
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

129 | P a g e

www.ijacsa.thesai.org

niCNN: A Novel Neuromorphic Approach to Energy-

Efficient and Lightweight Human Activity

Recognition on Edge Devices

Preeti Agarwal

School of Technology Management and Engineering,

Narsee Monjee Institute of Management Studies, Maharashtra, India

Abstract—Recent years have seen a surge in the use of deep

learning for human activity recognition (HAR) in various

applications. However, running complex deep learning models on

edge devices with limited resources, such as processing power,

memory, and energy, is challenging. The objective of this study is

to design a novel, lightweight and energy-efficient neuromorphic

inspired CNN (niCNN) architecture for real-time HAR on edge

devices. The niCNN architecture consists of four stages: design of

a shallow CNN, conversion into an equivalent spiking network

using Clamping and Quantization (CnQ) algorithm to minimize

information loss, threshold balancing to calculate spiking neuron

firing rate using Threshold Firing (TF) algorithm, and edge

deployment. The experimental evaluation shows that the niCNN

architecture achieves 97.25% and 98.92% accuracy on two

publicly accessible HAR datasets, WISDM and mHealth.

Furthermore, the niCNN technique retains a low inference latency

of 2.25 ms and 2.36 ms, as well as a low memory utilization of 22.11

KB and 31.84 KB, respectively. Furthermore, energy usage is

reduced to 5.2w and 5.8w. In comparison to various state-of-the-

art and baseline CNN models, the niCNN architecture

outperforms them in terms of classification metrics, memory

usage, energy consumption, and inference delay. The CnQ

algorithm reduces memory usage and inference latency, while the

TF algorithm improves classification accuracy. The findings show

that neuromorphic computing has a lot of potential for resource-

constrained edge devices.

Keywords—Neuromorphic computing; human activity

recognition (HAR); edge computing; convolution neural network

(CNN); spiking neural network (SNN); sensors

I. INTRODUCTION

Human activity recognition (HAR) has garnered significant
attention in recent years due to its potential applications in
healthcare, sports, and security [1]. Many deep learning
techniques, including Convolutional Neural Networks (CNNs),
have been applied to HAR with promising results [2]. However,
most of these techniques are designed to be run on high-
performance computing systems, which can limit their practical
applications.

Conversely, performing HAR on edge devices, such as
smartphones or wearables has emerged as viable solution due to
their ubiquity, low cost, and personalized features [3]. However,
running complex deep learning models on edge devices poses
many challenges, including limited processing power, memory,
and energy resources [4] [5]. Therefore, there is a need to

develop lightweight and energy-efficient deep learning models
for HAR on resource-constrainted edge devices.

One promising approach can be the use of neuromorphic
networks, which mimic the brain’s neural structure in a new and
alternative computer architecture. They significantly reduce
energy consumption by replacing weight multiplications with
additions [6]. Very few studies have explored the potential of
neuromorphic computing for HAR.

The major objective of this study is to propose a novel
neuromorphic CNN (niCNN) architecture for HAR that is
specifically tailored to edge device. Traditional methods of
transferring weights from a CNN to a neuromorphic network
often result in accuracy loss and higher inference latency,
making them unsuitable for real-time applications. To address
this drawback, the niCNN architecture utilizes clamping and
quantization (CnQ) algorithm along with improved threshold
firing (TF) algorithm to improve accuracy while reducing
inference latency, memory requirements and energy
consumption. The key contributions of the study are:

 Designing a novel niCNN architecture for real-time edge
processing.

 Introducing a CnQ algorithm that reduces inference
latency, energy consumption, and memory requirements
of the model while maintaining accuracy.

 Incorporating a novel TF algorithm to improve the
accuracy of the model.

 Experimental evaluation is performed on two publicly
available HAR datasets, WISDM [7] and mHealth [8].

 The performance of niCNN is evaluated in terms of
classification metrics, memory consumption, energy
consumption and inference latency. The results show
that the proposed architecture takes the lead compared to
many existing model.

The study is organized as follows: Section II presents a brief
overview of human activity recognition (HAR) and related
work. Section III describes the proposed niCNN model in detail,
including the CnQ and TF algorithms. Section IV presents the
experiment and compares the model with the state-of-the-art
approaches. Section V provides the performance results of
niCNN. Finally, Section VI concludes the study with
suggestions for future research directions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

130 | P a g e

www.ijacsa.thesai.org

II. BACKGROUND AND RELATED WORK

A. Background

The process of recognizing human activities through sensors
involves four key stages, namely data acquisition,
preprocessing, learning, and evaluation [9]. The data acquisition
stage involves collecting data from sensors, which is then
transmitted to the next stage for further processing. Since the
data obtained from sensors may contain artifacts and noise, it
needs to be preprocessed. This involves filtering, segmentation,
feature extraction, and selection. Filtering helps remove
unwanted values and fill in any missing ones. Segmentation
involves breaking the data into smaller segments or windows,
which are then used for feature extraction and selection. Finally,
different classification algorithms are used for activity
recognition, and their performance is assessed using defined
metrics.

B. Related Work

For HAR, various researchers have proposed several
neuromorphic approaches to reduce the energy consumption in
on-edge deployment. These approaches include using spiking

neural networks (SNNs) [10], bio-inspired artificial retinas [11],
data fusion from multiple sensing systems [12] [13], and data
preprocessing frameworks [14]. Additionally, researchers have
proposed frameworks that integrate physics and neurobiology to
model and recognize human actions and object activities, as well
as a hardware module that uses a Hopfield Neural Network to
detect falls through sensor data integration and classification
[15] . In [16], the authors presents a hardware module that uses
a Hopfield Neural Network to recognize falls through sensor
data integration and classification. In study [17], the use of
SNNs in HAR tasks has been proposed as a way to achieve
spatio-temporal feature extraction and reduce energy
consumption by up to 94%.

Table I provides the listing of different neuromorphic
approaches to HAR, each with its unique advantages and
limitations. However, these approaches have limitations in terms
of accuracy or processing for real-time applications. In
comparison to existing approaches, the proposed niCNN,
inspired by neuromorphic computing and incorporating the
CNQ and TF algorithms, achieves higher accuracy with more
optimization parameters, as shown in the table.

TABLE I. COMPARISON OF APPROACHES

Ref. Focus of Work Advantages Limitations
Optimization Parameters considered

Energy Memory Latency Accuracy

[10]

Neuromorphic approach for
mitigating energy consumption

for edge AIoT HAR applications

using SNN.

High performance at low

energy cost, effective dealing
with temporal signals.

Limited comparison, only
DNN, LMU architecture used,

requiring application oriented

hyperparameter optimization.

   

[11]
Applied SNN and event memory
surfaces for HAR using event

based camera.

Eliminates data redundancy,
allows for low latency and data

sparisity.

Technique is complicated and
difficult to easily adapt to

domain.
   

[12]
Performed multisensory data
fusion for precise HAR using

neuromorphic computing

Reliable, robust, and achieved
high accuracy with multi-

sensor data.

Requires additional hardware
signal processing for flexible

integration of data.

   

[14]

Proposed data processing

framework using neuromorphic
computing to reduce the need for

extensive sensor training

samples.

Robustness with lesser
number of training samples

requirement.

Not full HAR deployment

discussed.
   

[13]

HAR using Neuromorphic

computing with one-shot

learning on multi-sensor fused
data

Increased robustness and

accuracy of activity recogniton
Limited dataset    

[15]
Integration of physics and
neurobiology to model and

recognize human actions

Global representation of

motion, integration of
neurobiological models,

multiple hypothesis testing

framework.

Very complex implementation    

[16]
Designing hardware module for
fall detection using Hopfield

Neural Network.

High accuracy, power-
efficient, faster data

classification.

Limited to fall detection,

hardware specific design
   

[17]

Explored AI based SNN for

HAR allowing spatio-temporal

feature extraction.

Reduced energy consumption

due to binary spikes with

higher accuracy.

Relies on traditional artifiacl

neural networks
   

Ours
Designed a four-stage
neuromorphic model for HAR

Higher accuracy with low

power consumption, memory

and lesser inference time.

Training time higher with

multiple training stages.
Hyperparameter optimization

required

   

III. PROPOSED METHODOLOGY

In this section, the niCNN architecture is discussed. The
proposed architecture addresses the following neuromorphic
architecture and CNN integration issues.

 In neuromorphic models, such as Spiking Neural
Network (SNN), input values are binary [0,1] at each
step, whereas in CNN they are floating point values,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

131 | P a g e

www.ijacsa.thesai.org

inappropriate conversion reduces accuracy and inference
speed.

 Secondly, the activation behavior of IF neurons in SNNs
differs from ReLU neurons in CNNs.

 Thirdly, the choice of threshold balancing algorithm
greatly affects the performance of the model by affecting
the firing rate, energy consumption and information
transfer of neurons. High firing rate can lead to
overfitting, whereas low firing rate can lead to reduced
information transfer.

The niCNN follows a series of basic steps. First, the data is
acquired through sensors and preprocessed to create a shallow
CNN architecture. Then, an optimal shallow CNN architecture
is converted into an equivalent spiking neural network
architecture using the CnQ transformation model that minimizes
information loss. Next, the firing threshold of the spiking
neurons is determined using TF, a threshold balancing
technique. The final step is to deploy the inference model, which
takes spike-encoded data as input, enabling efficient

implementation of deep learning on resource-constrained
devices. The schematic workflow of the model is shown in Fig.
1. The Algorithm 3 for niCNN implementation is as follows:

Algorithm 3: Procedure: niCNN

Phase I: Data Acquisition

 Step1: Collect sensor data

 Step 2: Aggregate sensor data

Phase II: Preprocessing

 Step 3: Remove missing values and outliers

 Step 4: Windowing and Segmentation

Phase III: Model Building

 Step 5: Train a shallow CNN

 Step 6: Apply CnQ algorithm for weight transformation

 Step 7: Set firing threshold values using TF algorithm

 Step 8: Deploy SNN inference model

Phase IV: Performance Evaluation

 Step 9: Evaluate different performance metrics

Fig. 1. niCNN architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

132 | P a g e

www.ijacsa.thesai.org

The description of each phase of the algorithm is as follows:

A. Phase 1: Data Acquisition

A collection of sensors 𝑆 = {𝑠1, 𝑠2, … , 𝑠|𝑆|}are used to

acquire sensor data, each generating a time series reading 𝑋 =
{𝑥1, 𝑥2, … 𝑥𝑛}. 𝑋(𝑡) represents the sensor readings at time step 𝑡
and 𝐴 = {𝑎1, 𝑎2, … , 𝑎|𝐴|} be the number of the activities to be

predicted.

The values from the multiple sensors can be aggregated as
time series window, as shown in Eq. (1):

𝑋 = [
𝑥1(1) ⋯ 𝑥1(𝑡)
⋮ ⋱ ⋮

𝑥𝑛(1) ⋯ 𝑥𝑛(𝑡)
] = [𝑋(1), . , 𝑋(𝑖), . , 𝑋(𝑡)]

(1)

where, 𝑋(𝑖) = [𝑥1(𝑖), … , 𝑥𝑛(𝑖)] is the sensor input at time
𝑖 for 𝑛 number of sensor readings.

B. Phase 2: Preprocessing

The samples in the time segment are passed through filters
for missing values, noise and outlier removal. After
preprocessing, a set of segments W is produced that corresponds
to activity A, as shown in Eq. (2).

 𝑊 = {𝑤𝑠1, 𝑤𝑠2, … , 𝑤𝑠𝑚} (2)

For each segment 𝑤𝑠𝑖 = (𝑡1, 𝑡2) represents a portion of
samples from 𝑡1 to 𝑡2.

C. Phase 3: Model Building

The model building consists of the following stages:

1) Train a shallow CNN: The aim of this stage is to train a

shallow CNN inference model ρ, A = ρ(X), such that the

difference between the actual and predicted values is

minimized.

 Define Input Layer: The input layer consists of time
series signals. The input at time step t denoted as 𝑋(𝑡),
and the input to the first convolution layer denoted as
𝑙𝑜(𝑡) is calculated using Eq. (3):

 𝑙𝑜(𝑡) = 𝑋(𝑡) = 𝑋0 (3)

 Convolution Layer: It consists of a series of L layers, 𝐿 =
{𝑙1, 𝑙2, … 𝑙|𝐿|}, each with n number of neurons. The output

of ith neuron at layer 𝑙 is calculated using Eq. (4):

𝑥𝑖
𝑙 = ℎ(∑(𝑤𝑖𝑗

𝑙

𝑁

𝑗=0

. 𝑥𝑗
𝑙−1 + 𝑏𝑖

𝑙)

(4)

where, 𝑤𝑖𝑗
𝑙 is the weight between the neuron j at layer 𝑙 − 1

and neuron 𝑖 at layer 𝑙, 𝑏𝑖
𝑙 is the bias of neuron 𝑖 at layer 𝑙, ℎ(∙)

indicates the ReLU activation function, which is calculated

using max⁡{0, ∑ (𝑤𝑖𝑗
𝑙𝑛

𝑗=0 . 𝑥𝑗
𝑙−1 + 𝑏𝑖

𝑙)}.

 Batch Normalization: To converge the CNN network
easily the batch normalization is performed using Eq.
(5):

𝐵𝑁(𝑥′𝑖

𝑙
) =

𝛾(𝑥𝑖
𝑙 − 𝜇𝛽)

𝜎𝛽
+ 𝛽

(5)

where, 𝜇𝛽 is mean and 𝜎𝛽 is the standard deviation of the

current batch. The resultant values are scaled by 𝛾 and shifted
by⁡𝛽. The 𝛾 and 𝛽 are learned throughout training.

 Pooling Layer: The convolution layer is followed by
pooling layer to reduce the size and parameters of the
network. It is performed using Eq. (6):

𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖
𝑙(𝑡) = 𝑚𝑎𝑥𝑟∈𝑅(𝑥

′
𝑖
𝑙(𝑡 ∗ 𝑇 + 𝑅)) (6)

 Softmax classification layer: After pooling layer, the
input passes through fully connected layer, and finally
softmax layer for performing classification. The
computed activity scores for each achievement are

expressed as 𝑃(
𝑎𝑖
𝑥𝑖 , 𝜃
⁄), computed using inference

method⁡𝜌, expressed as

𝑃 (
𝑎𝑖
𝑥𝑖
, 𝜃) = 𝜌(𝑥𝑖 , 𝜃), 𝑓𝑜𝑟⁡𝑎 ∈ 𝐴

where, 𝜃 is trained parameters of model 𝜌.The maximum
score will then be used to calculate the predicted activity 𝑎𝑖 for
the segment 𝑤𝑠𝑖 .

𝑎𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (

𝑎𝑖

𝑥𝑖
, 𝜃)

 The training is performed through backpropagation and
the gradients are computed as:

 𝜕𝐸

𝜕𝑊𝑙
= (

𝜕𝐸

𝜕𝑋𝑙
)
𝑇

. 𝑋𝑙−1
(7)

 𝜕𝐸

𝜕𝑋𝑙−1
= (𝑊𝑙)𝑇 .

𝜕𝐸

𝜕𝑋𝑙

(8)

where, Eq. (7) represents error with respect to weights at
layer 𝑙 and Eq. (8) represents error w.r.t the output of the
previous layer. Once the gradients are computed, then weights
are updated according to Eq. (10):

𝑊𝑙 = 𝑊𝑙 − 𝛼(

𝜕𝐸

𝜕𝑊𝑙
)

(9)

where, 𝛼 is the learning rate of the optimization algorithm.
This process is repeated for each training example in the dataset
until the error is minimized to a satisfactory level.

2) Retrain using CnQ algorithm: To minimize transfer loss

from CNN to spiking neural network, the designed CNN in step

5 is retrained using the CnQ algorithm, a variation of CQ [18].

For the CnQ, the input is first normalized using Eq. (10):

𝑋_𝑛𝑜𝑟𝑚 =

𝑋

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑒𝑎𝑛

(10)

Then quantized for spike train of length 𝑇, using Eq. (11):

𝑄𝑇(𝑋_𝑛𝑜𝑟𝑚(𝑡)) = ⌊

𝑋_𝑛𝑜𝑟𝑚(𝑡). 𝑇

𝑇
⌋

(11)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

133 | P a g e

www.ijacsa.thesai.org

Since, batch normalization cannot be applied to the input
spike trains, therefore batch normalization is applied to weights

𝑤𝑙 and bias 𝑏𝑙 using Eq. (12) and Eq. (13):

𝐵𝑁(𝑤𝑖

𝑙) =
𝛾. 𝑤𝑖

𝑙

𝜎𝛽
+ 𝛽

(12)

𝐵𝑁(𝑏𝑖

𝑙) =
𝛾(𝑏𝑖

𝑙 − 𝜇𝑖
𝑙)

𝜎𝛽
+ 𝛽

(13)

Now the input data is transformed in spike trains with
discrete values set 𝑇 ∈ {0,1}. Instead of ReLU activation
function, the CQ transform is applied. Clamping is first applied
to the activation function to restrict them to [0,1] and is defined
as⁡𝐶 in Eq. (14):

𝐶(𝑥) = {
0, 𝑥 < 0
𝑥, 0 ≤ 𝑥 ≤ 1
1, 𝑥 > 1

(14)

Then Quantization is applied as in Eq. (15):

𝑄𝑇(𝑥) = ⌊

𝑥. 𝑇

𝑇
⌋

(15)

In CnQ, the forward propagation is modified as Eq. (4). The
learning is performed through conventional backpropagation:

 𝜕𝐸

𝜕𝑊𝑙
= 𝑄′. 𝐶′. (

𝜕𝐸

𝜕𝑋𝑙
)
𝑇

. 𝑋𝑙−1
(16)

 𝜕𝐸

𝜕𝑋𝑙−1
= 𝑄′. 𝐶′. (𝑊𝑙)𝑇 .

𝜕𝐸

𝜕𝑋𝑙

(17)

where, Eq. (16) shows error w.r.t weights at layer 𝑙 and Eq.
(17) represents error w.r.t the output of the previous layer. Once
the gradients are computed, then weights are updated according
to Eq. (9). Algorithm 1 explains CnQ training details.

Algorithm 1: CnQ Training

Input: Sensor data (X), Activity Label (A)

Output: Trained Layers 〈𝒍𝟏, … , 𝒍|𝑳|〉

Parameters Initialized: Number of layers (L), Weights (W),

Bias(B), convergence==false

1. Normalize X //using eq. 10

2. Quantize X //using eq. 11

3. while(!convergence==true)

4. For i=1 to L

5. For j=1 to N //forward propagation

6. Calculate 𝑥𝑗
𝑖 //using eq. 4

7. Apply BN //using eq. 12 and 13

8. Apply Clamping on 𝑥𝑗
𝑖 //using eq. 14

9. Apply Quantization on 𝑥𝑗
𝑖//using eq. 15.

10. End for

11. End for

12. For 𝑖 = 𝐿⁡𝑡𝑜⁡1 //Backpropagation

13. Calculate Gradients //using eq. 16 and 17

14. Adjust weights //using eq. 9

15. End for

16. Update convergence

17. End while

18. Return Trained layers 〈𝑙1, … , 𝑙|𝐿|〉

3) The SN Deployment: While CNN’s transmit activation

data among layers (𝑥𝑙) as real numbers. SNN neurons receive

series of binary input as spike trains. Formally, 𝑠𝑖
𝑙 is a spike

train of neuron 𝑖 at layer 𝑙 where 𝑠𝑖
𝑙(𝑡) ∈ {0,1} is a spike at time

𝑡. Unlike CNNs, the weight sum is merely a summation since

the weights are binary.

The IF model is used to map CNN to SNN activation. At
each time step 𝑡, a neuron 𝑖 computes the weighted sum of the

received input spikes 𝑠𝑗
𝑙−1(𝑡) and the corresponding weights and

integrates them as the membrane potential 𝑉𝑖. Whenever 𝑉𝑖
exceeds a predefined threshold 𝑉𝑡ℎ𝑖 , the neuron fires a spike ‘1’

and decreases 𝑉𝑖 by 𝑉𝑡ℎ𝑖 . Otherwise, it outputs ‘0’. Formally,

𝑣𝑖
𝑙(𝑡) = 𝑣𝑖

𝑙(𝑡 − 1) + (∑(𝑤𝑖𝑗
𝑙

𝑛

𝑗=0

. 𝑠𝑗
𝑙−1(𝑡) + 𝑏𝑖

𝑙)

𝑤ℎ𝑒𝑟𝑒, 𝑠𝑖
𝑙(𝑡) = {

1, 𝑣𝑖
𝑙(𝑡) ≥ 𝑣𝑡ℎ𝑖

𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑣𝑖
𝑙(𝑡) = {

𝑣𝑖
𝑙(𝑡) − 𝑣𝑡ℎ𝑖

𝑙 , 𝑣𝑖
𝑙(𝑡) > 0

𝑣𝑖
𝑙(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The firing threshold is set using the TF algorithm, inspired
from threshold firing approach [19]. Given the desired inference
latency t for SNN, TF records the maximum accumulated
activation value for each neuron across timesteps at each layer 𝑙,
as in Eq. (18):

𝑡ℎ𝑟𝑒𝑠𝑖
𝑙

=

{

max⁡(𝑡ℎ𝑟𝑒𝑠𝑖

𝑙 , max (∑𝑤𝑖𝑗
𝑙 𝑥𝑗

𝑙

𝑁

𝑗=1

) , 𝑙 = 1

max⁡(𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 , max (∑𝑤𝑖𝑗

𝑙 𝑠𝑗
𝑙(𝑡)

𝑁

𝑗=1

) , 1 < 𝑙 < 𝐿

(18)

After the assignment of the firing threshold for a layer, it
freezes the thresholds of the layer and repeats the threshold
determination for the next layer. Algorithm 2 explains the
working of TF.

Algorithm 2: TF setting

Input: Timesteps for inference (T)

Output: Firing threshold for each layer [⁡{𝒗𝒕𝒉𝒊
𝒍 }

𝒊=𝟏

𝑵
]
𝒍=𝟏

𝑳

1. For 𝑙 = 1⁡𝑡𝑜⁡𝐿

2. For 𝑖 = 1⁡𝑡𝑜⁡𝑁

3. Set 𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 = 0

4. End for

5. If (𝑙 === 1)

6. For 𝑖 = 1⁡𝑡𝑜⁡𝑁

7. Calculate 𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 //using eq. 18

8 Set 𝑣𝑡ℎ𝑖
𝑙 = 𝑡ℎ𝑟𝑒𝑠𝑖

𝑙

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

134 | P a g e

www.ijacsa.thesai.org

9 End for

10 End if

11 Else if (𝑙 == 𝐿)

12 Set 𝑣𝑡ℎ𝑖
𝑙 = ⁡∞

13 End if

14 else

15. For 𝑡 = 1⁡𝑡𝑜⁡𝑇

16. For 𝑖 = 1⁡𝑡𝑜⁡𝑁

17. Calculate⁡𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 //using eq. 18

18. Set 𝑣𝑡ℎ𝑖
𝑙 = 𝑡ℎ𝑟𝑒𝑠𝑖

𝑙

19 End for

20. End for

21. End if

22. End for

23. Return 𝑣𝑡ℎ𝑖
𝑙 list

D. Phase 4:Evaluation

 Evaluation metrics: After training network, the
performance can be tested on the various metrics on test
data and can fine-tuned as necessary as discussed in [20]

accuracy (
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
), precision (

𝑡𝑝

𝑡𝑝+𝑓𝑝
),⁡recall

(
𝑡𝑝

𝑡𝑝+𝑓𝑛
), f1-score (

2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
), specificity (

𝑡𝑛

𝑡𝑛+𝑓𝑝
),

balanced accuracy (
1

2
(

𝑡𝑝

𝑡𝑝+𝑓𝑛
+

𝑡𝑛

𝑡𝑛+𝑓𝑝
), where 𝑡𝑝 is true

positive, 𝑓𝑝 is false positive, 𝑡𝑛 is true negative. 𝑓𝑛 is
false negative.

 Evaluate number of parameters: To estimate the number
of parameters in a spiking CNN model, using Eq. (19):

 𝑛𝑝 = ((𝑖𝑐 ∗ 𝑓𝑠 ∗ 𝑛𝑓 + 𝑏𝑖𝑎𝑠) ∗ 𝑜𝑠⁡⁡)⁡ (19)

where, 𝑖𝑐 represents the number of channels in the input
spike trains, 𝑓𝑠 represents the size of the filters, 𝑛𝑓 represents
the number of filters in the convolutional layer, bias represents
the bias term for each filter, and 𝑜𝑠⁡represents the size of the
output spike trains.

 Calculate memory usage: The memory utilized by a
spiking CNN model can be estimated by multiplying the
number of parameters by the number of bytes used to
store each parameter. For example, if we assume that
each parameter is stored as a 32-bit float, then the
memory utilized can be calculated, as in Eq. (20),
whereas niCNN uses 8 bit clamped and quantized signal;
therefore each parameter is 8 -bit.

 𝑚𝑒𝑚𝑜𝑟𝑦⁡𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑⁡(𝑖𝑛⁡𝑏𝑦𝑡𝑒𝑠) = 𝑛𝑝 ∗ 4⁡ (20)

 Power Consumption: As per Intel specification [21],
Intel core i7 processor consumes 65 watts, whereas Intel
Loihi 2 consumes around 1 watt. To calculate the power
consumed in execution, it is done using Eq. (21):

𝑝𝑜𝑤𝑒𝑟⁡𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
= 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁡𝑡𝑖𝑚𝑒
∗ 𝑤𝑎𝑡𝑡𝑠⁡⁡𝑜𝑓⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

(21)

IV. EXPERIMENT

This section elucidates the experimentation conducted on
two widely used public datasets, namely WISDM and mHealth,
to evaluate the efficacy of niCNN. All experiments were
performed on a single system that was equipped with an i7-
5500U processor, 16 GB of RAM, and a 1 TB hard disk drive.
The implementation of niCNN was executed utilizing the
dynamic and powerful programming language Python,
alongside auxiliary packages such as Nengo, NengoDL, and
NNI [22]. The proposed network architecture was constructed
utilizing Keras, a Python-based high-level neural networks API
that can run on top of TensorFlow.

A. Dataset Description

WISDM and mHealth datasets contain time series data for
physical activity that were collected using wearable sensor
devices. The WISDM includes data for six physical activities
that were performed by 29 subjects at a sampling rate of 20 Hz,
while the mHealth dataset includes data for 12 physical activities
performed by 10 subjects at a sampling rate of 50 Hz. Table II
provides an overview of each dataset's specifications, and Table
III describes captured activity data.

TABLE II. DATASET SPECIFICATIONS

Dataset Subjects Sensors
Sampling

Rate
Activities Samples

WISDM 36 A 20 Hz 6 1,098,209

mHealth 10
A,G, M,

ECG
50 Hz 12 1,215,745

a. A= Accelerometer, G= Gyroscope, M= Magnetometer, ECG= Electrocardiography

TABLE III. ACTIVITY DATA

Dataset Activities (Labels, Samples, % Distribution)

WISDM

Walk(1,424400,38.6), Jog(2,342177,31.2),

Up(3.122869,11.20), Downstairs(4,100427,9.1),
sit(5,59939,5.5), standing(6,48397,4.4)

mHealth

Standing(1,30720,9), Sitting(2,30720, 9), Lying

down(3, 30720,9), Walking(4, 30720,9), Climbing
stairs(5, 30720,9), Forward bending(6, 28315,8.3),

Frontal Arm elevation(7,29441, 8.6), Knees bending(8,

29337, 8.5), cycling(9, 30720,9), Jogging(10, 30720,9
)Runing (11, 30720,9), jumping(12,10342,3)

B. Preprocessing

A total of 1,098,209 and 3,44,116 samples were collected
from WISDM and MHealth. To minimize computational effort
for on-edge deployment, only segmentation was performed as
the preprocessing step. The signal was partitioned into non-
overlapping temporal windows of length 2s. After dividing the
samples based on raw data without feature extraction, a split of
70:30 was used to create training and testing sets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

135 | P a g e

www.ijacsa.thesai.org

Fig. 2. WISDM activity visualization.

WISDM does not contain outliers, missing values, or null
activities; thus, all samples were used for experimentation. Fig.
2 displays a visualization of the WISDM dataset at a timestep of
180. After eliminating null activities from mHealth, the final
sample size consists of 343195 samples. At a timestep of 80, a
visualization of the mHealth dataset is presented in Fig. 3.

C. Network Architecture

A shallow CNN architecture is developed, consisting of two
convolution layers, a max pooling layer, a flattening layer, and
two dense layers. The model underwent fully supervised
training, with the gradient backpropagated from the Softmax
layer.

In the context of the study, cross-entropy loss function is
utilized to quantify the dissimilarity between the predicted and
actual distributions.

Adam, a stochastic optimization algorithm founded on the
first-order gradient, is utilized as the optimizer. The training
process is performed over 25 epochs, with a batch size of 64 and
a small learning rate of 0.001 to improve the fitting ability. To
improve the model's robustness, the training set is randomly
shuffled. The hyperparameters are chosen after analyzing the
effect of various factors, including the number of filters, batch
size, filter size, and dropout rate, on accuracy. Fig. 4 illustrates
the impact of these factors on accuracy, and the final
hyperparameters are listed in Table IV.

Fig. 3. mHealth activity visualization.

Fig. 4. Impact of hyperparameters on accuracy.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

136 | P a g e

www.ijacsa.thesai.org

TABLE IV. SELECTED HYPERPARAMETERS

Stage Hyperparameters Selected Value

Preprocessing
Window_size

180(WISDM)

80(mHealth)

Step_size 100

Architecture

Conv1_kernel_size 3

Conv1_filter_size 64

Maxpooling_size 2

Conv2_kernel_size 3

Conv2_filter_size 64

Dense layer 128

Dropout 0.5

Training

Optimizer Adam

Batch_Size 64

Learning rate .001

Number of epochs 25

The niCNN is developed using the Nengo neural simulator
on the Loihi neuromorphic chip. To construct the spiking CNN
directly from its non-spiking counterpart, the NengoDL
converter was used. Hyperparameter tuning is conducted using
the Neural Network Intelligence (NNI) toolkit and Annealing
algorithm, while ensuring a proper search space. Each
optimization experiment comprised 1,000 trials, with the tuner
being randomly re-initialized four times in equal intervals to
avoid local minima. Following every trial of 25 training epochs,

the weights yielding the best training accuracy are employed to
evaluate the test accuracy. To train all investigated networks,
including optimization of the learning rate throughout the
experiment trials, Adam optimizer with a constant learning rate
is utilized. Fig. 5 and Fig. 6 represent training progress of
WISDM and mHealth over epochs.

Fig. 5. WISDM dataset progress over epochs.

Fig. 6. mHealth dataset progress over epochs.

Fig. 7. Performance comparison.

V. RESULTS

The evaluation of performance was carried out using the
metrics described in Section III, and the results are presented in
Table V. niCNN achieved 98.08% average accuracy, 97.25% on
WISDM dataset and 98.92% on mHealth. Fig. 7 provides a
comparison of niCNN on both datasets against its baseline CNN
on the same architecture. Additionally, the obtained confusion
matrix for the WISDM and mHealth datasets are shown in Fig.

8 and Fig. 9, respectively. As per results, presented in Fig. 7 and
Table V, niCNN obtained on average 1.1% increase in accuracy,
97.4% reduced power consumption, 60.04% reduced memory
consumption, and 30.2% reduced inference time.

niCNN achieved a notably higher accuracy compared to
other state-of-the-art works([10], [23]–[33]), as demonstrated
in Fig. 10.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

137 | P a g e

www.ijacsa.thesai.org

TABLE V. PERFORMANCE METRICS

WISDM mHealth

niCNN CNN niCNN CNN

#P 22,642 14,326 32,612 20,286

#ET(s) 5.2 3.2 5.8 4.1

#M(kBytes) 22.11 55.96 31.84 79.24

#PC(watts) 5.2 208 5.8 266.5

#IT(ms) 2.25 3.27 2.36 4.02

b. #P=Number of parameters, #ET= Execution Time, #M=Memory used, #PC=Power Consumption,
#IT=Inference Time

Fig. 8. WISDM confusion matrix.

Fig. 9. mHealth confusion matrix.

Fig. 10. Comparison of performance accuracy.

VI. CONCLUSIONS

The study demonstrates the capability of neuromorphic
computing to perform real-time HAR on edge devices with
limited resources. It presents a novel four stage niCNN
architecture, overcoming the accuracy loss and higher inference
latency associated with transferring weights from a CNN to a
neuromorphic network by applying CnQ algorithm. The new
improved threshold balancing approach, TF, further increases
the inference accuracy of the system. The experimental results
demonstrate that the niCNN architecture achieves high
accuracy, low inference latency, memory usage, and energy
consumption compared to the state-of-the-art and baseline CNN
models.

In future, niCNN performance can be investigated on
different HAR datasets. The CnQ and TF algorithms can also be
further optimized to achieve better results. Further research can
expand the model's capability to recognize more complex
activities. The effectiveness of various optimization methods
within the Nengo framework, including different windowing
techniques can also be explored. Additionally, the niCNN
architecture can be extended to other real-time processing
applications on edge devices.

REFERENCES

[1] O. D. Lara and Miguel A. Labrador, “A survey on human activity
recognition using wearable sensors,” IEEE communications surveys &
tutorials, vol. 15, no. 3, pp. 1192–1209, 2012, doi:
10.1109/SURV.2012.110112.00192.

[2] E. Ramanujam, Thinagaran Perumal, and S. Padmavati, “Human activity
recognition with smartphone and wearable sensors using deep learning
techniques: A review,” IEEE Sens J, vol. 21, no. 12, pp. 13029–13040,
2021.

[3] P. Agarwal and M. Alam, “Edge optimized and personalized lifelogging
framework using ensembled metaheuristic algorithms,” Computers and
Electrical Engineering, vol. 100, p. 107884, 2022, doi:
10.1016/j.compeleceng.2022.107884.

[4] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning
for sensor-based human activity recognition: Overview, challenges, and
opportunities,” ACM Comput Surv, vol. 54, no. 4, pp. 1–40, Jul. 2021, doi:
10.1145/3447744.

[5] P. Agarwal and M. Alam, “A Lightweight Deep Learning Model for
Human Activity Recognition on Edge Devices,” Procedia Comput Sci,
vol. 167, pp. 2364–2373, Jan. 2020, doi: 10.1016/J.PROCS.2020.03.289.

[6] D. Wu, X. Yi, and X. Huang, “A Little Energy Goes a Long Way: Build
an Energy-Efficient, Accurate Spiking Neural Network From
Convolutional Neural Network,” Front Neurosci, vol. 16, p. 759900,
2022, doi: 10.3389/FNINS.2022.759900.

[7] J. Kwapisz, G. Weiss, and S. Moore, “Activity recognition using cell
phone accelerometers,” ACM SigKDD Explorations Newsletter, vol. 12,
no. 2, pp. 74–82, Mar. 2011, doi: 10.1145/1964897.1964918.

[8] O. Banos, R. Garcia, and A. Saez, “UCI Machine Learning Repository:
MHEALTH Dataset Data Set.”
https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset.

[9] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human activity
recognition using body-worn inertial sensors,” ACM Comput Surv, vol.
46, no. 3, 2014, doi: 10.1145/2499621.

[10] V. Fra, E. Forno, R. Pignari, T. C. Stewart, E. Macii, and G. Urgese,
“Human activity recognition: suitability of a neuromorphic approach for
on-edge AIoT applications,” Neuromorphic Computing and Engineering
, vol. 2, no. 1, p. 014006, Feb. 2022, doi: 10.1088/2634-4386/AC4C38.

[11] B. R. Pradhan, Y. Bethi, S. Narayanan, A. Chakraborty, and C. S. Thakur,
“N-HAR: A neuromorphic event-based human activity recognition
system using memory surfaces,” in IEEE International Symposium on
Circuits and Systems, IEEE, 2019. doi: 10.1109/ISCAS.2019.8702581.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

138 | P a g e

www.ijacsa.thesai.org

[12] Z. Yu et al., “An Intelligent Implementation of Multi-Sensing Data Fusion
With Neuromorphic Computing for Human Activity Recognition,” IEEE
Internet Things J, vol. 10, no. 2, pp. 1124–1133, Jan. 2023, doi:
10.1109/JIOT.2022.3204581.

[13] Z. Yu, A. Zahid, W. Taylor, H. Heidari, M. A. Imran, and Q. H. Abbasi,
“Multi-Sensing Data Fusion for Human Activity Recognition based on
Neuromorphic Computing,” in 2021 IEEE USNC-URSI Radio Science
Meeting (Joint with AP-S Symposium, IEEE, 2021, pp. 64–65. doi:
10.23919/USNC-URSI51813.2021.9703558.

[14] Z. Yu et al., “IMU Sensing–Based Hopfield Neuromorphic Computing
for Human Activity Recognition,” Frontiers in Communications and
Networks, vol. 2, p. 68, Jan. 2022, doi: 10.3389/FRCMN.2021.820248.

[15] R. J. Sethi, A. K. Roy-Chowdhury, and S. Ali, “Activity recognition by
integrating the physics of motion with a neuromorphic model of
perception,” in 2009 Workshop on Motion and Video Computing, WMVC
’09, 2009. doi: 10.1109/WMVC.2009.5399241.

[16] Z. Yu et al., “Hardware-Based Hopfield Neuromorphic Computing for
Fall Detection,” Sensors 2020, Vol. 20, Page 7226, vol. 20, no. 24, p.
7226, Dec. 2020, doi: 10.3390/S20247226.

[17] Y. Li, R. Yin, H. Park, Y. Kim, and P. Panda, “Wearable-based Human
Activity Recognition with Spatio-Temporal Spiking Neural Networks,”
https://arxiv.org/abs/2212.02233, Nov. 2022, Accessed: Apr. 24, 2023.
[Online]. Available: https://arxiv.org/abs/2212.02233v1

[18] Z. Yan, J. Zhou, and W. F. Wong, “Near Lossless Transfer Learning for
Spiking Neural Networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, Association for the Advancement of Artificial
Intelligence, May 2021, pp. 10577–10584. doi:
10.1609/AAAI.V35I12.17265.

[19] H. C. V. Ngu and K. M. Lee, “Effective Conversion of a Convolutional
Neural Network into a Spiking Neural Network for Image Recognition
Tasks,” Applied Sciences 2022, Vol. 12, Page 5749, vol. 12, no. 11, p.
5749, Jun. 2022, doi: 10.3390/APP12115749.

[20] M. Sokolova and G. Lapalme, “A systematic analysis of performance
measures for classification tasks,” Inf Process Manag, vol. 45, no. 4, pp.
427–437, Jul. 2009, doi: 10.1016/J.IPM.2009.03.002.

[21] I. Corporation, “Taking Neuromorphic Computing with Loihi 2 to the
Next Level Technology Brief.”

[22] “Nengo.” https://www.nengo.ai/ (last accessed Apr. 24, 2023).

[23] S. Ha and C. Seungjin, “Convolutional neural networks for human activity
recognition using multiple accelerometer and gyroscope sensors,” in

International Joint Conference on Neural Networks (IJCNN),IEEE.,
2016, pp. 381–388. doi: https://doi.org/10.1109/IJCNN.2016.7727224.

[24] S. W. Pienaar and R. Malekian, “Human Activity Recognition Using
LSTM-RNN Deep Neural Network Architecture,” in IEEE 2nd wireless
africa conference, 2019, pp. 1–5. doi:
https://doi.org/10.1109/AFRICA.2019.8843403.

[25] S. Khatun and B. I. Morshed, “Fully-Automated Human Activity
Recognition with Transition Awareness from Wearable Sensor Data for
mHealth,” in IEEE International Conference on Electro Information
Technology, 2018, pp. 934–938. doi: 10.1109/EIT.2018.8500135.

[26] K. Xia, J. Huang, and H. Wang, “LSTM-CNN Architecture for Human
Activity Recognition,” IEEE Access, vol. 8, pp. 56855–56866, 2020, doi:
10.1109/ACCESS.2020.2982225.

[27] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A Public
Domain Dataset for Human Activity Recognition Using Smartphones,” in
European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Belguim, Apr. 2013.

[28] G. Chetty, M. White, and F. Akther, “Smart phone based data mining for
human activity recognition,” in Procedia Computer Science, 2015, pp.
1181–1187. doi: 10.1016/j.procs.2015.01.031.

[29] M. Zeng et al., “Convolutional Neural Networks for human activity
recognition using mobile sensors,” in 6th International Conference on
Mobile Computing, Applications and Services, IEEE., 2014, pp. 197–205.
doi: https://doi.org/10.4108/icst.mobicase.2014.257786.

[30] L. Syed, S. Jabeen, M. S., and A. Alsaeedi, “Smart healthcare framework
for ambient assisted living using IoMT and big data analytics techniques,”
Future Generation Computer Systems, vol. 101, pp. 136–151, 2019, doi:
10.1016/j.future.2019.06.004.

[31] A. S. Abdull Sukor, A. Zakaria, and N. Abdul Rahim, “Activity
recognition using accelerometer sensor and machine learning classifiers,”
in 2018 IEEE 14th International Colloquium on Signal Processing and its
Application, CSPA 2018, IEEE, May 2018, pp. 233–238. doi:
10.1109/CSPA.2018.8368718.

[32] H. Li and M. Trocan, “Deep learning of smartphone sensor data for
personal health assistance,” Microelectronics J, vol. 88, pp. 164–172, Jun.
2019, doi: 10.1016/J.MEJO.2018.01.015.

[33] A. Jordao, R. Kloss, and W. R. Schwartz, “Latent HyperNet: Exploring
the Layers of Convolutional Neural Networks,” Proceedings of the
International Joint Conference on Neural Networks, vol. 2018-July, Oct.
2018, doi: 10.1109/IJCNN.2018.8489506.

