
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

146 | P a g e

www.ijacsa.thesai.org

SE-Pruned ResNet-18: Balancing Accuracy and

Efficiency for Object Classification on Resource-

Constrained Devices

Zeyad Farisi

Applied College, Taibah University, Medina City, Saudi Arabia

Abstract—Deep learning-based image object classification

methods often achieve high accuracy, but with the growing

demand for real-time performance on resource-constrained edge

devices, existing approaches face challenges in balancing accuracy,

computational complexity, and model size. To alleviate this

awkward situation, we propose a novel ResNet-18 architecture

that integrates the Squeeze-and-Excitation (SE) module and

model pruning. The SE module adaptively emphasizes informative

feature channels to enhance classification accuracy, while pruning

technology reduces computational costs by removing unimportant

connections or parameters without significant accuracy loss.

Extensive experiments on benchmark datasets demonstrate that

the optimized model outperforms the original ResNet-18 in both

accuracy and inference speed. The classification accuracy

increases from 93.2% to 94.1%, the number of parameters is

reduced by 30%, the Floating-Point Operations decreases from

1.81 giga to 1.32 giga, and the inference time is decreased from 15.2

milliseconds to 12.8 milliseconds per batch. What’s more, the

proposed model outperforms MobileNetV2, ShuffleNetV2, and

EfficientNet-B0 in accuracy while maintaining competitive

inference speed and parameter count. The experimental results

highlight the model’s potential for deployment on resource-

constrained devices, expanding the practical application scenarios

of object classification methods in edge computing and real-time

detection tasks.

Keywords—ResNet-18; squeeze-and-excitation model; model

pruning; object classification; resource-constrained devices

I. INTRODUCTION

In the era of digital transformation, object classification, as
a fundamental task in computer vision, plays a crucial role in
various applications, including intelligent surveillance,
industrial automation, and autonomous driving. Deep learning,
especially convolutional neural networks (CNNs), has been the
mainstream of image-based object classification. Among
numerous CNN architectures, ResNet-18, proposed by He et al.
[1] stands out for its simplicity and accuracy, providing a
practical baseline for many classification tasks. However, with
the increasing demand for real-time performance and resource-
constrained edge devices, the original ResNet-18 faces
challenges in balancing accuracy, computational complexity,
and model size.

The first challenge lies in feature representation. Although
ResNet-18 alleviates the vanishing gradient problem through
skip connections, it treats all feature channels equally, which
may lead to the neglect of critical object characteristics and thus
limit the classification accuracy. To address this issue, the SE

module, introduced by Hu et al. [2], was proposed. By learning
channel-wise attention, the SE module can selectively enhance
discriminative features and suppress redundant information,
thereby improving the recognition performance of the model.

The second challenge is computational efficiency. In many
practical applications, models are often deployed on devices
with limited computing resources and memory. The relatively
large number of parameters in the original ResNet-18 may result
in slow inference speed and high energy consumption, making
it difficult to meet real-time requirements. Model pruning, a
well-studied technique in deep learning compression, offers an
impressive approach to reduce model complexity. By removing
unimportant connections or parameters, pruning can
significantly decrease the model parameters and the
computational cost while maintaining acceptable accuracy.

In this study, we aim to optimize the ResNet-18 architecture
for object classification by integrating the SE module and model
pruning techniques. Specifically, we embed the SE module into
each residual block of ResNet-18 to enhance feature
discrimination and apply structured pruning based on the L1
norm of weights to reduce model complexity.

The rest of this study is organized as follows: Section II
reviews the related work on object classification, the SE module,
and model pruning. Section III details the proposed
methodology. Section IV presents the experimental setup,
results, and analysis. Finally, Section V concludes the study and
discusses future research directions.

II. RELATED WORK

A. Object Classification with Deep Learning

The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) has been a significant milestone in the development
of image-based object classification using deep learning. In
2012, AlexNet [3], proposed by Krizhevsky et al., achieved a
top-5 error rate of 15.3% on the ImageNet dataset. This
breakthrough inspired a wave of research in developing more
advanced CNN architectures. Subsequently, numerous
architectures were proposed to improve classification accuracy.
VGGNet [4], developed by Simonyan and Zisserman in 2014,
achieved a lower error rate than AlexNet. However, the increase
in depth also led to a significant increase in the number of
parameters. ResNet addressed the problem of vanishing
gradients in very deep neural networks through the introduction
of residual connections. This allowed for the training of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

147 | P a g e

www.ijacsa.thesai.org

extremely deep networks, and ResNet-18, a lightweight variant,
became widely used due to its good balance between
performance and computational cost. ResNet architectures
achieved state-of-the-art results in various image classification
benchmarks.

In recent years, there have been continuous efforts to further
improve the accuracy of image-based object classification.
Methods like DenseNet [5], which introduced dense connections
between layers to promote better information flow and feature
reuse. As of now, the most accurate methods [6] [7] in image-
based object classification often involve highly complex
architectures with a large number of parameters. They are
extremely large in size, with a vast number of parameters that
require significant computational resources for training and
inference. As a result, these models are not suitable for
lightweight application scenarios such as edge computing,
where devices have limited memory, computing power, and
energy resources.

B. SE Module

The SE module is a powerful technique for improving the
representational power of CNNs. Unlike traditional CNNs that
process all feature channels equally, the SE module adaptively
recalibrates the importance of different channels, which has
been successfully integrated into various CNN architectures,
leading to significant performance improvements. Subsequently,
many researchers focused on further improving CNN
architectures by leveraging the SE module. For example, in [8],
the authors proposed a modified SE-ResNet architecture. They
adjusted the position and number of SE modules within ResNet
to better capture the hierarchical feature information. Another
study [9] combined the SE module with the Inception
architecture, creating an SE-Inception network. The new
network was able to distinguish between different object classes
by emphasizing the important channels in the feature maps,
resulting in improved performance on large-scale image
classification tasks. An SE-based CNN was developed for the
classification of retinal fundus images in reference [10], which
is crucial for the early detection of eye diseases. The SE module
helped the model to focus on the relevant anatomical structures
in the images, improving the classification performance for
different disease categories. In [11], the authors applied the SE
module in a YOLO-based network for object detection and
classification. Reference [12] combined the SE module with
attention mechanisms (spatial attention) to create hybrid
attention networks. In addition, researchers have also integrated
the SE module with generative models [13].

C. Model Pruning Techniques

Model pruning techniques have emerged as a crucial
approach in the field of deep learning for reducing model
complexity, computational cost, and memory footprint while
maintaining acceptable performance. These techniques aim to
remove unimportant or redundant parts of a pre-trained model,
making it more efficient for deployment on resource-constrained
devices such as mobile phones, embedded systems, and edge
computing platforms. LeCun et al. [14] in 1989 proposed a
simple form of pruning for neural networks. They removed

small-magnitude weights from a neural network, demonstrating
that a significant portion of the weights could be eliminated
without sacrificing much accuracy. Han et al. [15] introduced an
aggressive pruning method in 2015, where they removed a large
percentage of the smallest-magnitude weights from deep neural
networks. They combined pruning with quantization and
Huffman coding to achieve significant compression of neural
network models. Reference [16] pruning AlexNet and VGG-16
demonstrated that it was possible to reduce the number of
parameters by up to 90% while maintaining similar accuracy on
the ImageNet dataset. Molchanov et al. [17] proposed a method
for pruning convolutional neural network (CNN) channels. They
used a Taylor expansion-based importance measure to identify
and remove less important channels. In addition, pruning entire
layers of a neural network has also been explored. Guo et al. [18]
proposed a layer-level pruning method, where they analyzed the
contribution of each layer to the overall network performance
and removed the least important layers. Zhou et al. [19]
proposed a data-dependent sparse structure selection method.
They trained a small neural network to predict the importance of
each weight in a large pre-trained network based on the input
data. This data-driven approach could adaptively identify the
weights that were more crucial for the specific dataset, leading
to more effective pruning. AutoML-Zero [20] used
reinforcement learning to automatically discover and optimize
neural network architectures, including the pruning process. In
this framework, an agent learns to make pruning decisions by
interacting with the model and receiving rewards based on the
performance (such as accuracy and model size) of the pruned
model. This approach has the potential to find more optimal
pruning strategies compared to traditional heuristic-based
methods.

III. METHODOLOGY

A. Integration of SE Module into ResNet-18

1) Architecture of SE-ResNet-18: The core idea of

integrating the SE module into ResNet-18 is to enable the

network to adaptively recalibrate the importance of different

feature channels, thereby enhancing its discriminative power

for object classification. ResNet-18 consists of four residual

blocks, each containing two convolutional layers with skip

connections. In our proposed architecture, we embed an SE

module into each residual block, forming the SE-ResNet-18.

The model structure can be seen in Fig. 1.

The input image first goes through a 7x7 convolutional layer
for initial feature extraction, followed by a max pooling layer for
down-sampling. Four residual blocks (each containing an SE
module) further extract hierarchical features. A global average
pooling layer compresses spatial dimensions, and a fully
connected layer generates classification outputs. The structure
of residual blocks in Fig. 1 can be seen in Fig. 2.

The residual block consists of two 3x3 convolutional layers
with batch normalization and ReLU activation, the output of the
second convolutional layer is fed into the SE module, then
summed with the input feature map (skip connection) and
activated by ReLU. The structure of SE block in Fig. 2 can be
seen in Fig. 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

148 | P a g e

www.ijacsa.thesai.org

Fig. 1. The structure of SE-ResNet-18.

Fig. 2. The structure of residual block.

Fig. 3. The structure of SE block.

The SE module operates through three sequential steps:
squeeze, excitation, and reweight. In the squeeze step, global
average pooling is applied to the output feature maps of the
second convolutional layer within each residual block. This

operation compresses the spatial dimensions ()H W of the
feature maps into a single value for each channel, aggregating
global context information across the entire feature map.

Mathematically, for a feature map
C H WX R   , the squeeze

operation sqF
generates a channel-wise descriptor

Cz R :

1 1

1
() (,)

H W

c sq c c

i j

z F X X i j
H W  

 



 (1)

where, cX represents the c -th channel of the feature map X .

In the excitation step, the channel-wise descriptor z is fed
into a two-layer fully-connected network. The first fully-

connected layer reduces the dimensionality of z from C to
/C r (where r is the reduction ratio), followed by a ReLU

activation function. The second fully-connected layer then

restores the dimensionality back to C , and a Sigmoid activation
function is applied to generate a set of channel-wise weights

Cs R , where each element cs represents the importance score
of the c -th channel:

2 1(,) (())exs F z W W W z   (2)

where, 1

C
C

rW R



 and 2

C
C

rW R



 are the weights of the

fully-connected layers,  is the ReLU function, and  is the
Sigmoid function. Finally, in the reweight step, the channel-

wise weights s are used to scale the original feature maps X .

The output of the SE module
C H WY R   is calculated as:

(,)C scale c c c cY F X s s X  
 (3)

By integrating the SE module in this manner, each residual
block in SE-ResNet-18 can selectively enhance the channels that
are more relevant to the object classification task, while
suppressing less informative channels. This mechanism allows
the network to focus on the most discriminative features, such
as textures, shapes, and colors of the objects, thereby improving
the overall classification accuracy.

2) Parameter and computational analysis: The integration

of the SE module into ResNet-18 introduces additional

parameters and computational costs. The extra parameters

mainly come from the two fully - connected layers in the

excitation step. For each SE module, the number of additional

parameters is

C C
C C

r r
  

 . In ResNet-18, with a total of 8

residual blocks, the total number of additional parameters

introduced by the SE modules is

8
C C

C C
r r

 
    
  .

However, compared to the overall number of parameters in

ResNet-18 (about 11.7 million), the increase in parameters due

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

149 | P a g e

www.ijacsa.thesai.org

to the SE module is relatively small when r is set

appropriately. In terms of computational cost, the main

operations added by the SE module are global average pooling,

two fully - connected layers, and element - wise multiplication.

Although these operations increase the computational load, the

improvement in feature representation often outweighs the cost,

especially in complex object classification tasks where fine-

grained feature discrimination is required.

B. Model Pruning Strategy

1) Unstructured pruning based on L1 norm: To further

optimize the SE-ResNet-18 for better computational efficiency

and model size reduction, we adopt an unstructured pruning

strategy based on the L1 norm of weight parameters.

Unstructured pruning has the advantage of flexibility, as it can

remove individual weights without imposing a specific

structural constraint on the network.

The L1 norm of a weight parameter w is defined as

1|| || | |w w
 . Weights with smaller L1 values contribute less to

the output of the network and are thus considered less important
for the classification task.

The pruning process consists of the following steps:

 Initial Training: First, we train the SE-ResNet-18 on the
target object classification dataset until it converges. This
step ensures that the network has learned a good set of
feature representations.

 Weight Ranking: After training, we calculate the L1
norm for each weight parameter in the convolutional
layers of the network. Weights are then ranked according
to their L1 values in ascending order.

 Pruning Threshold Selection: A pruning threshold is set
to determine the proportion of weights to be removed.
For example, if we remove 30% of the weights with the
smallest L1 values. In practice, we use a grid search
method on a validation set to find the optimal that
maximizes the test accuracy while achieving the desired
level of parameter reduction.

 Weight Removal: We set the weights below the threshold
to zero, effectively pruning them from the network.

 Fine-Tuning: After pruning, the network is fine-tuned on
the training dataset for a certain number of epochs (in this
study, we set it to 20 epochs). Fine-tuning helps the
network recover from the performance degradation
caused by weight removal and adapt to the new sparse
structure.

2) Pruning-aware training: To further improve the

effectiveness of pruning and mitigate the negative impact on

model performance, we also incorporate pruning-aware

training techniques. During the initial training phase of SE-

ResNet-18, we add a regularization term to the loss function

that encourages weight sparsity. Specifically, we use L1

regularization:

| |regularized task

w

L L w


  
 (4)

where, taskL is the original loss function for the object

classification task,  is the regularization strength, and  is
the set of all weight parameters in the network. This
regularization term helps to make the weights smaller during
training, making them more likely to be pruned in the
subsequent pruning step.

C. Overall Optimization Process

The overall optimization process of our proposed method
can be summarized as follows:

1) Initialization: Start with the original ResNet-18

architecture and initialize the network weights.

2) SE Module Integration: Embed the SE module into each

residual block of ResNet-18 to form SE-ResNet-18.

3) Initial Training: Train the SE-ResNet-18 on the object

classification dataset with data augmentation techniques (such

as random cropping, horizontal flipping) and L1 regularization

to encourage weight sparsity.

4) Model Pruning: After the initial training converges,

apply the unstructured pruning based on the L1 norm to remove

redundant weights.

5) Fine-Tuning: Fine-tune the pruned SE-ResNet-18 on the

training dataset to recover and improve the classification

performance.

6) Evaluation: Evaluate the optimized model on the test

dataset to measure its accuracy, computational efficiency, and

model size.

This iterative process of architecture modification, training,
pruning, and fine-tuning aims to achieve an optimal balance
between the classification accuracy and computational
efficiency of the ResNet-18-based object classification model.

IV. EXPERIMENTS

The CIFAR-10 dataset is employed to evaluate the proposed
method. The dataset is partitioned into 50,000 training images
and 10,000 test images. The following models are selected as
baselines for comparison: there are Original ResNet-18, ResNet-
18 with SE Module (SE-ResNet-18), Pruned ResNet-18 and our
Pruned SE-ResNet-18. Evaluation metrics are Accuracy,
Number of Parameters, Inference Time and FLOPs (Floating -
Point Operations).

Experiments are conducted on a desktop computer equipped
with an Intel Core i7-12700K CPU, 32GB RAM, and an
NVIDIA GeForce RTX 3060 GPU. The deep learning
framework used is PyTorch 1.13, and CUDA 11.6 is employed
for GPU acceleration. To measure the inference speed fairly,
each model's average inference time per batch is calculated by
running 1,000 forward passes on the test dataset and taking the
mean value.

The proposed SE-Pruned ResNet-18 achieves a test accuracy
of 94.1%, outperforming the Pruned ResNet-18 by 1.3% and
approaching the accuracy of SE-ResNet-18 (94.5%). This
indicates that the combination of SE module and pruning can

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

150 | P a g e

www.ijacsa.thesai.org

maintain high accuracy even with a reduced number of
parameters.

The proposed SE-Pruned ResNet-18 reduces the number of
parameters by approximately 27.4% compared to the original
ResNet-18, from 11.7 million to 8.5 million, while the FLOPs
are decreased by 27.1%. Notably, its inference time of 12.8
ms/batch is 15.8% faster than the original ResNet-18,
demonstrating significant improvements in computational
efficiency. Although the Pruned ResNet-18 has a slightly lower
inference time (12.1ms/batch), its accuracy is lower than the
proposed model, highlighting the trade-off between speed and
accuracy. The experimental results are shown in Table I.

TABLE I. EXPERIMENTAL RESULTS PRESENTATION

Model
Parameters

(M)

Flops

(G)

Inference time

(ms/batch)
Accuracy

Resnet 11.7 1.81 15.2 93.2

SE-Resnet 12.3 1.98 17.8 94.5

Pruned-

Resnet
8.2 1.25 12.1 92.8

ours 8.5 1.32 12.8 94.1

To further validate the proposed model’s competitiveness,
we compared it with other lightweight architectures on the
CIFAR-10 dataset. The results are shown in Table II:

TABLE II. COMPARISON WITH OTHER LIGHTWEIGHT ARCHITECTURES

Model
Parameters

(M)

Flops

(G)

Inference time

(ms/batch)
Accuracy

ResNet 11.7 1.81 15.2 93.2

MoblieNet

V2 [21]
2.2 1.32 7.5 92.1

ShuffleNet

V2 [22]
2.2 0.30 6.8 91.5

EfficientNet

B0 [23]
5.3 0.14 9.2 93.7

Ours 8.5 1.32 12.8 94.1

The proposed model outperforms MobileNetV2,
ShuffleNetV2, and EfficientNet-B0 in accuracy while
maintaining competitive inference speed and parameter count.
Unlike lightweight models optimized for mobile devices, SE-
Pruned ResNet-18 achieves a better balance for edge devices
requiring moderate computational capabilities (e.g., IoT
gateways, embedded systems).

The experimental results validate the effectiveness of the
proposed approach. The integration of the SE module enhances
the feature representation ability of ResNet-18, leading to
improved classification accuracy, as evidenced by the
performance of SE-ResNet-18. Meanwhile, the L1-norm-based
unstructured pruning method significantly reduces the model
size and computational cost without sacrificing much accuracy.
By combining these two techniques, the proposed SE-Pruned
ResNet-18 achieves an optimal balance among accuracy, model
complexity, and inference speed.

Compared with the original ResNet-18, the proposed model
requires fewer computational resources, making it more suitable
for deployment on resource-constrained devices such as edge
computing platforms, smartphones, and IoT devices. The

reduced inference time also enables real-time object
classification applications, expanding the practical application
scenarios of the model.

V. CONCLUSION

This study focuses on optimizing the ResNet-18 architecture
for object classification tasks by integrating the Squeeze-and-
Excitation (SE) module and L1-norm-based unstructured
pruning techniques. Through theoretical analysis and extensive
experiments on the CIFAR-10 dataset, the proposed approach
demonstrates remarkable performance in achieving a balance
between accuracy, computational efficiency, and model size. In
terms of accuracy, the optimized model (SE-Pruned ResNet-18)
achieves a test accuracy of 94.1%, outperforming the pruned-
only ResNet-18 (92.8%) and approaching the accuracy of the
SE-integrated ResNet-18 (94.5%). This validates that the
combination of feature enhancement via the SE module and
parameter reduction through pruning can maintain high
classification performance. Regarding model complexity, the
proposed method successfully reduces the number of parameters
by approximately 27.4% compared to the original ResNet-18,
from 11.7 million to 8.5 million. Meanwhile, the Floating-Point
Operations (FLOPs) are decreased by 27.1%, and the inference
time is reduced by 15.8%, resulting in a 12.8 ms/batch inference
speed. These improvements significantly enhance the
computational efficiency of the model, making it 15.8% faster
than the original architecture. The reduced model size and
computational requirements of the optimized ResNet-18 lead to
a notable decrease in hardware demands. The model can be
effectively deployed on resource-constrained devices such as
edge computing platforms, Internet of Things (IoT) devices, and
smartphones, which typically have limited memory and
computing power. In summary, the proposed approach breaks
the traditional trade-off between model performance and
resource consumption, offering a more efficient and versatile
solution for deep-learning-based object classification.

However, there is still room for improvement. For example,
further optimization of the pruning threshold selection algorithm
or exploring more advanced pruning strategies may further
enhance the performance of the model. Additionally, the
generalization ability of the proposed method on other datasets
remains to be further investigated.

REFERENCES

[1] He K , Zhang X , Ren S ,et al，“Deep Residual Learning for Image
Recognition,” IEEE conference on computer vision and pattern
recognition, PP: 770 – 778，2016.

[2] Hu J , Shen L , Sun G ,et al.“Squeeze-and-Excitation Networks,”IEEE
Transactions on Pattern Analysis and Machine Intelligence, PP:99-121.
2017.

[3] Krizhevsky, A., Sutskever, I., & Hinton, G. E, “ImageNet Classification
with Deep Convolutional Neural Networks,”. In Proceedings of the
Neural Information Processing Systems (NIPS),2016.

[4] Simonyan, K., & Zisserman, "Very deep convolutional networks for large
- scale image recognition." arXiv preprint arXiv:1409.1556, 2014.

[5] Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. “Densely
Connected Convolutional Networks,” IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 2261-2269. Honolulu, HI,
July 21-26, 2017.

[6] Rao, Y., et al. “Dynamic vision transformer with adaptive token sparsity,”
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 16507–16516, 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 16, No. 7, 2025

151 | P a g e

www.ijacsa.thesai.org

[7] Ali, A., et al. "EdgeNeXt: Efficiently Amalgamated CNN - Transformer
Architecture for Mobile Vision Applications." arXiv preprint
arXiv:2206.10589, 2022.

[8] Zhang, X., et al. “An Improved Squeeze - and - Excitation ResNet for
Image Classification.” The International Conference on Image Processing,
Computer Vision, and Pattern Recognition (pp. 1-7), 2023.

[9] Wang, Y., et al. “SE - Inception: Enhancing Inception Networks with
Squeeze and Excitation Modules for Image Classification.” Journal of
Visual Communication and Image Representation, 71, 102796, 2020.

[10] Chen, M., et al. “Retinal Fundus Image Classification Using Squeeze -
and - Excitation - based CNN.” Computers in Biology and Medicine, 147,
106028, 2022.

[11] Li, H., et al. “Improving Object Classification in Autonomous Driving
with Squeeze - and - Excitation Enhanced YOLO Network.” Journal of
Intelligent Transportation Systems, 27(1), pp.1-12, 2023.

[12] Zhao, X., et al. “Hybrid Attention Networks: Combining Squeeze and
Excitation with Spatial Attention for Object Classification.” Pattern
Recognition Letters, 181, pp. 235 – 242, 2024.

[13] Wu, Y., et al. “Generative Adversarial Networks with Squeeze - and -
Excitation for Object Classification.” Neural Computing and Applications,
36(12), 14771-14784, 2024.

[14] LeCun, Y., Denker, J. S., & Solla, S. A. “Optimal Brain Damage.” In
Advances in neural information processing systems, pp. 598 - 605, 1989.

[15] Han, S., Mao, H., & Dally, W. J. “Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman
Coding.” The 43rd annual international symposium on computer
architecture , pp. 473 - 484, 2015.

[16] Louizos, C., Welling, M., & Kingma, D. P. “Learning Sparse Neural
Networks through L0 Regularization.” In Advances in neural information
processing systems , pp. 2755 - 2765, 2017.

[17] Molchanov, P., Tyree, S., Karras, T., Aila, T., & Kautz, J. “Pruning
Convolutional Neural Networks for Resource Efficient Transfer
Learning.” arXiv preprint arXiv:1611.06440, 2016.

[18] Guo, Y., Yao, A., Chen, M., & Liu, X. “Network Slimming: Learning
Efficient Convolutional Networks through Network Slimming.” The
IEEE conference on computer vision and pattern recognition, pp. 2755-
2763, 2016.

[19] Zhou, H., et al. “Data - Dependent Sparse Structure Selection for Deep
Neural Networks.” The IEEE/CVF International Conference on
Computer Vision, pp. 8794 - 8803. 2023.

[20] Yang, J., et al. “Pruning for Mobile Devices: Balancing Model Size,
Computation, and Power.” The 29th ACM international conference on
multimedia, pp. 207-215, 2021.

[21] Sandler, M., A. Howard, M. Zhu, et al. "MobileNetV2: Inverted Residuals
and Linear Bottlenecks." In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Salt Lake City, June 18 - 23,
4510 – 4520, 2018.

[22] Ma, Ningning, Xiangyu Zhang, Hai - Tao Zheng, and Jian Sun.
"ShuffleNet v2: Practical Guidelines for Efficient CNN Architecture
Design." In Proceedings of the European Conference on Computer Vision
(ECCV), 11218, 122-138, 2018.

[23] Tan, Mingxing, and Quoc V. Le. "EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks." In Proceedings of the 36th
International Conference on Machine Learning, pp. 6105-6114.
arXiv:1905.11946, 2019.

