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Abstract—Recent years have seen a surge in the use of deep 

learning for human activity recognition (HAR) in various 

applications. However, running complex deep learning models on 

edge devices with limited resources, such as processing power, 

memory, and energy, is challenging. The objective of this study is 

to design a novel, lightweight and energy-efficient neuromorphic 

inspired CNN (niCNN) architecture for real-time HAR on edge 

devices. The niCNN architecture consists of four stages: design of 

a shallow CNN, conversion into an equivalent spiking network 

using Clamping and Quantization (CnQ) algorithm to minimize 

information loss, threshold balancing to calculate spiking neuron 

firing rate using Threshold Firing (TF) algorithm, and edge 

deployment. The experimental evaluation shows that the niCNN 

architecture achieves 97.25% and 98.92% accuracy on two 

publicly accessible HAR datasets, WISDM and mHealth. 

Furthermore, the niCNN technique retains a low inference latency 

of 2.25 ms and 2.36 ms, as well as a low memory utilization of 22.11 

KB and 31.84 KB, respectively. Furthermore, energy usage is 

reduced to 5.2w and 5.8w. In comparison to various state-of-the-

art and baseline CNN models, the niCNN architecture 

outperforms them in terms of classification metrics, memory 

usage, energy consumption, and inference delay. The CnQ 

algorithm reduces memory usage and inference latency, while the 

TF algorithm improves classification accuracy. The findings show 

that neuromorphic computing has a lot of potential for resource-

constrained edge devices. 

Keywords—Neuromorphic computing; human activity 

recognition (HAR); edge computing; convolution neural network 

(CNN); spiking neural network (SNN); sensors 

I. INTRODUCTION 

Human activity recognition (HAR) has garnered significant 
attention in recent years due to its potential applications in 
healthcare, sports, and security [1]. Many deep learning 
techniques, including Convolutional Neural Networks (CNNs), 
have been applied to HAR with promising results [2]. However, 
most of these techniques are designed to be run on high-
performance computing systems, which can limit their practical 
applications. 

Conversely, performing HAR on edge devices, such as 
smartphones or wearables has emerged as viable solution due to 
their ubiquity, low cost, and personalized features [3]. However, 
running complex deep learning models on edge devices poses 
many challenges, including limited processing power, memory, 
and energy resources [4] [5]. Therefore, there is a need to 

develop lightweight and energy-efficient deep learning models 
for HAR on resource-constrainted edge devices. 

One promising approach can be the use of neuromorphic 
networks, which mimic the brain’s neural structure in a new and 
alternative computer architecture.  They significantly reduce 
energy consumption by replacing weight multiplications with 
additions [6]. Very few studies have explored the potential of 
neuromorphic computing for HAR. 

The major objective of this study is to propose a novel 
neuromorphic CNN (niCNN) architecture for HAR that is 
specifically tailored to edge device.  Traditional methods of 
transferring weights from a CNN to a neuromorphic network 
often result in accuracy loss and higher inference latency, 
making them unsuitable for real-time applications. To address 
this drawback, the niCNN architecture utilizes clamping and 
quantization (CnQ) algorithm along with improved threshold 
firing (TF) algorithm to improve accuracy while reducing 
inference latency, memory requirements and energy 
consumption. The key contributions of the study are: 

 Designing a novel niCNN architecture for real-time edge 
processing. 

 Introducing a CnQ algorithm that reduces inference 
latency, energy consumption, and memory requirements 
of the model while maintaining accuracy. 

 Incorporating a novel TF algorithm to improve the 
accuracy of the model. 

 Experimental evaluation is performed on two publicly 
available HAR datasets, WISDM [7] and mHealth [8]. 

 The performance of niCNN is evaluated in terms of 
classification metrics, memory consumption, energy 
consumption and inference latency. The results show 
that the proposed architecture takes the lead compared to 
many existing model. 

The study is organized as follows: Section II presents a brief 
overview of human activity recognition (HAR) and related 
work. Section III describes the proposed niCNN model in detail, 
including the CnQ and TF algorithms. Section IV presents the 
experiment and compares the model with the state-of-the-art 
approaches. Section V provides the performance results of 
niCNN. Finally, Section VI concludes the study with 
suggestions for future research directions. 
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II. BACKGROUND AND RELATED WORK 

A. Background 

The process of recognizing human activities through sensors 
involves four key stages, namely data acquisition, 
preprocessing, learning, and evaluation [9]. The data acquisition 
stage involves collecting data from sensors, which is then 
transmitted to the next stage for further processing. Since the 
data obtained from sensors may contain artifacts and noise, it 
needs to be preprocessed. This involves filtering, segmentation, 
feature extraction, and selection. Filtering helps remove 
unwanted values and fill in any missing ones. Segmentation 
involves breaking the data into smaller segments or windows, 
which are then used for feature extraction and selection. Finally, 
different classification algorithms are used for activity 
recognition, and their performance is assessed using defined 
metrics. 

B. Related Work 

For HAR, various researchers have proposed several 
neuromorphic approaches to reduce the energy consumption in 
on-edge deployment. These approaches include using spiking 

neural networks (SNNs) [10], bio-inspired artificial retinas [11], 
data fusion from multiple sensing systems [12] [13], and data 
preprocessing frameworks [14]. Additionally, researchers have 
proposed frameworks that integrate physics and neurobiology to 
model and recognize human actions and object activities, as well 
as a hardware module that uses a Hopfield Neural Network to 
detect falls through sensor data integration and classification 
[15] . In [16], the authors presents a hardware module that uses 
a Hopfield Neural Network to recognize falls through sensor 
data integration and classification. In study [17], the use of 
SNNs in HAR tasks has been proposed as a way to achieve 
spatio-temporal feature extraction and reduce energy 
consumption by up to 94%. 

Table I provides the listing of different neuromorphic 
approaches to HAR, each with its unique advantages and 
limitations. However, these approaches have limitations in terms 
of accuracy or processing for real-time applications. In 
comparison to existing approaches, the proposed niCNN, 
inspired by neuromorphic computing and incorporating the 
CNQ and TF algorithms, achieves higher accuracy with more 
optimization parameters, as shown in the table. 

TABLE I.  COMPARISON OF APPROACHES 

Ref. Focus of Work Advantages Limitations 
Optimization Parameters considered 

Energy Memory Latency Accuracy 

[10] 

Neuromorphic approach for 
mitigating energy consumption 

for edge AIoT HAR applications 

using SNN. 

High performance at low 

energy cost, effective dealing 
with temporal signals. 

Limited comparison, only 
DNN, LMU architecture used, 

requiring application oriented 

hyperparameter optimization. 

    

[11] 
Applied SNN and event memory 
surfaces for HAR using event 

based camera. 

Eliminates data redundancy, 
allows for low latency and data 

sparisity. 

Technique is complicated and 
difficult to easily adapt to 

domain. 
    

[12] 
Performed multisensory data 
fusion for precise HAR using 

neuromorphic computing 

Reliable, robust, and achieved 
high accuracy with multi-

sensor data. 

Requires additional hardware 
signal processing for flexible 

integration of data. 

    

[14] 

Proposed data processing 

framework using neuromorphic 
computing to reduce the need for 

extensive sensor training 

samples. 

Robustness with lesser 
number of training samples 

requirement. 

Not full HAR deployment 

discussed. 
    

[13] 

HAR using Neuromorphic 

computing with one-shot 

learning on multi-sensor fused 
data 

Increased robustness and 

accuracy of activity recogniton 
Limited dataset     

[15] 
Integration of physics and 
neurobiology to model and 

recognize human actions 

Global representation of 

motion, integration of 
neurobiological models, 

multiple hypothesis testing 

framework. 

Very complex implementation     

[16] 
Designing hardware module for 
fall detection using Hopfield 

Neural Network. 

High accuracy, power-
efficient, faster data 

classification. 

Limited to fall detection, 

hardware specific design 
    

[17] 

Explored AI based SNN for 

HAR allowing spatio-temporal 

feature extraction. 

Reduced energy consumption 

due to binary spikes with 

higher accuracy. 

Relies on traditional artifiacl 

neural networks 
    

Ours 
Designed a four-stage 
neuromorphic model for HAR 

Higher accuracy with low 

power consumption, memory 

and lesser inference time. 

Training time higher with 

multiple training stages. 
Hyperparameter optimization 

required 

    

 

III. PROPOSED METHODOLOGY 

In this section, the niCNN architecture is discussed. The 
proposed architecture addresses the following neuromorphic 
architecture and CNN integration issues. 

 In neuromorphic models, such as Spiking Neural 
Network (SNN), input values are binary [0,1] at each 
step, whereas in CNN they are floating point values, 
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inappropriate conversion reduces accuracy and inference 
speed. 

 Secondly, the activation behavior of IF neurons in SNNs 
differs from ReLU neurons in CNNs. 

 Thirdly, the choice of threshold balancing algorithm 
greatly affects the performance of the model by affecting 
the firing rate, energy consumption and information 
transfer of neurons. High firing rate can lead to 
overfitting, whereas low firing rate can lead to reduced 
information transfer. 

The niCNN follows a series of basic steps. First, the data is 
acquired through sensors and preprocessed to create a shallow 
CNN architecture. Then, an optimal shallow CNN architecture 
is converted into an equivalent spiking neural network 
architecture using the CnQ transformation model that minimizes 
information loss. Next, the firing threshold of the spiking 
neurons is determined using TF, a threshold balancing 
technique. The final step is to deploy the inference model, which 
takes spike-encoded data as input, enabling efficient 

implementation of deep learning on resource-constrained 
devices. The schematic workflow of the model is shown in Fig. 
1. The Algorithm 3 for niCNN implementation is as follows: 

Algorithm 3: Procedure: niCNN 

Phase I: Data Acquisition 

 Step1: Collect sensor data 

 Step 2: Aggregate sensor data 

Phase II: Preprocessing 

 Step 3: Remove missing values and outliers 

 Step 4: Windowing and Segmentation 

Phase III: Model Building 

 Step 5: Train a shallow CNN 

 Step 6: Apply CnQ algorithm for weight transformation 

 Step 7: Set firing threshold values using TF algorithm 

 Step 8: Deploy SNN inference model 

Phase IV: Performance Evaluation 

 Step 9: Evaluate different performance metrics 

 

 

Fig. 1. niCNN  architecture. 
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The description of each phase of the algorithm is as follows: 

A. Phase 1: Data Acquisition 

A collection of sensors 𝑆 = {𝑠1, 𝑠2, … , 𝑠|𝑆|}are used to 

acquire sensor data, each generating a time series reading 𝑋 =
{𝑥1, 𝑥2, … 𝑥𝑛}. 𝑋(𝑡) represents the sensor readings at time step 𝑡 
and 𝐴 = {𝑎1, 𝑎2, … , 𝑎|𝐴|} be the number of the activities to be 

predicted. 

The values from the multiple sensors can be aggregated as 
time series window, as shown in Eq. (1): 

𝑋 = [
𝑥1(1) ⋯ 𝑥1(𝑡)
⋮ ⋱ ⋮

𝑥𝑛(1) ⋯ 𝑥𝑛(𝑡)
] = [𝑋(1), . , 𝑋(𝑖), . , 𝑋(𝑡)] 

 

(1) 

where, 𝑋(𝑖) = [𝑥1(𝑖), … , 𝑥𝑛(𝑖)]  is the sensor input at time 
𝑖 for 𝑛 number of sensor readings. 

B. Phase 2: Preprocessing 

The samples in the time segment are passed through filters 
for missing values, noise and outlier removal. After 
preprocessing, a set of segments W is produced that corresponds 
to activity A, as shown in Eq. (2). 

 𝑊 = {𝑤𝑠1, 𝑤𝑠2, … , 𝑤𝑠𝑚} (2) 

For each segment 𝑤𝑠𝑖 = (𝑡1, 𝑡2) represents a portion of 
samples from 𝑡1 to 𝑡2. 

C. Phase 3: Model Building 

The model building consists of the following stages: 

1) Train a shallow CNN: The aim of this stage is to train a 

shallow CNN inference model ρ, A = ρ(X), such that the 

difference between the actual and predicted values is 

minimized. 

 Define Input Layer: The input layer consists of time 
series signals. The input at time step t denoted as 𝑋(𝑡), 
and the input to the first convolution layer denoted as 
𝑙𝑜(𝑡) is calculated using Eq. (3): 

 𝑙𝑜(𝑡) = 𝑋(𝑡) = 𝑋0 (3) 

 Convolution Layer: It consists of a series of L layers, 𝐿 =
{𝑙1, 𝑙2, … 𝑙|𝐿|}, each with n number of neurons. The output 

of ith neuron at layer 𝑙 is calculated using Eq. (4): 

 

𝑥𝑖
𝑙 = ℎ(∑(𝑤𝑖𝑗

𝑙

𝑁

𝑗=0

. 𝑥𝑗
𝑙−1 + 𝑏𝑖

𝑙) 

 

(4) 

where, 𝑤𝑖𝑗
𝑙  is the weight between the neuron j at layer 𝑙 − 1 

and neuron 𝑖 at layer 𝑙, 𝑏𝑖
𝑙 is the bias of neuron 𝑖 at layer 𝑙, ℎ(∙) 

indicates the ReLU activation function, which is calculated 

using max⁡{0, ∑ (𝑤𝑖𝑗
𝑙𝑛

𝑗=0 . 𝑥𝑗
𝑙−1 + 𝑏𝑖

𝑙)}. 

 Batch Normalization: To converge the CNN network 
easily the batch normalization is performed using Eq. 
(5): 

 
𝐵𝑁(𝑥′𝑖

𝑙
) =

𝛾(𝑥𝑖
𝑙 − 𝜇𝛽)

𝜎𝛽
+ 𝛽 

(5) 

where, 𝜇𝛽 is mean and 𝜎𝛽 is the standard deviation of the 

current batch. The resultant values are scaled by 𝛾 and shifted 
by⁡𝛽. The 𝛾 and 𝛽 are learned throughout training. 

 Pooling Layer: The convolution layer is followed by 
pooling layer to reduce the size and parameters of the 
network. It is performed using Eq. (6): 

𝑀𝑎𝑥𝑝𝑜𝑜𝑙𝑖
𝑙(𝑡) = 𝑚𝑎𝑥𝑟∈𝑅(𝑥

′
𝑖
𝑙(𝑡 ∗ 𝑇 + 𝑅)) (6) 

 Softmax classification layer: After pooling layer, the 
input passes through fully connected layer, and finally 
softmax layer for performing classification. The 
computed activity scores for each achievement are 

expressed as 𝑃(
𝑎𝑖
𝑥𝑖 , 𝜃
⁄ ), computed using inference 

method⁡𝜌, expressed as  

𝑃 (
𝑎𝑖
𝑥𝑖
, 𝜃) = 𝜌(𝑥𝑖 , 𝜃), 𝑓𝑜𝑟⁡𝑎 ∈ 𝐴 

where, 𝜃 is trained parameters of model 𝜌.The maximum 
score will then be used to calculate the predicted activity 𝑎𝑖 for 
the segment 𝑤𝑠𝑖 . 

𝑎𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃 (

𝑎𝑖

𝑥𝑖
, 𝜃) 

 The training is performed through backpropagation and 
the gradients are computed as: 

 𝜕𝐸

𝜕𝑊𝑙
= (

𝜕𝐸

𝜕𝑋𝑙
)
𝑇

. 𝑋𝑙−1 
(7) 

 𝜕𝐸

𝜕𝑋𝑙−1
= (𝑊𝑙)𝑇 .

𝜕𝐸

𝜕𝑋𝑙
 

(8) 

where, Eq. (7) represents error with respect to weights at 
layer 𝑙 and Eq. (8) represents error w.r.t the output of the 
previous layer. Once the gradients are computed, then weights 
are updated according to Eq. (10): 

 
𝑊𝑙 = 𝑊𝑙 − 𝛼(

𝜕𝐸

𝜕𝑊𝑙
) 

(9) 

where, 𝛼 is the learning rate of the optimization algorithm. 
This process is repeated for each training example in the dataset 
until the error is minimized to a satisfactory level. 

2) Retrain using CnQ algorithm: To minimize transfer loss 

from CNN to spiking neural network, the designed CNN in step 

5 is retrained using the CnQ algorithm, a variation of CQ [18]. 

For the CnQ, the input is first normalized using Eq. (10): 

 
𝑋_𝑛𝑜𝑟𝑚 =

𝑋

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑒𝑎𝑛
 

(10) 

Then quantized for spike train of length 𝑇, using Eq. (11): 

 
𝑄𝑇(𝑋_𝑛𝑜𝑟𝑚(𝑡)) = ⌊

𝑋_𝑛𝑜𝑟𝑚(𝑡). 𝑇

𝑇
⌋ 

(11) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

133 | P a g e  

www.ijacsa.thesai.org 

Since, batch normalization cannot be applied to the input 
spike trains, therefore batch normalization is applied to weights 

𝑤𝑙  and bias 𝑏𝑙 using Eq. (12) and Eq. (13): 

 
𝐵𝑁(𝑤𝑖

𝑙) =
𝛾. 𝑤𝑖

𝑙

𝜎𝛽
+ 𝛽 

(12) 

 
𝐵𝑁(𝑏𝑖

𝑙) =
𝛾(𝑏𝑖

𝑙 − 𝜇𝑖
𝑙)

𝜎𝛽
+ 𝛽 

(13) 

Now the input data is transformed in spike trains with 
discrete values set 𝑇 ∈ {0,1}. Instead of ReLU activation 
function, the CQ transform is applied. Clamping is first applied 
to the activation function to restrict them to [0,1] and is defined 
as⁡𝐶 in Eq. (14): 

𝐶(𝑥) = {
0, 𝑥 < 0
𝑥, 0 ≤ 𝑥 ≤ 1
1, 𝑥 > 1

 
(14) 

Then Quantization is applied as in Eq. (15): 

 
𝑄𝑇(𝑥) = ⌊

𝑥. 𝑇

𝑇
⌋ 

(15) 

In CnQ, the forward propagation is modified as Eq. (4). The 
learning is performed through conventional backpropagation: 

 𝜕𝐸

𝜕𝑊𝑙
= 𝑄′. 𝐶′. (

𝜕𝐸

𝜕𝑋𝑙
)
𝑇

. 𝑋𝑙−1 
(16) 

 𝜕𝐸

𝜕𝑋𝑙−1
= 𝑄′. 𝐶′. (𝑊𝑙)𝑇 .

𝜕𝐸

𝜕𝑋𝑙
 

(17) 

where, Eq. (16) shows error w.r.t weights at layer 𝑙 and Eq. 
(17) represents error w.r.t the output of the previous layer. Once 
the gradients are computed, then weights are updated according 
to Eq. (9). Algorithm 1 explains CnQ training details. 

Algorithm 1: CnQ Training 

Input: Sensor data (X), Activity Label (A) 

Output: Trained Layers 〈𝒍𝟏, … , 𝒍|𝑳|〉 

Parameters Initialized: Number of layers (L), Weights (W), 

Bias(B), convergence==false 

1. Normalize X     //using eq. 10 

2.  Quantize X    //using eq. 11 

3.  while(!convergence==true) 

4.  For i=1 to L 

5.   For j=1 to N     //forward propagation 

6.    Calculate 𝑥𝑗
𝑖    //using eq. 4 

7.    Apply BN     //using eq. 12 and 13 

8.    Apply Clamping on 𝑥𝑗
𝑖    //using eq. 14 

9.    Apply Quantization on 𝑥𝑗
𝑖//using eq. 15. 

10.   End for 

11.  End for 

12.  For 𝑖 = 𝐿⁡𝑡𝑜⁡1    //Backpropagation 

13.   Calculate Gradients    //using eq. 16 and 17 

14.   Adjust weights    //using eq. 9 

15.  End for 

16.  Update convergence 

17. End while 

18. Return Trained layers 〈𝑙1, … , 𝑙|𝐿|〉 

3) The SN Deployment: While CNN’s transmit activation 

data among layers (𝑥𝑙) as real numbers. SNN neurons receive 

series of binary input as spike trains. Formally, 𝑠𝑖
𝑙 is a spike 

train of neuron 𝑖 at layer 𝑙 where 𝑠𝑖
𝑙(𝑡) ∈ {0,1} is a spike at time 

𝑡. Unlike CNNs, the weight sum is merely a summation since 

the weights are binary. 

The IF model is used to map CNN to SNN activation. At 
each time step 𝑡, a neuron 𝑖 computes the weighted sum of the 

received input spikes 𝑠𝑗
𝑙−1(𝑡) and the corresponding weights and 

integrates them as the membrane potential 𝑉𝑖. Whenever 𝑉𝑖 
exceeds a predefined threshold 𝑉𝑡ℎ𝑖 , the neuron fires a spike ‘1’ 

and decreases 𝑉𝑖 by 𝑉𝑡ℎ𝑖 . Otherwise, it outputs ‘0’. Formally, 

𝑣𝑖
𝑙(𝑡) = 𝑣𝑖

𝑙(𝑡 − 1) + (∑(𝑤𝑖𝑗
𝑙

𝑛

𝑗=0

. 𝑠𝑗
𝑙−1(𝑡) + 𝑏𝑖

𝑙) 

𝑤ℎ𝑒𝑟𝑒, 𝑠𝑖
𝑙(𝑡) = {

1, 𝑣𝑖
𝑙(𝑡) ≥ 𝑣𝑡ℎ𝑖

𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑣𝑖
𝑙(𝑡) = {

𝑣𝑖
𝑙(𝑡) − 𝑣𝑡ℎ𝑖

𝑙 , 𝑣𝑖
𝑙(𝑡) > 0

𝑣𝑖
𝑙(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The firing threshold is set using the TF algorithm, inspired 
from threshold firing approach [19]. Given the desired inference 
latency t for SNN, TF records the maximum accumulated 
activation value for each neuron across timesteps at each layer 𝑙, 
as in Eq. (18): 

𝑡ℎ𝑟𝑒𝑠𝑖
𝑙

=

{
  
 

  
 
max⁡(𝑡ℎ𝑟𝑒𝑠𝑖

𝑙 , max (∑𝑤𝑖𝑗
𝑙 𝑥𝑗

𝑙

𝑁

𝑗=1

) , 𝑙 = 1

max⁡(𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 , max (∑𝑤𝑖𝑗

𝑙 𝑠𝑗
𝑙(𝑡)

𝑁

𝑗=1

) , 1 < 𝑙 < 𝐿

 

 

 

 

(18) 

After the assignment of the firing threshold for a layer, it 
freezes the thresholds of the layer and repeats the threshold 
determination for the next layer. Algorithm 2 explains the 
working of TF. 

Algorithm 2: TF setting 

Input: Timesteps for inference (T) 

Output: Firing threshold for each layer [⁡{𝒗𝒕𝒉𝒊
𝒍 }

𝒊=𝟏

𝑵
]
𝒍=𝟏

𝑳

 

1. For 𝑙 = 1⁡𝑡𝑜⁡𝐿 

2.  For 𝑖 = 1⁡𝑡𝑜⁡𝑁 

3.   Set 𝑡ℎ𝑟𝑒𝑠𝑖
𝑙 = 0 

4.  End for 

5.   If (𝑙 === 1) 

6.   For 𝑖 = 1⁡𝑡𝑜⁡𝑁 

7.    Calculate 𝑡ℎ𝑟𝑒𝑠𝑖
𝑙   //using eq. 18 

8    Set 𝑣𝑡ℎ𝑖
𝑙 = 𝑡ℎ𝑟𝑒𝑠𝑖

𝑙 
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9   End for 

10  End if 

11  Else if (𝑙 == 𝐿) 

12   Set  𝑣𝑡ℎ𝑖
𝑙 = ⁡∞ 

13  End if 

14  else 

15.   For 𝑡 = 1⁡𝑡𝑜⁡𝑇 

16.    For 𝑖 = 1⁡𝑡𝑜⁡𝑁 

17.     Calculate⁡𝑡ℎ𝑟𝑒𝑠𝑖
𝑙   //using eq. 18 

18.     Set 𝑣𝑡ℎ𝑖
𝑙 = 𝑡ℎ𝑟𝑒𝑠𝑖

𝑙 

19    End for 

20.   End for 

21.  End if 

22. End for 

23. Return 𝑣𝑡ℎ𝑖
𝑙  list 

D. Phase 4:Evaluation 

 Evaluation metrics: After training network, the 
performance can be tested on the various metrics on test 
data and can fine-tuned as necessary as discussed in [20] 

accuracy (
𝑡𝑝+𝑡𝑛

𝑡𝑝+𝑡𝑛+𝑓𝑝+𝑓𝑛
), precision (

𝑡𝑝

𝑡𝑝+𝑓𝑝
),⁡recall 

(
𝑡𝑝

𝑡𝑝+𝑓𝑛
), f1-score (

2∗(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
), specificity (

𝑡𝑛

𝑡𝑛+𝑓𝑝
), 

balanced accuracy (
1

2
(

𝑡𝑝

𝑡𝑝+𝑓𝑛
+

𝑡𝑛

𝑡𝑛+𝑓𝑝
), where 𝑡𝑝 is true 

positive, 𝑓𝑝 is false positive, 𝑡𝑛 is true negative. 𝑓𝑛 is 
false negative. 

 Evaluate number of parameters: To estimate the number 
of parameters in a spiking CNN model, using Eq. (19): 

 𝑛𝑝 = ((𝑖𝑐 ∗ 𝑓𝑠 ∗ 𝑛𝑓 + 𝑏𝑖𝑎𝑠) ∗ 𝑜𝑠⁡⁡)⁡ (19) 

where, 𝑖𝑐 represents the number of channels in the input 
spike trains, 𝑓𝑠 represents the size of the filters, 𝑛𝑓 represents 
the number of filters in the convolutional layer, bias represents 
the bias term for each filter, and  𝑜𝑠⁡represents the size of the 
output spike trains. 

 Calculate memory usage: The memory utilized by a 
spiking CNN model can be estimated by multiplying the 
number of parameters by the number of bytes used to 
store each parameter. For example, if we assume that 
each parameter is stored as a 32-bit float, then the 
memory utilized can be calculated, as in Eq. (20), 
whereas niCNN uses 8 bit clamped and quantized signal; 
therefore each parameter is 8 -bit. 

 𝑚𝑒𝑚𝑜𝑟𝑦⁡𝑢𝑡𝑖𝑙𝑖𝑧𝑒𝑑⁡(𝑖𝑛⁡𝑏𝑦𝑡𝑒𝑠) = 𝑛𝑝 ∗ 4⁡ (20) 

 Power Consumption: As per Intel specification [21], 
Intel core i7 processor consumes 65 watts, whereas Intel 
Loihi 2 consumes around 1 watt. To calculate the power 
consumed in execution, it  is done using Eq. (21): 

𝑝𝑜𝑤𝑒𝑟⁡𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
= 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛⁡𝑡𝑖𝑚𝑒
∗ 𝑤𝑎𝑡𝑡𝑠⁡⁡𝑜𝑓⁡𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 

(21) 

IV. EXPERIMENT 

This section elucidates the experimentation conducted on 
two widely used public datasets, namely WISDM and mHealth, 
to evaluate the efficacy of niCNN. All experiments were 
performed on a single system that was equipped with an i7-
5500U processor, 16 GB of RAM, and a 1 TB hard disk drive. 
The implementation of niCNN was executed utilizing the 
dynamic and powerful programming language Python, 
alongside auxiliary packages such as Nengo, NengoDL, and 
NNI [22]. The proposed network architecture was constructed 
utilizing Keras, a Python-based high-level neural networks API 
that can run on top of TensorFlow. 

A. Dataset Description 

WISDM and mHealth datasets contain time series data for 
physical activity that were collected using wearable sensor 
devices. The WISDM includes data for six physical activities 
that were performed by 29 subjects at a sampling rate of 20 Hz, 
while the mHealth dataset includes data for 12 physical activities 
performed by 10 subjects at a sampling rate of 50 Hz. Table II 
provides an overview of each dataset's specifications, and Table 
III describes captured activity data. 

TABLE II.  DATASET SPECIFICATIONS 

Dataset Subjects Sensors 
Sampling 

Rate 
Activities Samples 

WISDM 36 A 20 Hz 6 1,098,209 

mHealth 10 
A,G, M, 

ECG 
50 Hz 12 1,215,745 

a. A= Accelerometer, G= Gyroscope, M= Magnetometer, ECG= Electrocardiography 

TABLE III.   ACTIVITY DATA 

Dataset Activities (Labels, Samples, % Distribution) 

WISDM 

Walk(1,424400,38.6), Jog(2,342177,31.2),  

Up(3.122869,11.20), Downstairs(4,100427,9.1), 
sit(5,59939,5.5), standing(6,48397,4.4) 

mHealth 

Standing(1,30720,9), Sitting(2,30720, 9), Lying 

down(3, 30720,9 ), Walking(4, 30720,9), Climbing 
stairs(5, 30720,9 ), Forward bending(6, 28315,8.3 ), 

Frontal Arm elevation(7,29441, 8.6 ), Knees bending(8, 

29337, 8.5), cycling(9, 30720,9), Jogging(10, 30720,9 
)Runing (11, 30720,9), jumping(12,10342,3) 

B. Preprocessing 

A total of 1,098,209 and 3,44,116 samples were collected 
from WISDM and MHealth. To minimize computational effort 
for on-edge deployment, only segmentation was performed as 
the preprocessing step. The signal was partitioned into non-
overlapping temporal windows of length 2s. After dividing the 
samples based on raw data without feature extraction, a split of 
70:30 was used to create training and testing sets. 
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Fig. 2. WISDM activity visualization. 

WISDM does not contain outliers, missing values, or null 
activities; thus, all samples were used for experimentation. Fig. 
2 displays a visualization of the WISDM dataset at a timestep of 
180. After eliminating null activities from mHealth, the final 
sample size consists of 343195 samples. At a timestep of 80, a 
visualization of the mHealth dataset is presented in Fig. 3. 

C. Network Architecture 

A shallow CNN architecture is developed, consisting of two 
convolution layers, a max pooling layer, a flattening layer, and 
two dense layers. The model underwent fully supervised 
training, with the gradient backpropagated from the Softmax 
layer. 

In the context of the study, cross-entropy loss function is 
utilized to quantify the dissimilarity between the predicted and 
actual distributions. 

Adam, a stochastic optimization algorithm founded on the 
first-order gradient, is utilized as the optimizer. The training 
process is performed over 25 epochs, with a batch size of 64 and 
a small learning rate of 0.001 to improve the fitting ability. To 
improve the model's robustness, the training set is randomly 
shuffled. The hyperparameters are chosen after analyzing the 
effect of various factors, including the number of filters, batch 
size, filter size, and dropout rate, on accuracy. Fig. 4 illustrates 
the impact of these factors on accuracy, and the final 
hyperparameters are listed in Table IV. 

 

Fig. 3. mHealth activity visualization. 

 
Fig. 4. Impact of hyperparameters on accuracy. 
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TABLE IV.  SELECTED HYPERPARAMETERS 

Stage Hyperparameters Selected Value 

Preprocessing 
Window_size 

180(WISDM) 

80(mHealth) 

Step_size 100 

Architecture 

Conv1_kernel_size 3 

Conv1_filter_size 64 

Maxpooling_size 2 

Conv2_kernel_size 3 

Conv2_filter_size 64 

Dense layer 128 

Dropout 0.5 

Training 

Optimizer Adam 

Batch_Size 64 

Learning rate .001 

Number of epochs 25 

The niCNN is developed using the Nengo neural simulator 
on the Loihi neuromorphic chip. To construct the spiking CNN 
directly from its non-spiking counterpart, the NengoDL 
converter was used. Hyperparameter tuning is conducted using 
the Neural Network Intelligence (NNI) toolkit and Annealing 
algorithm, while ensuring a proper search space. Each 
optimization experiment comprised 1,000 trials, with the tuner 
being randomly re-initialized four times in equal intervals to 
avoid local minima. Following every trial of 25 training epochs, 

the weights yielding the best training accuracy are employed to 
evaluate the test accuracy. To train all investigated networks, 
including optimization of the learning rate throughout the 
experiment trials, Adam optimizer with a constant learning rate 
is utilized. Fig. 5 and Fig. 6 represent training progress of 
WISDM and mHealth over epochs. 

 
Fig. 5. WISDM dataset progress over epochs. 

 
Fig. 6. mHealth dataset progress over epochs. 

 
Fig. 7. Performance comparison.

V. RESULTS 

The evaluation of performance was carried out using the 
metrics described in Section III, and the results are presented in 
Table V. niCNN achieved 98.08% average accuracy, 97.25% on 
WISDM dataset and 98.92% on mHealth. Fig. 7 provides a 
comparison of niCNN on both datasets against its baseline CNN 
on the same architecture. Additionally, the obtained confusion 
matrix for the WISDM and mHealth datasets are shown in Fig. 

8 and Fig. 9, respectively. As per results, presented in Fig. 7 and 
Table V, niCNN obtained on average 1.1% increase in accuracy, 
97.4% reduced power consumption, 60.04% reduced memory 
consumption, and 30.2% reduced inference time. 

niCNN achieved a notably higher accuracy compared to 
other state-of-the-art works( [10], [23]–[33] ), as demonstrated 
in Fig. 10. 
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TABLE V.  PERFORMANCE METRICS 

 
WISDM mHealth 

niCNN CNN niCNN CNN 

#P 22,642 14,326 32,612 20,286 

#ET(s) 5.2 3.2 5.8 4.1 

#M(kBytes) 22.11 55.96 31.84 79.24 

#PC(watts) 5.2 208 5.8 266.5 

#IT(ms) 2.25 3.27 2.36 4.02 

b. #P=Number of parameters, #ET= Execution Time, #M=Memory used, #PC=Power Consumption, 
#IT=Inference Time 

 
Fig. 8. WISDM confusion matrix. 

 
Fig. 9. mHealth confusion matrix. 

 

Fig. 10. Comparison of performance accuracy. 

VI. CONCLUSIONS 

The study demonstrates the capability of neuromorphic 
computing to perform real-time HAR on edge devices with 
limited resources. It presents a novel four stage niCNN 
architecture, overcoming the accuracy loss and higher inference 
latency associated with transferring weights from a CNN to a 
neuromorphic network by applying CnQ algorithm. The new 
improved threshold balancing approach, TF, further increases 
the inference accuracy of the system. The experimental results 
demonstrate that the niCNN architecture achieves high 
accuracy, low inference latency, memory usage, and energy 
consumption compared to the state-of-the-art and baseline CNN 
models. 

In future, niCNN performance can be investigated on 
different HAR datasets. The CnQ and TF algorithms can also be 
further optimized to achieve better results. Further research can 
expand the model's capability to recognize more complex 
activities. The effectiveness of various optimization methods 
within the Nengo framework, including different windowing 
techniques can also be explored. Additionally, the niCNN 
architecture can be extended to other real-time processing 
applications on edge devices. 
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