Age Dataset for model training.
Following these steps strengthens the model’s understanding of
what is required for correct prediction of bone age. As well as
getting the data ready for machine learning, the preprocessing
pipeline helps to make the model steady and more trustworthy
which helps increase its use in pediatric radiology. By fol-
lowing this approach, future AI studies intended for bone age
estimation are easily supported.

C. Convolutional Neural Networks (CNNs)

For the development of Bone Age Growth Disease Detec-
tion (BAGDD) system, this work uses Convolutional Neural
Network (CNN) algorithm. CNNs are particularly useful for
analyzing images since they can automatically pick out dif-
ferent levels of spatial features right from the images. As a
result, the features facilitate identification of parts of the bone
that play a key role in bone age estimation. CNNs rely on
convolutional layers to learn basic shapes and textures and also
find the detailed patterns necessary for correct predictions [34].
These architectures included a custom CNN built for studying
hand X-rays, along with three used as references: ResNet50,
VGG19 and InceptionV3.

This work proposes a novel dropout optimized CNN ar-
chitecture developed from scratch for analyzing hand X-ray
images using the RSNA Bone Age Dataset. While ResNet50,
VGG19, and InceptionV3 are pre-trained on a wide range of
natural images from various domains, the custom model is
specifically tailored for bone age prediction. Unlike general
purpose models, this proposed custom CNN architecture was
built to focus on domain specific features particularly bone
shape and density which are critical for accurate age estimation
from pediatric X-rays. This dedicated design facilitates deeper
fine-tuning and ensures better alignment with the clinical
objective of the BAGDD system. The proposed custom CNN
architecture is presented in Figure 8.

1) Architecture: The architecture of the proposed custom
CNN is designed to accept input images of size 224×224
pixels, which were previously resized and normalized during
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preprocessing. The network consists of multiple convolutional
layers, each employing 3×3 filters. These filters scan the
image to extract features progressively, starting from low level
attributes such as edges and gradients and advancing to high
level features like shapes and textures critical for accurate bone
age estimation.

Each convolutional layer is followed by a Rectified Linear
Unit (ReLU) activation function, which introduces non lin-
earity into the network, enabling it to learn more complex
patterns. Max pooling layers with 2×2 filters are used after
certain convolutional layers to reduce the spatial dimensions
of the feature maps while preserving essential information.
This pooling operation helps control overfitting and improves
computational efficiency.

2) Activation Functions: ReLU activation functions are
applied in all hidden layers of the network. ReLU is chosen
due to its effectiveness in addressing the vanishing gradient
problem, a common challenge in deep learning. It enables
deeper networks to learn efficiently by allowing gradients to
propagate effectively during backpropagation.

3) Loss Function: To optimize the custom CNN during
training, Mean Absolute Error (MAE) and Mean Squared Error
(MSE) are used as the loss function. MAE and MSE are
the widely adopted metric in regression tasks as it calculates
the average of the squared differences between predicted and
actual values. In this context, it penalizes larger errors more
heavily, which is particularly important in medical applications
such as bone age estimation. The objective during training is to
minimize the MAE and MSE, thereby reducing the discrepancy
between the predicted bone age and the ground truth labels.

Fig. 8. Proposed CNN architecture for the development of BAGDD system.

D. ResNet50

ResNet50 is a widely recognized Convolutional Neural
Network (CNN) architecture known for its use of residual
blocks [35]. These residual connections allow the network
to skip over certain layers, enabling the successful training
of very deep networks without encountering vanishing or
exploding gradient issues. The core concept behind residual
learning is the identity mapping, or the propagation of residual
signals secondary signals that carry unaltered information from
earlier layers. This approach ensures that subsequent layers do

not waste computational effort relearning features that have
already been captured in earlier stages of the network. As a
result, ResNet50 achieves improved training efficiency and per-
formance, particularly in deep architectures. The architecture
of ResNet50 is illustrated in Fig. 9.

Fig. 9. Architecture of CNN ResNet50 model [35].

In the present study, ResNet50 was trained on the RSNA
Bone Age Dataset. The model was initialized with pre-trained
weights from the ImageNet dataset, which contains millions
of labeled natural images. To adapt the model for the bone
age prediction task, fine-tuning was performed by freezing
the early layers responsible for learning general features such
as edges and textures and retraining the deeper layers to
capture domain specific features such as growth plates and
bone structures visible in X-ray images.

ResNet50 was evaluated alongside the proposed custom
CNN and other transfer learning models. Despite its complex
architecture and deep residual connections, ResNet50 proved
to be an effective tool for feature extraction, particularly in
cases where the dataset is large and diverse, as is true for the
RSNA Bone Age Dataset.

E. VGG19

VGG19 is another deep CNN architecture used in this study
for comparative analysis. It consists of 19 layers, primarily
composed of convolutional and fully connected layers. One
of the key advantages of VGG19 is its uniform architecture:
all convolutional layers utilize 3×3 filters. This consistent
filter size enables the model to capture fine grained image
details, which is particularly beneficial in bone age prediction
where subtle variations in bone density and morphology can
significantly impact the results. The architecture of VGG19 is
illustrated in Fig. 10.

Like ResNet50, VGG19 was pre-trained on the ImageNet
dataset and fine-tuned on the RSNA Bone Age Dataset. The
final fully connected layers of VGG19 were replaced to adapt
the model specifically for the bone age prediction task [36].
Due to its dense layer wise structure, VGG19 is capable of cap-
turing intricate bone structure details, making it well suited for
this application. However, unlike ResNet50, it lacks residual
connections, which can make training deep architectures more
challenging and susceptible to vanishing gradient issues.

F. InceptionV3

InceptionV3 is an advanced CNN architecture that im-
proves upon its predecessor, InceptionV2, through the use
of inception modules. These modules allow the network to
perform convolutions of multiple sizes simultaneously, en-
abling it to capture features at multiple spatial scales. This
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Fig. 10. Architecture of CNN VGG19 model [36].

is particularly advantageous when dealing with images of
varying resolutions, such as hand X-rays. The architecture
is highly efficient in both image classification and regression
tasks due to its multi scale feature extraction capability [37].
The architecture of InceptionV3 is illustrated in Fig. 11.

For this analysis, InceptionV3 was initialized with its origi-
nal weights from the ImageNet dataset and additionally trained
on the RSNA Bone Age Dataset. This part of the model allows
it to identify fine and overall features in hand radiographs,
helping it to be very accurate at bone age estimation. Like the
other transfer learning models, the final layers of InceptionV3
were customized for the regression problem and improvements
were made to minimize prediction error during training [38].

Fig. 11. Architecture of CNN InceptionV3 model [37].

G. Measures for Performance Evaluation

In order to assess how well the models performed in this
study, Mean Absolute Error (MAE) and Mean Squared Error
(MSE) were used as important regression evaluation measures.
They gauge the accuracy of bone age prediction models using
comparisons between their predictions and the real ages of the
bones in the dataset.

1) Mean Absolute Error (MAE): Since the problem is
structurally suited to it, Mean Absolute Error (MAE) was
chosen as the main metric. MAE simply checks the average of
the absolute errors for each bone age, independent of whether
the error was positive or negative. The authors treat MAE as

the average difference between the forecasted and true values,
expressed in months.

For regression tasks, MAE is reliable because it is simple
to interpret: the model is more accurate when the MAE is
low. As a result, MAE is a powerful approach for judging the
practical value in using bone age imaging for clinical needs.

The formula for MAE is as follows:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

Where,

yi is the actual bone age for the ith instance.

ŷi is the predicted bone age for the ith instance.

n is the total numbers of predictions.

2) Mean Squared Error (MSE): Given the nature of the
problem, Mean Squared Error (MSE) was also employed
as a key performance metric. MSE measures the average
of the squared differences between the predicted and actual
bone ages, placing greater emphasis on larger errors due
to the squaring operation. MSE is particularly effective for
regression tasks where penalizing large deviations is critical.
In the context of the proposed study, MSE helps highlight
instances where the model’s predictions deviate significantly
from the true bone age, making it especially valuable for
assessing reliability in clinical scenarios where minimizing
large prediction errors is essential.

The formula for MSE is as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

As for the assessment of the models, MSE was combined
with MAE. Whereas MAE can be used in simple and easy
to interpret appraisal of the accuracy of the prediction, MSE
has more weight on the larger errors as it provides more
information about the distribution of the errors.

H. Proposed BAGDD Model’s Pseudocode
1: Begin
2: Phase 1: Data Preprocessing
3: 1. Load RSNA Bone Age Dataset
4: 2. Split dataset into Training Images and Testing Images
5: 3. For each image in Training and Testing sets:
6: a. Apply CLAHE for image enhancement
7: b. Resize image to standard input size
8: 4. For each enhanced image:
9: a. Apply YOLOv3 to extract features

10: 5. Store the resulting features as Training and Testing Data
11: Phase 2: Training Phase of Deep Learning Models
12: 6. Initialize Deep Learning Models:
13: a. Proposed Custom CNN
14: b. ResNet50
15: c. VGG19
16: d. InceptionV3
17: 7. For each model in the list:
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18: a. Train the model using Training Data
19: b. Validate the model using Testing Data
20: Phase 3: Models Evaluation Phase
21: 8. For each trained model:
22: a. Predict outputs on Testing Data
23: b. Calculate Mean Absolute Error (MAE)
24: c. Calculate Mean Squared Error (MSE)
25: d. Store evaluation metrics
26: 9. Compare all models based on MAE and MSE
27: End

IV. RESULTS

The primary objective of this research was to develop a
deep learning model capable of automating bone age prediction
with greater precision than currently available methods. To
this end, a custom Convolutional Neural Network (CNN)
specifically designed for this task was developed and compared
against widely used pre-trained models in transfer learning
namely, ResNet50, VGG19, and InceptionV3. While transfer
learning models have shown promising results in general
computer vision tasks, bone age prediction presents a domain
specific challenge that a tailored CNN model is better suited
to address.

All models were trained on a carefully preprocessed ver-
sion of the RSNA Bone Age Dataset to ensure both accuracy
and generalizability. Preprocessing steps included resizing,
normalization, Contrast Limited Adaptive Histogram Equal-
ization (CLAHE), and data augmentation to improve input
quality and reduce overfitting. Additionally, a YOLOv3 based
Region of Interest (ROI) detection was applied to isolate the
hand region from irrelevant background details in the X-ray
images. This work evaluated the performance by using two
standard measures for regression, Mean Absolute Error (MAE)
and Mean Squared Error (MSE) which are right for predicting
continuous tasks like these. The ease of understanding MAE
in clinical situations led to select it as this works’ primary
index. This work uses MSE which catches more outliers, as
an additional method to estimate error variance.

In the following section, this work outline the way the
custom CNN was put together and the conditions for conduct-
ing the transfer learning studies. Both ResNet50, VGG19 and
InceptionV3 models prepared on the RSNA dataset, along with
proposed custom CNN, are evaluated and compared closely.
The results confirm that the proposed methodology is effective.
Results from the study highlight that a CNN customized for
bone age prediction is more precise than similar transfer
learning methods, when metrics like MAE, MSE and total
predictive performance are used.

A. Performance Evaluation of Proposed CNN

The performance of the custom CNN was measured using
Mean Absolute Error (MAE) and Mean Squared Error (MSE).
For this study, a public dataset called the RSNA Bone Age
Dataset, containing pediatric hand X-rays, was applied to judge
the accuracy and dependability of the model’s age predictions.

The custom CNN was trained for 100 epochs and the
predictions were checked by using the validation data. High
predictive accuracy was demonstrated with low MAE and MSE
results in the model. The results suggest that the custom CNN

correctly identifies significant features in hand X-rays, so it
can be used for automated bone age estimation.

To present the performance of the custom CNN model
clearly, the results are summarized in Table I:

TABLE I. PERFORMANCE OF PROPOSED CNN MODEL

Metric Training Set Validation Set

Mean Absolute Error (MAE) 3.27 Months 3.08 Months

Mean Squared Error (MSE) 20.54 Months 18.23 Months

On the training set, the custom CNN achieved a Mean
Absolute Error (MAE) of 3.27 months and an even lower MAE
of 3.08 months on the validation set. These results demonstrate
the model’s strong generalization capability and its ability to
produce predictions that closely align with actual bone age
values. In addition to the MAE results, the MSE values were
recorded as 20.54 for the training set and 18.23 for the vali-
dation set. These relatively low MSE values indicate that the
model is not significantly impacted by large prediction errors
or outliers, further supporting its reliability and robustness for
clinical applications. Figures 12 and 13 illustrate the MAE and
overall loss trends for both the training and validation sets,
showing consistent performance of the model across epochs.

Fig. 12. Mean Absolute Error (MAE) of training and validation set.

Overall, the custom CNN model demonstrated strong and
consistent performance across both evaluation metrics. Its low
MAE reflects high predictive accuracy, while the stable MSE
indicates the model’s robustness in handling outliers effec-
tively. These results validate the generalizability of the model
on pediatric hand X-ray images, supporting its suitability to
automate the bone age prediction process. Figure 14 presents
a comparison of the actual and predicted bone age values.

B. Performance Evaluations of ResNet50

The bone age prediction task was also addressed using
ResNet50, a widely used transfer learning model known for
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Fig. 13. Overall loss of training and validation set.

Fig. 14. Actual and predicted results obtained by the proposed CNN.

its bottleneck and residual connections. Fine-tuning was per-
formed on the RSNA Bone Age Dataset to adapt the model to
the specific requirements of pediatric bone age estimation. The
inclusion of residual connections in ResNet50 facilitates the
training of deeper networks by enabling the flow of gradients
across layers, effectively mitigating the vanishing gradient
problem. While ResNet50 possesses architectural advantages,
it did not surpass the performance of the custom CNN model
in this study. The performance of ResNet50 over 100 epochs
based on the MAE and MSE training loss is shown in Table
II.

TABLE II. PERFORMANCE OF PROPOSED RESNET50 MODEL

Metric Training Set Validation Set

Mean Absolute Error (MAE) 4.12 Months 3.36 Months

Mean Squared Error (MSE) 16.54 Months 17.53 Months

The results indicate that ResNet50 performed well on both
the training and validation sets, achieving a training MAE of
4.12 months and a validation MAE of 3.36 months. These
values suggest that the model was able to generalize effectively
to unseen data, aided by its residual connections, which help al-
leviate the vanishing gradient problem commonly encountered

in deep neural networks. Although ResNet50 demonstrated
solid performance, it did not outperform the custom CNN
model specifically designed for the bone age prediction task.
Figures 15 and 16 present a comparison between the actual
and predicted bone age values obtained by ResNet50 on the
RSNA bone age data set.

Fig. 15. Line chart of the actual and predicted results obtained by the
ResNet50.

Although ResNet50 delivered strong performance, the cus-
tom CNN tailored specifically for the bone age prediction
task achieved superior results in terms of both MAE and
MSE. ResNet50 benefited from its residual connections, which
improved generalization and mitigated the vanishing gradient
problem, it did not attain the same level of predictive precision
as the custom built solution. The custom CNN’s architecture,
designed explicitly for analyzing pediatric hand X-rays, proved
more effective for this specialized task.

Fig. 16. Actual and predicted results obtained by the ResNet50.

C. Performance Evaluations of VGG19

In this study, VGG19 is a well known deep CNN archi-
tecture with 19 layers that was utilized to predict bone age
as part of the transfer learning evaluation. Due to its depth
and pretraining on the large scale ImageNet dataset, VGG19
is considered a strong candidate for transfer learning tasks.
However, in the context of this study, VGG19 exhibited a
tendency to overfit the RSNA bone age data set, resulting in
suboptimal performance compared to both the custom CNN
model and ResNet50. The performance of VGG19 based on
the training and validation MSE and MAE over 100 epochs
shown in Table III.
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TABLE III. PERFORMANCE OF PROPOSED VGG19 MODEL

Metric Training Set Validation Set

Mean Absolute Error (MAE) 4.59 Months 3.91 Months

Mean Squared Error (MSE) 27.24 Months 19.26 Months

The VGG19 model performed consistently throughout the
training process. It achieved a final training MAE of 4.59
months and a validation MAE of 3.91 months. After 100
epochs, the training MSE reached 27.34, while the validation
MSE was recorded at 19.26. These results indicate that the
model was able to generalize reasonably well; however, its
deep architecture also showed signs of overfitting an expected
challenge when working with relatively small datasets like the
RSNA bone age dataset. Figures 17 and 18 display the actual
versus predicted bone ages as obtained by the VGG19 model
on the RSNA dataset.

Fig. 17. Line chart of the actual and predicted results obtained by the
VGG19.

Although VGG19 is a strong general purpose image clas-
sification model, its complexity characterized by 19 layers
and a large number of parameters proved less suitable for
bone age prediction compared to the custom CNN. Overfitting
was observed, particularly in the later stages of training, as
evidenced by a noticeable gap between the training and valida-
tion errors. While VGG19 demonstrated reasonable predictive
ability, it was outperformed by the custom CNN in both
accuracy and generalization. These findings suggest that while
deep architectures like VGG19 can be effective on large scale
datasets, they may not be optimal for specialized tasks such
as bone age estimation. This highlights the advantage of using
task specific architectures tailored to the domain.

D. Performance Evaluations of InceptionV3

This study evaluated the performance of InceptionV3 that
is highly sophisticated model composed of inception modules
designed to learn multi scale features on the RSNA Bone Age
Dataset. Although InceptionV3 generally outperforms custom
CNNs in complex image classification tasks by capturing fea-
tures at multiple scales within a single layer, its performance in
the bone age prediction task did not surpass that of the custom
CNN. This suggests that, despite its architectural complexity,
InceptionV3 is less effective for specialized regression tasks
like bone age estimation when compared to a domain specific
model. Table IV illustrates the training and validation MAE
and MSE for InceptionV3 over 100 epochs.

Fig. 18. Actual and Predicted Results Obtained by the VGG19.

TABLE IV. PERFORMANCE OF PROPOSED INCEPTIONV3 MODEL

Metric Training Set Validation Set

Mean Absolute Error (MAE) 4.72 Months 3.94 Months

Mean Squared Error (MSE) 28.01 Months 19.87 Months

The training results of InceptionV3 compared with the
custom CNN, indicate relatively lower performance. By the
100th epoch, InceptionV3 achieved a training MAE of 4.72
months and a validation MAE of 3.94 months. The model
recorded a training MSE of 28.01 and a validation MSE of
19.87, suggesting that it struggled with generalization and
was more prone to overfitting compared to the custom CNN.
Figures 19 and 20 illustrate the actual versus predicted bone
ages obtained by the InceptionV3 model on the RSNA Bone
Age Dataset.

Fig. 19. Line chart of the actual and predicted results obtained by the
InceptionV3.

Although InceptionV3’s inception modules are powerful
tools for multi scale feature extraction, their architectural
complexity did not translate into improved performance for
the bone age prediction task. Moreover, the RSNA Bone Age
Dataset is relatively small in size, making it important to bal-
ance model complexity with generalization capability. Despite
its sophisticated design, InceptionV3 was unable to outperform
compared to the custom CNN, which was specifically built
and fine-tuned for this domain specific task. The comparative
results demonstrated that the simpler, more focused archi-
tecture of the custom CNN achieved superior accuracy and
generalization.
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Fig. 20. Actual and predicted results obtained by the InceptionV3.

E. Comparative Experimental Results

The custom CNN outperformed all other models across
both evaluation metrics MAE and MSE as shown in Table
V. Its lower error values indicate that the model was more
effective in learning features relevant to bone age prediction
and demonstrated superior generalization to unseen data. These
results also highlight the limitations of transfer learning in
this specific application. Although, the models like ResNet50,
VGG19, and InceptionV3 have achieved success in various
domains, their general purpose architectures proved less ef-
fective than a task specific design for bone age prediction.
This underscores the advantage of developing customized
deep learning models tailored to the unique characteristics of
medical imaging tasks.

TABLE V. PERFORMANCE COMPARISON OF DIFFERENT MODELS

Model Train MAE Valid MAE Train MSE Valid MSE

Proposed CNN 3.27 3.08 22.73 15.56

ResNet50 4.12 3.36 24.51 17.43

VGG19 4.59 3.91 27.34 19.26

InceptionV3 4.72 3.94 28.01 19.87

Figure 21 presents a bar chart comparing the performance
of the four models including Custom CNN, ResNet50, VGG19,
and InceptionV3 based on both mean absolute error and mean
squared error across the training and validation phases. The
custom CNN, which was specifically designed to capture
the unique characteristics of pediatric hand X-ray images,
outperformed the pre-trained models in both metrics. Its task
specific architecture contributed to more accurate and reliable
predictions, highlighting the benefits of developing specialized
models for domain specific applications like bone age estima-
tion.

V. DISCUSSIONS

The proposed custom Convolutional Neural Network
(CNN) model performed better than the transfer learning
models and its validation Mean Absolute Error (MAE) was
3.08 months, compared to 3.36, 3.91, and 3.94 months of
ResNet50, VGG19 and InceptionV3, respectively. This leads
to the advantage of the design of domain-specific architectures
as opposed to working with general-purpose models. The task-
specific architecture of CNN, preprocessing algorithms, such

Fig. 21. Comparative performance of models on RSNA bone age dataset.

as CLAHE and ROI detection using YOLOv3 multi-scale mod-
els, led to acquired precision because it emphasized attention
on pertinent anatomical zones. These results are correlated
with previous studies that indicated that transfer learning
models often underperform on specific medical imaging tasks.
Nonetheless, the research is restricted to the study of one
dataset. The model needs to be proved in the future on other
data and in other clinical contexts to determine the extent to
which it can be generalized. The findings indicate that special
CNNs are better for giving more accurate and consistent bone
age estimation, and implementing them as a part of clinical
decision-support systems.

VI. CONCLUSION AND FUTURE WORK

This research demonstrates that deep learning based cus-
tomized CNN architecture trained on the RSNA pediatric
bone age can significantly enhance the accuracy with re-
spect to demographic invariance, effectively reducing biases
related to gender and age. On the validation set, the proposed
custom CNN achieved the lowest mean absolute error of
3.08 months, outperforming all pre-trained models including
ResNet50, VGG19, and InceptionV3. While ResNet50 and
VGG19 produced respectable results, their deeper and more
complex architectures led to overfitting, which negatively
impacted their generalization performance. The success of
the custom CNN can be attributed to its task-specific design,
which effectively captured the intricate features in pediatric
hand X-ray images that are critical for accurate bone age
estimation. Additionally, this study contributes to the growing
body of literature exploring transfer learning in medical imag-
ing. While transfer learning models offer certain advantages,
the results reinforce the notion that custom-built architec-
tures, tailored to specific datasets and clinical tasks, often
outperform general purpose models. Furthermore, the study
validated the importance of preprocessing techniques such as
Contrast Limited Adaptive Histogram Equalization (CLAHE)
and Region of Interest (ROI) detection using YOLOv3. These
steps significantly improved the model’s ability to extract
meaningful features, contributing to its overall performance.
The results indicate that deep learning approaches particularly
custom CNNs hold considerable promise for automating and
improving the precision of bone age prediction.

The next step in the research should be to verify the
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presented model using multi-institutional and multi-ethnic data
to guarantee a high degree of generalizability and power over
a variety of clinical environments. Inclusion of other clinical
characteristics in age or patient height, weight, and hormonal
information would presumably enhance prediction accuracy
and clinical relevance further. Furthermore, it would be useful
to implement the system into a real-time clinical efficiency
and to assess its effects on diagnostic efficiency and inter-
observer variability. Lastly, investigation of lightweight/edge-
optimized architectures may help enable implementation in
low-resource/point-of-care setting.
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