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Abstract—Trust is vital to collaborative work between opera-
tors and AI. Yet, important elements of its nature remain to be
investigated, including the dynamic process of trust formation,
growth, decline, and even death between an operator and an
AI. This review analyzes how the dynamic development of trust
is determined by Team performance and its complex interaction
with factors related to AI system characteristics, Operator compe-
tencies, and Contextual factors. This review summarizes current
concepts, theories, and models to propose a genuine framework
for enhancing trust. It analyzes the current understanding of
trust in human-AI collaborations, highlighting key gaps and
limitations, such as a lack of robustness, poor explainability,
and effective collaboration design. The findings emphasize the
importance of key components in this collaborative environment,
including Operator capabilities and AI technology characteris-
tics, underscoring their impact on trust. This study advances
understanding of the nature of Operator-AI collaboration and
the Dynamics of trust in trust calibration. Through a multidisci-
plinary approach, it also emphasizes the impact of Explainability,
Transparency, and trust repair mechanisms. It highlights how
Operator-AI systems can be improved through Design principles
and developing Human competencies to enhance collaboration.
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I. INTRODUCTION

The catastrophic failure of HAL 9000 in the movie “2001:
A Space Odyssey” highlights the loss of trust between humans
and artificial intelligence [1]. As humans cede more control
to Al in vital areas, fostering and nurturing trust becomes
critical. The line between beneficial cooperation and disas-
trous dependence is fine and requires careful consideration.
The ongoing effort to achieve greater integration of Artificial
Intelligence (AI) into complex operational environments is
rapidly transforming industries and reshaping the nature of
work. AI, can be defined as machines or systems capable of
performing tasks that typically require human intelligence. For
instance, the ability to learn, solve problems, perceive, and take
decisions offers unprecedented potential for human, such as
enhancing our efficiency, augmenting our capabilities, as well
as tackling previously intractable problems [2]–[5]. However,
to deploy and utilize these powerful technologies successfully,
particularly in collaborative settings with human operators,
must be on the establishment, maintenance, and calibration

of trust [6]. As AI systems are increasingly guaranteeing
autonomy and responsibility in high-stakes areas, such as
healthcare, finance, transportation, manufacturing, and defense
[4], [7], [8]. Gaining a deep understanding the dynamics of
trust within operator-AI teams today is paramount not only
for ensuring safety, but also effectiveness, and the realization
of AI’s collaborative potential [9]–[11].

The concept of trust is multifaceted and dynamic in the
context of human-AI interaction and has its own characteris-
tics. Even though It’s drawing parallels with interpersonal trust,
it still presenting unique challenges stemming from the AI’s
non-human nature [6]. Generally, it is understood as an attitude
or psychological state that involve a willingness to accept
vulnerability (under conditions of uncertainty and risk) based
on positive expectations regarding the AI’s future behavior
and capabilities. That includes its predictability, competence,
reliability, as well as the alignment with the operator’s goals
[12]. There are three main aspects that are likely to affect this
evolving attitude including the AI’s perceived performance.
For example, observed reliability, accuracy, and consistency.
The second aspect is process in particular understandability,
transparency, predictability of its model. Third is the pur-
pose and how far it aligns with operato’s goals, perceived
benevolence, and integrity of its design [13], [14]. These
three facets dynamically interact; for instance, if an AI’s
reasoning is explainable (process transparency), may lead to
better assessment of its competence by the operator and may
also be easier in predictability (performance). That potentially
fosters faster trust emergence or aids calibration after errors
[15].

How the level of operator’s trust is calibrated in the capa-
bilities of AI in a given context is critical, as it significantly
impacts adoption behavior and overall team performance [16].
Distrust or (insufficient trust) could lead to the disuse (under-
utilization) or even abandonment of valuable AI assistance.
Likewise, if an operator over-reliance or his/ her automation
bias (excessive trust) results in issues such as complacency,
reduced monitoring, and override AI errors or failure to detect
them. This misuse, potentially, may have significant negative
consequences [17].

According to Fig. 1, operators-AI collaboration could be
best when the operator’s level of trust is appropriately aligned
with the AI’ true capabilities. Failure to do so could lead to
misuse by overtrusting the AI or under trust. For this reason,
understanding trust dynamics (the entire lifecycle) is essential.
In particular, how and when trust emerges, strengthened, and
maintained before it decays or erodes. Trust can grow as a
result of good behavior, and it can also be weakened as a
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Fig. 1. Calibrating operator trust according to the true AI capabilities. Note: This figure is taken from Lee and See

[12].

result of errors and biases. In addition, knowing trust repair
strategies when it is damaged is just as important as knowing
its life cycle, and both are essential for designing systems that
promote safe, effective, and appropriately calibrated human-AI
collaboration [18].

The dynamic process of trust formation between the oper-
ator and AI throughout team performance is influenced by a
complex interplay of factors related not only to the AI system,
but also to operator, interaction and contextual factors. Factors
related to the AI system include objective performance metrics,
communication strategies employed by the AI, how the design
of transparency and explainability are featured , and even AI’s
perceived cooperativity or embodiment [19]. Human operator
factors encompass many significant elements such as individ-
ual differences including propensity to trust, domain expertise.
In addition to cognitive biases, required competencies for
interacting with AI, age, cultural background, and emotional
responses [20], [21]. For the factors related to interaction and
contextuality , literature suggests involvement in the nature of
the task, the development of shared mental models, and team
composition. Finally, the overall organizational environment
suporting human-AI teaming [22].

Despite rapid growth and advancements in research interest
to explore the trust dynamics in the Human-AI settings,
significant gaps remain. There is still a persistent need for more
longitudinal studies tracking trust dynamics over time [23],
[24] , deeper exploration of cross-cultural variations in trust
also still demanded [25], [26], validated approaches not only
to measure trust but also to capture its dynamics and reveal
its calibrated nature [27], [28], better understanding of trust
erosion and repair mechanisms following AI errors, failures or
bias [29], [30],continued examination of ethical considerations,

(for example, regarding autonomy and influence) [21], [31]
, and developing new generation of AI systems with true
teaming competencies [8], [9], [32].

The present literature review aims to synthesize current
knowledge on the dynamics of trus, its emergence, growth,
and decay within operator-AI teams. Specifically, this review
focuses primarily on new literature that reflects the latest
advancements in the field. It examines the various types of
AI systems relevant to this context of collaboration with hu-
man operators, explores the theoretical underpinnings of trust,
analyzes the key factors influencing trust dynamics in addition
to discussing strategies for building and maintaining trust.
The review also investigates mechanisms of trust erosion and
repair, and considers the implications for designing effective
and trustworthy human-AI partnerships. Through consolidating
research from diverse fields and highlighting persistent gaps,
this review seeks to provide a comprehensive overview of
the current state of understanding and inform future research
directions. The aim is to contribute in enhancing trust and
collaboration in the increasingly prevalent operator-AI teams.

A. Structure of the Review

The review is organized into several sections, as shown in
Fig. 2: Section I: structured exploration of trust dynamics in
operator-AI teams. Section II: classifying AI systems pertinent
to operator-AI collaboration, and defining the scope of AI.
Section III: primary theoretical frameworks informing trust,
from different fields. Section IV: analysis of factors influencing
trust dynamics. Factors categorized by AI, human operator,
and context. Section V: temporal processes of trust (formation,
calibration, decay, repair). Section VI: case study on Clini-
cal Decision Support Systems (CDSS). Section VII: critical
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discussion and synthesis, challenges, limitations, unresolved
questions. Section VIII: conclusion, core arguments, gaps,
methodological approach, and future directions.

Thus, having explored the foundational dynamics of trust
in operator-AI teams, it is now crucial to understand the
diverse types of AI systems involved. Therefore, Section II will
discuss classifying AI systems to identify the types relevant
to operator-AI collaboration and define the AI scope in our
review.

II. DEFINING THE SCOPE: AI SYSTEMS IN OPERATOR-AI
TEAMS

The term “Artificial Intelligence” encompasses a wide
spectrum of technologies with different capabilities and func-
tionalities [2]. In order to effectively discuss trust dynamics
in operator-AI teams, it is crucial to specify the types of AI
systems most relevant to collaborative contexts. Researchers
need to ensure that interconnectedness and common goals exist
or are possible [6], [9]. AI systems can be classified along sev-
eral dimensions, including their capabilities relative to human
intelligence, their core functionality based on how they process
information, and finally, based on their intended role and
scope within human interaction [3], [33]. Table I synthesizes
common classifications relevant to operator-AI teaming. It’s
drawn from the original draft and sources including Jutel [2],
Makarius [33], Bansal [34]–[36](Refer to Table I).

Table I [2], [33] illustrates AI systems classification in the
context of operator-AI teaming. The table classifies the AI
systems into three general groups: capability, functionality, and
scope or role. Each group is divided further into categories,
including Narrow AI (ANI), General AI (AGI), and Super AI
(ASI), according to their capabilities. The second group con-
tains AI systems classified based on functionality and encom-
passes Reactive Machines, Limited Memory (Alteration/Sym-
biotic under the Scope/Role classification), Theory of Mind,
and Self-Aware. The last group is based on the scope or role
of the AI model and contains six different types of AI systems.
The review will focus on the Limited Memory AI systems as
this category represents AI systems currently interacting with
operators and possess sophisticated capabilities within specific
domains. This category also can collaborate with humans to
adapt and share goals with medium novelty ,content changing
scope. Furthermore, these systems also can learn from experi-
ence, enabling advanced collaborations from the perspective of
organizational integration and human roles [33]. Operator-AI
teaming often involves tasks such as Augmentation, Alteration,
and potentially Autonomous systems, where the relationship
is complementary, symbiotic. The tasks also could involve
careful monitoring and intervention by the human operator.
The human role shifts from simply controlling a tool, coaching,
or overseeing to collaborating with a true and more capable AI
partner. In the future, Artificial General Intelligence (AGI) or
Superintelligence (ASI) will need more examinations as they
remain largely theoretical. Based on the above, this review
focuses primarily on interactions with Narrow AI systems
exhibiting Limited Memory functionality. These systems are
more suitable for our study because they operate in roles
that involve complementarity, symbiosis, or monitored inde-
pendence (Augmentation, Alteration, Autonomous). In such
systems, dynamic trust, reliance calibration, and effective

teaming processes are most critical and currently researched.
While future AGI might introduce radically different trust
dynamics, investigating trust with current and near-future in-
teractive Narrow AI could provide the necessary foundation.
The principles discussed, particularly regarding transparency,
reliability, communication, and human factors, are likely to
remain relevant, even if the are modified as AI capabilities
advance.

Having established the scope and types of AI systems in
this context, it is time to understand the theoretical founda-
tions for studying trust. Therefore, Section III delves into the
primary theoretical frameworks drawn from various fields that
inform our understanding of trust in the context of human-AI
collaboration.

III. THEORETICAL FOUNDATIONS OF TRUST IN
HUMAN-AI COLLABORATION

Several theoretical frameworks represent a starting point to
understand trust dynamics in operator-AI teams.

1) First, Social Exchange Theory (SET): Originating in
sociology [22], according to SET, social relationships are built
on the exchange of resources. Individuals seeking to maximize
benefits and minimize costs. Human operators are more likely
to cooperate if the perceived benefits of teaming with AI (e.g.,
improved decision making, reduced time, increased efficiency)
outweigh the costs (e.g., risk of errors, loss of control, reduced
cognitive effort). Trust develops when the perceived benefits
consistently outweigh the costs, and enhances willingness to
continue cooperation (reliance) with the AI [37], [38]. Several
factors such as perceived fairness, reliability, and competence
of the AI can influence this cost-benefit analysis and subse-
quent trust [39]. However, applying SET directly faces various
challenges due to the AI’s lack of social factors and the opacity
of its “intentions” [40].

2) Cognitive Load Theory (CLT): Focuses on the limita-
tions of human working memory, and distinguishes between
three types of memories: intrinsic load (task complexity),
extraneous load (interface/information presentation), and ger-
mane load (schema construction/learning). CLT developed in
educational psychology Sweller. In the context of human-AI
interaction, CLT states that a poorly designed AI systems
can impose high extraneous cognitive load (e.g., confusing
interfaces, overly complex explanations). This can hinder un-
derstanding and trust formation [41], [42]. Conversely, well-
designed AI can reduce cognitive load by automating routine
tasks or presenting information clearly and concisely. A well-
designed AI model more likely help in freeing up cognitive
resources for operators to better evaluate the AI’s output and
build trust [43]. Managing cognitive load is thus crucial for
effective collaboration and trust [44].

3) Human-Computer Interaction (HCI) and Technology Ac-
ceptance Models: HCI research provides numerous models for
understanding user interactions with various technologies.The
Technology Acceptance Model (TAM) and its more recent
extensions such as “AI Adoption TAM”, “User Acceptance of
AI Systems”, or “Trust and Technology Acceptance Models for
AI” are some of those basic models. These models emphasize
perceived usefulness and perceived ease of use as key elements
that determinants of technology acceptance. Both elements
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Fig. 2. Organization of the literature review.

are essential and may be considered related to trust more
recent models, including the Unified Theory of Acceptance and
Use of Technology (UTAUT), incorporate additional factors.
Some important factors are social influence and facilitating
conditions [45], [46]. In the field of HCI, multi-dimensional
models of trust in automation and AI have emerged (e.g.,
competence, benevolence, encompassing, integrity, predictabil-
ity, and dynamic). These models highlight the importance
of system characteristics such as performance, and design,
user characteristics such as disposition to trust, and finally
contextual factors in shaping trust over time [42], [47], [48].

4) Theory of Mutual Dependence or Interdependence The-
ory: Based on these theories, interdependence among team
members is crucial for achieving common goals. This applies
whether this interdependence is within traditional teamwork
between humans or between humans and artificial intelligence
[49]. In the team, trust is cornerstone and can act as an
auxiliary worker in interdependent relationships, facilitating
coordination, communication, and willingness to rely on others
[50]. In human-AI teams, this interdependence should go
both ways, requiring operators to trust the AI’s capabilities
within its designated role, while the AI (through its design)
must reliably fulfill that role [41]. Correctly calibrating trust
dynamics in light of AI capabilities is crucial and a significant
challenge, especially given the impact of influential factors.
Also, it’s important to establish shared awareness and mental
models between human and AI agents [51]–[53]. These frame-
works collectively highlight that trust in operator-AI teams
is a complex phenomenon influenced by several factors such
as perceived utility, cognitive feasibility, system design, user

psychology, and the dynamics of interdependent collaboration.

These diverse theoretical perspectives provide a robust
foundation for understanding trust in human-AI contexts. We
can now turn to a detailed analysis with these theoretical
frameworks established. Section IV systematically analyzes the
multifaceted factors identified in the literature that influence
trust dynamics.

IV. FACTORS INFLUENCING TRUST IN OPERATOR-AI
TEAMS

Trust is not static but emerges and evolves based on
interactions between the operator, the AI system, and the
context. Key influencing factors can be categorized as follows:

A. AI System Factors

1) Performance and Reliability: Performance is arguably
the most fundamental factor in building trust. It must be
consistent, accurate, and reliable [12], [39], [42]. Predictability,
or the extent to which the AI behaves as expected, is also cru-
cial [40], [54]. In addition, errors or inconsistent performance
significantly erode trust between operators and AI systems
[24], [29].

2) Automation and Trust: Fig. 3 illustrates a model of trust
in automation [12], [55], indicating the factors that directly
impact how a human operator builds and maintains trust in
automated systems and how that trust influences the operator’s
reliance on automation. At the top of the figure, the large box
indicates the general context associated with the formation
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TABLE I. CLASSIFICATIONS OF AI SYSTEMS RELEVANT TO OPERATOR-AI TEAMING

Classification Axis Category Description Examples Relevant to Teaming Typical Human Role

Based on Capability
Narrow AI (ANI) Designed for specific tasks;

cannot perform outside training
domain.

Facial recognition, Driving assistance,
Diagnostic aids, NLP chatbots, Go

programs

Controller, Collaborator

General AI (AGI) Possesses human-like cognitive
abilities; can learn and perform

various intellectual tasks (mostly
hypothetical).

Hypothetical versatile assistants or
partners.

Co-creator, Comprehend

Super AI (ASI) Surpasses human intelligence
across all domains (purely

hypothetical).

Speculative superintelligences. Comprehend

Based on Functionality

Reactive Machines Reacts to stimuli; no memory of
past experiences.

Early game AI (e.g., Deep Blue). Supervisor (limited
teaming)

Limited Memory Learns from past data/experience
to inform future decisions; most

current AI applications.

Chatbots, CDSS, Recommendation
systems, Autonomous vehicles.

Controller, Collaborator,
Coach

Theory of Mind Understands emotions, beliefs,
intentions

(conceptual/developing).

Advanced virtual assistants, Social robots. Collaborator, Co-creator

Self-Aware Possesses consciousness,
sentience (theoretical).

Hypothetical conscious AI. not specified

Based on Scope/Role

Automation / Substitution AI replaces human tasks; low
novelty, content-changing scope.

Assembly line robots, Basic DSS. Controller

Amplification / Supplementary AI enhances human analysis;
low novelty, context-changing

scope.

Predictive analytics tools. Conductor

Augmentation /
Complementary

AI assists humans in complex
tasks; medium novelty,
content-changing scope.

Surgical robots, Advanced DSS, Go
programs, Chip design AI.

Collaborator

Alteration / Symbiotic AI and humans co-create/adapt;
medium novelty,

context-changing scope.

Deep learning systems needing expert
interaction.

Co-creator

Autonomous / Independence AI operates largely
independently; high novelty,

content-changing scope.

Self-driving vehicles (higher levels). Keep-in-Check (Monitor)

Authentic / Singularity AI potentially surpasses human
roles; high novelty,

content-changing scope
(hypothetical).

Superintelligence (ASI). Comprehend

Note: Capability and Functionality classifications adapted from Jutel [2], common AI taxonomies, scope and role classification adapted from Makarius [33].

and reliance of trust, including the individual’s characteris-
tics (such as experience and personality), the organization’s
organizational structure (such as policies and procedures),
culture (differences in shared norms and values regarding
trust in technology), and the work environment context (the
circumstances and situations in which automation is used).

In the same box, the figure shows the factors that influ-
ence the level of automation implementation, which in turn
contributes to the operator’s perception and level of trust.
For example, these factors include what others say, rumors,
and interface design quality. Other factors include workload,
effort required to participate, self-confidence and personal
capabilities, perceived risks, and system setup errors related
to automation. In the middle of the model, four boxes appear
from the left to the right, representing the mechanism through
which the trust audit process progresses, from its creation to
its adoption. This process begins with gathering information,
perceptions, and beliefs about automation, followed by an
evaluation by the operator in preparation for transforming
them into practical actions by determining how to deal with
the automation and, finally, whether to adopt it. Feedback
between some stages may alter perception, evaluation, and
the operator’s readiness to embrace or avoid the automation.
This development occurs through dynamic interaction with the
application context and influencing factors.

In the lower right of the model, we find the automated

system and its related capabilities and usage procedures. On
the opposite side (bottom right), the model depicts the user
interface and its impact, including ease of use, information
reception and clarity, and ease of feedback. In the middle part,
the model demonstrates that the operator receives information
about the automation that may contribute to their understand-
ing and confidence, such as the purpose of the automation,
how it is implemented, and the quality of performance (refer
to Fig. 2).

3) Transparency and Explainability: Explainability, the
ability of human operators to understand how an AI arrives
at a decision or recommendation, and having insight into
its processes, true capabilities, and limitations (transparency)
are critical for building calibrated trust. Transparency is vital,
especially for complex or “black box” models [56], [57], [56]
ExplainableAI. Explainable AI (XAI) is a technique that aims
to provide transparency insight, which is particularly important
in high-stakes domains [58], [23], [30]. Even the availability of
explanations, whether accessed or not, can increase perceived
trustworthiness [24], [59].

4) Interface and Interaction Design: Several essential el-
ements, including User-friendly interfaces, precise feedback
mechanisms, and intuitive controls, contribute significantly to
perceived ease of use and reduce extraneous cognitive load,
fostering positive experiences and trust [6], [40], [47]. Human-
centered design (HCD) principles are critical and emphasize
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Fig. 3. The model of trust in automation, as originally proposed by [12] and modified by Sheridan [55]

tailoring the AI system to operator needs, capabilities, and
context [6], [40]. Anthropomorphism refers to the design of AI
with human-like characteristics (e.g., appearance, communica-
tion style) can sometimes foster emotional trust and rapport.
However, it can also lead to unrealistic expectations or uncanny
feelings if not implemented carefully [37], [40], [60].

B. Human Operator Factors

1) Disposition to Trust: Individuals vary in their inherent
propensity to trust others or even to reassure to use technology,
influenced by personality traits and past experiences [37], [42].
Experience and Expertise: Prior experience with AI or similar
technologies, as well as domain expertise, are significant
factors and can shape mental models and expectations of AI
systems, influencing trust levels [61], [62]. Training can help
develop accurate mental models but must be carefully designed
[43], [63].

2) Cognitive Biases: Operators are susceptible to biases
like automation bias (over-reliance on automation) or confir-
mation bias, leading to miscalibrated trust [6], [43]. Cultural
Background: Cultural norms and values can significantly in-
fluence expectations, communication styles, and perceptions
of technology, leading to cross-cultural differences in trust

towards AI (GSD Venture Studios, n.d.), [26], [40]. AI design
and interaction must consider these cultural nuances [26].

C. Contextual and Task Factors

1) Task Complexity and Criticality: Trust requirements in
the operator-AI settings are high and often higher for complex
tasks or in high-stakes environments, especially where the
consequences of failure are severe (e.g., healthcare diagnostics,
autonomous flying, military operations) [42], [64], [65].

2) Risk and Uncertainty: The capabilities of AI systems
vary depending on the model and its characteristics. Higher
perceived risk or uncertainty in the operational environment
often necessitates greater trust in the AI’s ability to perform
reliably [62], [66].

3) Organizational Culture: The organizational context, in-
cluding policies regarding AI use, transparency norms, and
support structures, can influence operator trust [67].

Understanding these categories of influencing factors is
essential, but trust is also a dynamic process that changes over
time. Therefore, Section V focuses on the temporal processes
of trust, examining how it initially forms and is calibrated and
maintained over time.
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V. TEMPORAL DYNAMICS OF TRUST: EMERGENCE,
CALIBRATION, MAINTENANCE, EROSION, AND REPAIR

Trust in an operator-AI team is dynamic rather than static.
It is created and evolves over time, up and down, due to
ongoing interactions with surrounding factors [68]. Operators
assess trust and interpret AI behavior in specific contexts.
Understanding the lifecycle of trust is crucial: how it is created,
grows, or erodes due to adverse events, the strategies for
repairing it when it is damaged, and how it is calibrated and
maintained. The above elements are essential for developing
strong and resilient partnerships in human-AI teams.

A. Trust Emergence and Initial Calibration

Initial trust between the operator and the AI is formed
before or during early interactions [12]. Usually, it is shaped by
factors such as relying on heuristics, pre-existing attitudes, and
surface-level characteristics rather than deep experience. Other
factors that may influence initial trust include the operator’s
disposition to trust technology in general [69], preconceptions
based on reputation or prior experiences with AI or similar
systems, the perceived purpose and design pedigree of the
AI (e.g., developed by a reputable source), in addition to
interface characteristics that signal professionalism or usability
[12]. Initial interactions are critical; early positive experiences
demonstrating reliability and competence can establish a pos-
itive trajectory. Similarly, early failures can disproportionately
damage nascent trust [12], [69].

Operators begin trust calibration as the interactions with
the AI progresses. They adjust their level of trust to align
with the AI’s perceived capabilities and limitations in the
context [12]. AI processes and boundaries require transparent
and accurate feedback on their performance to succeed in the
calibration effectively. Providing explanations, particularly
those relevant to the task and understandable to the operator
(e.g., example-based or counterfactual explanations according
to the contexts), can aid this process by supporting operators
in building more accurate mental models of the AI’s
reasoning [6], [16]. However, ineffective or overly complex
explanations can do the opposite. Poor explanations can
hinder calibration. Explicitly revealing AI uncertainty or
confidence levels can also be profitable in aiding calibration,
even though it may sometimes decrease overall trust levels
[6], [70]. Several models are being explored and incorporating
Bayesian learning, which refers to applying probability
theory to learning from data, especially regarding trust and
interpretability [71]. The way operators update their appraisal
of AI capabilities could be captured through the exploration
based on observed outcomes [72] . To avoid the pitfalls of
over-trust or under-trust, successful calibration is essential.

B. Trust Maintenance

The process of maintaining trust begins once it is estab-
lished and calibrated between the operator and the AI [42].
Sustained reliability and predictable performance are crucial
[12], [42]. Operators can anticipate AI actions and integrate
them smoothly into their workflow through predictability.
[54]. The importance of transparency goes beyond just the
initial calibration but also effective communication, and on-
going verification, understanding. This importance is vital in

a changeable environment or when AI’s behavior is modified.
Helpful strategies, such as proactive updates or confirmations,
can reinforce perceptions of reliability and teamwork, con-
tributing to trust maintenance [70]. Furthermore, AI systems
designed with intuitive human-centered principles that align
with operator workflows and cognitive limits are crucial and
more likely to sustain trust over time by ensuring good user
experiences [6], [11]. Sharing learning, an environment where
both humans and AI can exchange knowledge and experience
through collaboration, strengthen relationships, and preserve
trust [11].

C. Trust Erosion

Trust can be described as “hard-won but easily lost”. It has
several actors that lead to trust erosion: First, AI errors and
failures are the most direct reasons trust decreases. Although
trust can be easily affected be errors, the type of error, its
frequency, and its severity may have the greatest impact [12],
[42], [54]). Sometimes, occasional errors, especially critical or
unexpected ones, can significantly affect or damage trust.

The next cause can be the lack of transparency and ex-
plainability [57], as operators need to know everything while
collaborating with their intelligent partners. Issues can arise
when AI fails or behaves unexpectedly. Black-Box issues can
be a real problem by hindering users’ understanding of the
cause of system errors. As a result, users may feel frustrated,
uncertain, confused, and lack control [12], [16], [73]. Also,
poor interpretations can lead to similar harms and results,
leading to dissatisfaction or overtrust of the system.

Unreliable performance can make predictability difficult
[42], negatively impacting the operator’s trust in the system.
For instance, surprises in AI system behavior can cause system
performance to fluctuate, leading to a gradual erosion of trust
over time [12], [63]. Other harmful reasons are perceived bias
and unfairness. AI biased or unfair actions would cause dam-
age to trust, particularly if they negatively impact the operator
or specific groups. Trust can be severely damaged [33], [63].
Similarly, a discrepancy between operator expectations and the
actions of an AI system can negatively impact trust between
the two. Sometimes, AI capabilities are exaggerated, leading
to feelings of disappointment or distrust, especially in early
interactions with the system [12]. Trust can also be decreased
as a result of poor usability or communication and can lead
to trust decreased [12]. Communication is vital for operators
while teaming with an AI partner. Awkward interfaces, am-
biguous feedback, or ineffective communication protocols may
create friction, confusion, and frustration. Leading to negative
impacts on the user experience and indirectly eroding trust
[12], [16], [70]. Finally, the context also matters because errors
in high-stakes situations typically cause more significant trust
erosion than errors in low-stakes contexts [42], [73].

D. Trust Repair

Trust may be easily damaged and must quickly be repaired
[74]. Rebuilding trust after damage is not an easy challenge
in human-AI interaction. Arguably, it can be even more so
than in human relationships due to the AI’s lack of genuine
social recourse (e.g., repentance, sincere apology, remorse).
Research indicates that simple apologies or explanations for
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AI failure have shown only marginal effectiveness in restoring
trust [29]. The study found apologies and explanations to be
the most effective relative strategies compared to not taking
action or no repair; however, their overall impact was not very
influential.

First, acknowledging and explaining failures is a must
action. Transparency about the source of an error is crucial,
moving beyond simple apologies [6], [16]. Tailored explana-
tions that address the specific failure context may be needed.
Also, demonstrating corrective action could be a good strategy
[74]. We need to confirm to the operators that the underlying
cause of the failure has been handled (e.g., communication,
policy, algorithm update, retraining) and that affected trust can
be rebuilt faster. Nevertheless, It is essential to work towards
consistent future performance. Reestablishing a track history of
reliable and predictable behavior after a failure and overwriting
the negative experience can be a strategy for repairing trust [6],
[12]. Additionally, an innovative solution could be providing a
means of control to the operator or the appropriate agency
as support; this may help restore damaged trust [75]. This
support could provide transparency and regain trust. Allowing
operators to understand, verify, and potentially override AI
actions, such transparent procedure can aid in restoring a sense
of control and mitigate the vulnerability associated with trust
decrease [31]. Longitudinal studies demonstrate that expla-
nations accelerate trust restoration after a malfunction. This
acceleration can be beneficial even if not always accessed [24].
However, We must acknowledge a need to develop accurate
and effective solutions that guarantee systematic trust repair
strategies for human-AI teams. This demand remains an open
research area.

E. Trust Measurements

Trust is multifaceted and changes over time, so no single
metric may be sufficient to assess it or measure the perfor-
mance of the operator and AI team. Table II and Table III
summarize the most important metrics used to assess trust and
evaluate the effectiveness of the operator and AI team.

Table II shows several metrics for measuring trust drawn
from various fields (human factors, HCI, and psychology
research). Questionnaires and surveys are the most commonly
used metrics due to their ease of use and are a branch of self-
report metrics. Standardized trust scales are also used to assess
predictive ability, perceived reliability, and trustworthiness,
particularly in automation and artificial intelligence. There are
two other questionnaire and survey scales: Likert-type and
semantic differential scales, which ask the user to rate their
level of agreement with a specific statement and use bipolar
adjectives such as trustworthy-untrustworthy, respectively. The
final scale used in questionnaires and surveys is Interview/Fo-
cus Groups, which focus on identifying causes and explaining
phenomena, such as which factors specifically led to a high or
low level of trust. The second type of scale that can be used
to measure trust is Behavioral Measures (objective), which
focus on observing how the operator interacts with the artificial
intelligence system. Three measures under this category are
Reliance/Adherence, Task Performance, and Interaction Pat-
terns. Each has its purpose and nature; some are used for
measuring the frequency of a particular phenomenon, others
for error rate or the extent of the operator’s need to search

for information such as clarification or assistance. The final
category of trust metrics that can be employed in an operator-
AI team are Physiological Measures (Objective but more
complex). These metrics involve observing a human operator’s
vital signs, such as Heart Rate Variability (HRV), Galvanic
Skin Response (GSR)/ Electrodermal Activity (EDA), and Eye
Tracking.

Table III shows which metrics are used for measuring
operator-AI teamwork. Operator-AI Collaboration is a crucial
measure, and its metrics overlap with trust metrics [76], but
they focus on the effectiveness and nature of joint work.
Operator-AI Collaboration is measured using the Team Per-
formance Metrics, which measure efficiency, accuracy, and
workload—interaction Quality Metrics for evaluating com-
munication effectiveness, mutual understanding, role clarity,
allocation, and adaptability. For Subjective Collaboration Mea-
sures, usually asks perators to reate some aspects. For instance,
“I felt the AI was a bad manager” or “I comprehended
how the AI was finishing the task”. In addition, Subjective
Collaboration Measures could also be used to find out how
well the operator feels integrated with the AI as a team (refer
to Table III).

The important question is what is the appropriate measure
for measuring trust between operators and artificial intelli-
gence (AI)? In addition, what is the best way to assess their
collaborative relationship? Given the fluid and multifaceted
nature of trust, more than one type of measure may be needed
depending on the scope of the application and its extent,
which underscores the importance of context. Trust must be
measured at various levels for the trust enhancement model
proposed following this review, which will primarily focus
on enhancing trust in the operator-AI environment. There will
likely be a need for subjective (e.g. questionnaires) measures
with objectives (e.g., behavioral) related to the human element,
the AI system, and context. These measures are also essential
in most fields, such as ethical principles, measuring AI’s true
capabilities, and the human operator’s readiness. By integrating
these measures, weaknesses that have arisen in previous studies
due to the absence of necessary measures can be overcome.
Trust formation, decay, and repair mechanisms are fundamen-
tal, especially in high-stakes environments. To illustrate these
concepts in practice, Section VI presents a case study focused
on Clinical Decision Support Systems (CDSS). The CDSS
provides a window to examine the evolution of trust through
its various stages.

VI. CASE STUDY: TRUST CALIBRATION DYNAMICS IN
CLINICAL DECISION SUPPORT SYSTEMS

Many challenges of trust dynamics are uncovered in the
CDSS case study [77], particularly in the calibration. These
challenges and the impact of system design are vividly de-
scribed in the context of Clinical Decision Support Systems
(CDSS). In a high-stakes environment where decisions require
high accuracy and reliability (examination and prescribing
chemotherapy to patients), the study examined the impact
of XAI’s explanations on trust levels among 41 medical
practitioners. Four categories of explanations were compared
(example-based, global information-based, local context-based,
and unrealistic explanations). Participants interacted with sce-
narios featuring both correct and incorrect AI recommenda-
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TABLE II. METRICS FOR TRUST IN OPERATOR-AI COLLABORATION

Metric Category Measurement Methods Focus of Measurement
Self-Report Questionnaires/Surveys, Interviews/Focus Groups Subjective perceptions and beliefs about AI trustwor-

thiness.
Behavioral Reliance/Adherence, Task Performance, Interaction Observable actions and patterns of operator behavior

when interacting with AI.
Physiological HRV, GSR/EDA, Eye Tracking Physiological responses that may correlate with trust,

stress, or cognitive load related to the AI.

TABLE III. METRICS FOR MEASURING OPERATOR-AI COLLABORATION

Metric Category Measurement Methods Focus of Measurement
Team Performance Efficiency, Accuracy, Workload (Subjective/Ob-

jective), Situation Awareness
Effectiveness of the combined human-AI system
in achieving task goals.

Interaction Quality Communication Effectiveness, Mutual Under-
standing, Role Clarity/Allocation, Adaptability

Nature and quality of the interaction between the
operator and the AI system.

Subjective Collaboration Collaboration Experience Questionnaires, Per-
ceived Team Cohesion

Operator’s perceptions and feelings about working
collaboratively with the AI.

Note: Tables II and III are adapted from [76]. Table II focuses on trust measures, and Table III shows the measures used to evaluate team
performance.

tions, then trust was assessed using self-reported cognitive
dimensions (understandability, reliability, competence) and be-
havioral indicators (agreement with AI, switching decisions,
overall human-AI performance).

1) Trust Emergence and Understandability: The case study
results indicated the importance of the type of explanation.
The study found that the initial impressions were significantly
influenced by the type of explanation provided. Example-
based and unrealistic explanations were easier to understand
and distinguish than other explanations (public and local).
According to the results, explanations that included concrete
examples or “what if” scenarios were more straightforward
to comprehend than abstract scores. This finding aligns with
psychological principles suggesting humans favor familiar,
causal explanations. In addition, some participants have to
separate local and global interpretations or misinterpret them
due to difficulty in understanding them, ultimately hindering
the possibility of these interpretations strengthening initial
trust. This finding is consistent with psychological princi-
ples that humans favor familiar, known causal explanations.
Furthermore, some practitioners have been forced to misuse
local and global explanations because they are difficult to
understand, which ultimately leads to these explanations not
strengthening initial trust. This finding suggests that humans
prefer only well-known logical explanations.

2) Trust Calibration Challenges: While providing expla-
nations (regardless of class) improved overall human-AI task
performance compared to no explanation, a critical finding
emerged regarding calibration: explanations did not signifi-
cantly help practitioners recognize incorrect AI recommenda-
tions. Explanations did not help practitioners substantially rec-
ognize incorrect AI recommendations. Participants found de-
fective AI suggestions, including the no-explanation baseline,
not easy to disagree with across all explanation conditions.
Furthermore, providing explanations significantly increased
participants’ agreement with AI recommendations compared to
not providing any explanations. Therefore, suggesting expla-
nations may inadvertently lead to overreliance or confirmation
bias. Participants may have used explanations heuristically
(System 1 thinking) as a signal of AI competence rather
than engaging in deeper critical analysis (System 2 thinking),

especially given workflow pressures.

3) Trust Decay and Contextual Needs: Qualitative feed-
back revealed critical factors that could lead to trust erosion
or prevent trust from developing appropriately, even with
explanations. Participants provided feedback expressing their
concern that in their feedback, participants voiced concern
when explanations seemed disconnected from clinical context
or task constraints (For example, explanations that are unre-
lated to the patient’s condition or seem unrealistic). In addition,
participants highlighted the need for assurances regarding the
validity and capability of the explanation method (e.g., data
integrity used, consistency) and allowing for desired tailoring
and customization to fit professionals’ specific workflow and
information needs. The lack of multi-step explainability or the
ability to ask follow-up questions about an explanation was
also a barrier to deeper understanding and trust validation.

This critical case study powerfully demonstrates that
simply providing explanations is insufficient for ensuring
appropriate trust calibration in operator-AI teams. The
study shows that explanations’ type, design, usability, and
contextual relevance critically influence how operators
perceive, understand, and ultimately rely on AI systems. It
highlights the risk of explanations fostering over-reliance if
not carefully designed and integrated. In addition, the findings
underscore the need for interfaces that support critical
thinking, address usability constraints, provide necessary
assurances, and allow for user adaptation and deeper inquiry.
This case study illustrates the complexities of confidence
calibration in a credit decision support system. Based on
these specific examples, we now turn to Section VII, which
provides a critical discussion and summarizes the key findings
from all the previous sections.

VII. DISCUSSION

AI teams’ evolving and expanding landscape requires op-
erators to understand the dynamics of trust, a critical factor in
successful collaboration. This literature review explores this
vital topic, highlighting the shift toward viewing AI as a
team partner rather than simply a tool, revealing the complex
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nature of trust in these contexts, synthesizing various theo-
retical perspectives and research findings, and revealing key
themes, significant challenges, and critical tips for future work.
Building upon this overview, the following section delves into
synthesizing the key findings regarding the multi-determined
nature of trust dynamics.

A. Synthesis: The Multi-Determined Nature of Trust Dynamics

Researchers have consistently demonstrated that trust has a
lifecycle through which it emerges, grows, and begins to decay.
Trust is not driven by any single factor. Instead, it results from
a complex interplay between the AI system’s characteristics,
the human operator’s attributes, and the interaction context
[12], [42]. AI performance and reliability are the foundation
of trust [12], [37]. But these important factors are just as
important as other key factors, such as transparency and
explainability. This importance is particularly true in high-risk
environments or sensitive systems [6], [16], [73]. Clear ex-
planations facilitate operator roles and help operators calibrate
trust; in other words, while performance and reliability form
the foundation of solid trust, it is important to remember that
“reliability” is not a fixed measure. Its perception can be highly
subjective. An AI system may be objectively reliable, but trust
can quickly erode if the operator fails to make decisions or if
occasional errors are not explained and addressed effectively.
This finding suggests that subjective perceptions of reliability,
influenced by transparency and interpretability, are just as im-
portant, if not more so, than objective technical performance.
On the other hand, complex or poorly designed explanations
should be avoided. They can hinder usability, cause serious
problems, and increase cognitive load. Poor explanations can
also lead to over-reliance on AI or avoiding it over time.

While AI capabilities form a foundation for trust, the role
of the human operator is equally vital. The human element
is equally critical. Individual differences, willingness to trust,
expertise, cognitive styles, and competencies, all these factors
affect how operators perceive AI [12], [20], [78]. Cultural
background emerges as vital in trust dynamics, nevertheless
often Ignored. An operator’s artistic background is an essential
factor that can significantly influence trust perceptions and
expectations of the team in trust [26]. The frequent neglect
of cultural and even artistic backgrounds in current research
is significant. This gap may be due to the predominant focus
on the technical aspects of AI. However, the fundamental truth
is that this technology ultimately approaches humans from an
inherently cultural and individual perspective. For example, an
operator from a particular culture may prioritize AI’s ability
to integrate with group systems seamlessly. In contrast, an op-
erator from an individualistic culture may emphasize security
and privacy more. Similarly, an artist may be more attuned
to AI’s creative potential and fine-grained judgment, while an
engineer may prioritize precision and logical reasoning. These
differences can lead to significant variations in trust formation
and team dynamics. Developing shared mental models and how
cooperative they seem can greatly affect the teamwork and
trust levels [27], [22], [70]. The Hanabi experiment highlights
a crucial point. The game experiment highlights how subjective
perceptions of teamwork and agent interpretability can diverge
from objective performance. Sometimes, rule-based agents are
preferred over objectively comparable, but less predictable,
learning-based agents [27], [79]. In other words, people such

as operators might choose to work with an AI that they
“understand” and “feel comfortable” with, even if that AI isn’t
the one that is better or will not necessarily achieve the highest
score. Trust and perceived teamwork matter. The way in which
an AI agent is predictable and interpretable can influence them.

Although the above synthesis presents a clear picture of
trust dynamics and the factors influencing them, it is important
to recognize that there are still many ongoing challenges and
limitations in the operator-AI environment that merit further
discussion.

B. Critique: Persistent Challenges and Limitations

Despite the advances, several critical challenges continue
in operator-AI settings. Firstly, the problem of trust calibration
stays central as indicated by Naiseah and Vössing in [16] and
[6]. According to Naiseah and Vössing, even well-intentioned
transparency mechanisms, such as explanations, don’t automat-
ically guarantee appropriate reliance; explanations can some-
times lead to over-trust or fail to help users detect AI errors.
A significant limitation is designing adequate interfaces and
precise interactions that promote critical evaluation (System 2
thinking) rather than heuristic acceptance (System 1 thinking).

Another significant issue is that we are still unable to
understand the deep problem of trust repair, especially after
significant AI failures, and it’s still challenging to achieve it
successfully. Current strategies have not gone beyond Apology,
and basic explanations are still insufficient [29]. One of the
challenges that complicates repair efforts is the asymmetry
of the operator-AI relationship. AI lacks genuine remorse
and social accountability, which is taken from interpersonal
trust literature. Additional research is needed on robust repair
mechanisms. The new studies potentially involve verifiable
demonstrations of learning and correction by AI.

Researchers conduct most studies in AI from a Western
perspective, often ignoring other perspectives. Furthermore,
much of the researches are conducted in laboratories and
controlled environments. Often, non-experts participate, or
participants perform simple roles. For instance, while useful,
the Hanabi game [27] may not capture high-stakes complex-
ities. Longitudinal studies can help us better understand trust
dynamics, especially when done in real-world settings. These
studies allow us to track changes and influencing factors
over time. These studies are rare, but they are essential [24],
[59]. Furthermore, a significant portion of research on AI
technologies originates from Western cultural contexts. This
central view can limit the generalizability of findings and
potentially lead to culturally inappropriate AI designs [25],
[26]. Beyond these practical challenges, broader cultural issues
also complicate the field.

Fourth, the very definition and measurement of “teaming”
and “trust” in the human-AI context are still evolving, which
confirms the need for more extensive and accurate studies.
Metrics that primarily focus on measuring task performance
fail to measure the subjective quality of the interaction, po-
tentially impacting long-term adoption and effectiveness [27],
[79]. There is still a great need for vital multidimensional mea-
sures that can capture tangible cooperation, shared importance,
and measured dependence. Given these challenges, the findings
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compiled in this review have direct implications for AI design,
training, and policy.

C. Implications for Design, Training, and Policy

The synthesized results of our review confirm the direct
implications of trust on AI design, particularly concerning
human-centered approaches [6], [58]. The repercussions mean
prioritizing not just AI System performance but also designing
transparency and explainability features that are genuinely
useful and understandable to the specific operator in their
context [6], [16], [30]. To achieve this, it is required to
involve end-users in the design process and considering their
needs and preferences. As well as cognitive load, usability,
and design for effective communication [70]. Incorporating
mechanisms for behavioral synchrony [19] could also enhance
teaming. Trust dynamics also significantly impact how tasks
are allocated between humans and AI. When operators do not
trust AI, they often rely on manual methods, decreasing effi-
ciency. Conversely, over-reliance on AI can lead to unjustified
trust and potentially fatal errors. Therefore, understanding and
managing trust goes beyond just a psychological issue; it is
a fundamental aspect of effective work design in operator-
AI teams. In addition, considering the division of labor and
interaction patterns from an organizational design perspective
can provide structure [11], [41]. Crucially, designs must be
sensitive to potential cultural differences in expectations and
interaction styles.

For operator training and competency development, the
focus should be on the key factors that enhance operator trust.
In particular, there is a demand to focus on the key appropriate
mental models of AI capabilities. Critical evaluation skills are
essential for operators; it is important for training to go beyond
technical skills. Operators need “trust literacy”, meaning they
can critically evaluate AI, calibrate their trust appropriately,
and understand when and how to intervene. In addition,
operators must develop the competencies necessary to interact
with AI, including digital literacy, adaptability, collaboration,
and problem-solving skills [78]. Finally, training should ex-
plicitly address foundational issues such as automation bias
and calibration strategies. Such capabilities have implications
for curriculum development and assessment across multiple
disciplines.

Form organizational policy, promoting and fostering a
new culture that supports transparency, ethical oversight, and
learning from successes and failures in human-AI teaming
is vital [6], [33]. As a necessary direction for policies for
the manufacture and employment of human-based artificial
intelligence, clear guidelines on roles, responsibilities, and
accountability within human-AI teams are essential, especially
in high-stakes domains [6], [73]. Who is responsible when
something goes wrong in a human-AI team? The dynamics
of trust can blur the lines of accountability. Who bears re-
sponsibility if an operator gives AI too much trust and follows
incorrect advice? The operator or the AI designer? These legal
and ethical considerations need to be studied and regulated.
Policies should also consider the potential for differential
impacts of AI systems adoption across demographic groups,
e.g., age [20]. These findings highlight several gaps in the
existing literature, warranting further future investigations in
several areas.

D. Future Research Directions

The existing body of literature highlights significant gaps
that necessitate future investigation in several areas. First,
there is a need for cross-cultural trust dynamics studies, espe-
cially for conducting empirical studies across diverse cultural
contexts. These studies are essential to comprehending how
cultural values, norms, and communication styles interact with
trust dynamics and how these cultural elements shape trust
emergence, calibration, and repair in human-AI teams. De-
veloping culturally adaptive AI interaction designs is another
study area. Future research also needs to look at longitudinal
studies. Literature highlights the importance of implementing
long-term studies, especially in realistic operational settings,
to observe how trust evolves. Also, to learn how to adapt to
changing AI capabilities or task demands and recover (or fail
to recover) from significant failures over time. In addition,
current research underscores the importance of conducting a
study to explore effective trust repair mechanisms. There is a
need to move beyond simple apologies and explanations. It is
time to investigate and develop robust trust repair strategies,
potentially involving demonstrable AI learning and correction,
adaptive transparency levels, or mechanisms for shared respon-
sibility.

The next area that the thorough review reveals a compelling
need to examine is calibration interventions. Literature high-
lights the need for evaluating and designing interfaces and
training methods specifically aimed at improving trust cali-
bration, helping users critically assess AI output, and avoiding
over-reliance and under-reliance. These topics are significant
in areas that require a cognitive load or time pressure. The
development of diverse and effective AI error detection tools
is also required. Their role should extend beyond identifying
correct outputs to include error checking.

For the coming AI systems, researchers must further define
and investigate the critical issues beyond task performance,
including “teaming competencies”. AI agents need to be
perceived as effective collaborators by humans. Specifically,
proactive communication, adaptivity, predictability, and ex-
pressing intent. Ethical frameworks for trust are more nec-
essary than ever. Researchers must continue to explore and
connect such frameworks to aspects of our lives in general
and to the trustworthy cooperation of the operator AI in
particular. The focus must address potential issues of manip-
ulation, undue influence, and the balance between fostering
trust through ethics and privacy, and security and between
maintaining appropriate operator’s vigilance and autonomy.
The findings also underscore the importance of developing
future AI models capable of tracking trust and addressing its
dynamics, particularly within operator-AI team settings. These
models must feature advanced capabilities that address bias,
emotions, and social influence and have the ability to learn
over time [72].

E. Solutions from Existing Literature

This review highlights significant gaps in the current under-
standing of trust dynamics in operator-AI collaboration, partic-
ularly regarding enhancing trust by increasing AI transparency
and explainability (XAI), the need for adaptive trust calibration
mechanisms, designing effective human-AI collaborations and
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teams, ensuring AI robustness, communicating uncertainty,
and incorporating ethical AI principles and governance into
design. The current literature offers emerging and promising
directions for addressing these challenges. For example, the
explorations of the need to develop human-centered XAI
designs, presented in [80], can be adapted to provide insights
into the problem of black-box systems, which are one of the
reasons why decisions are difficult for operators to understand,
undermining trust and complicating problem diagnosis. New
designs provide understandable explanations (a posteriori and
a priori), focusing on how these explanations are presented,
such as through visual interfaces or natural language. The
goal is to enhance operator understanding and trust. Similarly,
implementing the mechanisms proposed by [81] can support
adaptive trust calibration solutions for dynamic systems where
operators rely on AI. These systems use real-time feedback
about AI trust and uncertainty and targeted training inter-
ventions to help operators maintain appropriate trust levels.
Similarly, to meet the requirements for effective human-AI
teamwork and collaboration models, a potential solution may
be [82]. It can provide a valuable perspective for reconsidering
the weaknesses of human-AI collaboration caused by unclear
roles, communication breakdowns, and a lack of shared un-
derstanding of tasks and constraints that can be addressed.
According to this work, human-AI teamwork can be enhanced
by focusing on joint task design where roles are optimally
distributed based on strengths. This includes enabling shared
mental models through AI design and implementing flexible
autonomy for dynamic control transitions. Trust erosion is
another gap caused by miscommunication or errors in AI.
The work presented in [83], [84] can help address this trust
erosion. AI systems are known to fail unexpectedly or behave
unpredictably, significantly eroding user trust and potentially
leading to risks with dire consequences. Integrating ethical
AI principles and governance into all phases of the AI de-
velopment lifecycle is the missing solution to this problem.
Implementing bias detection techniques, fairness metrics, and
privacy preservation will be helpful. Success in achieving this
could lead to building systematic trust through responsible
design and auditing, as proposed in [84], [85]. We still need
to expand the scope of ethical principles. This expansion will
address broader ethical concerns such as bias, fairness, and
accountability. Addressing these concerns increases operator
trust and facilitates AI adoption. These challenges and limita-
tions pave the way for future research. Finally, Section VIII
concludes with a review and summarizes the main arguments.

To summrize, scholarly articles in the review consistently
highlighted essential and inspiring subjects. Handling these
dreaming topics through continued interdisciplinary collabora-
tion is the only way to bring them into reality. It is necessary
to continue combining insights from computer science, human
factors, psychology, sociology, and organizational sciences.
Only in this way can we realize this bright future vision, one
in which more reliable AI systems collaborate with a greater
understanding of the dynamics of trust. Even more importantly,
we can address imminent risks, such as those witnessed in
HAL 9000 from the movie “2001: A Space Odyssey” story,
which reminds us of the importance of calibrating and en-
hancing trust between humans and their artificial companions
at all stages. While these gaps exist, the current literature
offers emerging and promising directions for addressing these

challenges.

VIII. CONCLUSIONS

Trust is dynamic, not static. It has a starting point and
grows and wanes according to the influencing factors that
intertwine to define its parameters. These significant factors
include human perception, AI capabilities, and changing con-
text. Given the importance of trust, we must know the best
ways to maintain it. Indeed, we need to dig deeper to know
more about the factors that lead to its rise and decline and
the best strategies for repairing it if it is damaged. Despite
significant progress, our current methods fall short of capturing
the intricacies of trust, emphasizing the need for more work to
explore the mysteries of trust in the new and rapidly expanding
work environments. AI performance is often referred to as
the foundation upon which trust in human-AI collaboration
rests. Other equally essential elements include transparency,
explainability, and accuracy. However, a closer look reveals
that these foundations suffer from cognitive holes and require
continued efforts to bridge existing gaps, several of which were
revealed by this review. AI system transparency is an important
and influential factor in collaborative work in human-AI teams.
However, it was found that it is not always sufficient when
we looked closely at the results of a case study on an XAI
used as a Clinical Decision Support System to assess the
importance and impact of transparency. In this study, operators
(healthcare practitioners) were presented with explanations
varying in clarity levels, ranging from start forward to semi-
clear to inconsistent. The results demonstrated that simply
providing explanations for transparency does not transform a
black box problem into a white box and, most importantly,
does not ensure proper trust calibration. In the study, some
explanations reinforced overreliance on the system, while
participants ignored others, especially unclear or inaccurate
ones. These conclusions indeed raise our concern in such a
high-stakes environment, and it is a wake-up call—people
focused on providing information, not necessarily ensuring its
compatibility with human understanding and critical evalua-
tion. Digging deeper, it was found several factors influencing
the nature of trust, some related to AI systems, others to
operators and context. These multiple factors interact in a
complex dynamic that ultimately enhances or degrades trust.
Operators have inherent skill capabilities and influential cog-
nitive limitations, including individual propensities, cognitive
biases, and cultural backgrounds, whose role in shaping trust
should not be overlooked. In addition, there are the required
competencies for interacting with AI. While understanding
the human factors involved in communication and teamwork
is vital, this is insufficient www.ijacsa.thesai.org 12 — P a
g e (IJACSA) International Journal of Advanced Computer
Science and Applications, Vol. 16, No. 07, 2025 in a human-
machine environment devoid of human emotions and social
stimuli. On the contrary, this relationship with unstable and
renewable factors presents new challenges, many of which
still need to be explored. Why do the cross-cultural variations
remain a glaring gray spot when partnering with AI? Similarly,
are Western-centric models universal, or are studies overlook-
ing crucial cultural nuances that drastically alter human-AI
interactions? And how can people expect operators to develop
calibrated trust when training often neglects to equip them with
the critical skills for evaluating AI? Also, what would happen
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if we left operators without enough knowledge or when leaving
them vulnerable to automation bias and misinterpretations?
Many fundamental questions related to the human aspect need
scientific answers. As highlighted in the literature, we need to
transform operators from passive users into active, discerning
partners who can interpret and measure AI trust and not just
accept the system as a black box. To successfully measure
trust across its various stages, different metrics will need to
be used depending on the context and complexity, in addition
to each factor that must be measured in both the human and
machine elements. Our review highlights several important
gaps that require further research. First, we urgently need
new requirements for the responsible design and deployment
of AI systems, especially given the rapid developments in
this field. Furthermore, a practical methodology is needed to
ensure that the design adheres to the new requirements and
the principles of ethics, transparency, and accountability to
achieve responsible and trustworthy AI. During the collabo-
ration lifecycle, the dynamic nature of trust (its fragile emer-
gence, difficult maintenance, rapid erosion, and arduous repair)
further complicates matters. Current attempts at trust repair are
still limited to apologies or basic explanations, which appear
woefully inadequate. Can an apology or clear explanation
mend trust damaged by a system perceived as unreliable or
biased? Or do we need to explore more human-like elements
of trust repair? Likewise, despite growing recognition that
AI is moving beyond a simple tool to a teammate, existing
theoretical models struggle to keep pace. Existing frameworks
are often helpful but fail to capture the unique challenges of
human-AI interdependence fully. Similarly, there is a need
to bridge the widening gap toward developing future systems
capable of comprehensively replacing humans or transforming
their role to become more like a tool used in a specific
context when needed. So far, the hope to accurately define and
measure “trust” and “operator-AI collaboration”. The current
metrics still fail to capture the essence of this relationship.
The limitations we face in this regard are not merely academic
controversies; they are realities with dire consequences unless
more is done to bridge the gaps. Miscalibrating the future of
human-AI teams will lead to disastrous consequences. This
threat is most acute in high-risk areas, including healthcare,
transportation, and defense. Society is entering an era of
risks cloaked in complacency and misunderstanding. Inno-
vative solutions need to be prioritized over the promise of
AI efficiency. The review adopted a systematic approach to
analyzing the existing literature by collecting and categorizing
research papers in the selected field (the dynamics of trust in
the collaborative environment between operators and artificial
intelligence) to reveal areas of research focus and, conversely,
absence. This task was followed by reviewing and examining
relevant theoretical foundations that addressed the relationship
between humans and modern technologies, such as AI, within
the framework of collaborative work. The methodology identi-
fied areas where findings conflicted or where different studies
used incompatible definitions. Synthesizing the findings, it was
possible to determine whether certain aspects of “trust” or
“operator-AI collaboration” were consistently overlooked or
only superficially addressed. The synthesized outcome allowed
for a comprehensive mapping of the current landscape of
human-AI trust research, revealing underexplored areas and
methodological inconsistencies. The identified gaps provide
a rationale for the need for a framework, and these findings

directly shape the aspects that the framework this review aims
to address. The review confirms that the current approach
is insufficient and that we need a fundamental shift beyond
the stereotypical view of trust as merely a given emotion.
Instead, trust must become a valuable ranking acquired through
careful design of future operators’ behaviors, perceptions, and
ethics. This recommendation is consistent with the review
gaps and emphasizes the need for a new approach to address
the human aspects of operator-AI partnerships effectively.
Therefore, exploring an innovative framework to address these
needs, informed by cognitive and affective factors, will go
beyond an academic endeavor to a vital solution. Through
it, the hope is to contribute to safeguarding the future of
this rapidly transformative technology. The new framework
promises to transcend current limitations and enhance trust in
human-AI collaborations. The development of this framework
will be the focus of my following methodological study.
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