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Abstract—Deep learning-based image object classification 

methods often achieve high accuracy, but with the growing 

demand for real-time performance on resource-constrained edge 

devices, existing approaches face challenges in balancing accuracy, 

computational complexity, and model size. To alleviate this 

awkward situation, we propose a novel ResNet-18 architecture 

that integrates the Squeeze-and-Excitation (SE) module and 

model pruning. The SE module adaptively emphasizes informative 

feature channels to enhance classification accuracy, while pruning 

technology reduces computational costs by removing unimportant 

connections or parameters without significant accuracy loss. 

Extensive experiments on benchmark datasets demonstrate that 

the optimized model outperforms the original ResNet-18 in both 

accuracy and inference speed. The classification accuracy 

increases from 93.2% to 94.1%, the number of parameters is 

reduced by 30%, the Floating-Point Operations decreases from 

1.81 giga to 1.32 giga, and the inference time is decreased from 15.2 

milliseconds to 12.8 milliseconds per batch. What’s more, the 

proposed model outperforms MobileNetV2, ShuffleNetV2, and 

EfficientNet-B0 in accuracy while maintaining competitive 

inference speed and parameter count. The experimental results 

highlight the model’s potential for deployment on resource-

constrained devices, expanding the practical application scenarios 

of object classification methods in edge computing and real-time 

detection tasks. 
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I. INTRODUCTION 

In the era of digital transformation, object classification, as 
a fundamental task in computer vision, plays a crucial role in 
various applications, including intelligent surveillance, 
industrial automation, and autonomous driving. Deep learning, 
especially convolutional neural networks (CNNs), has been the 
mainstream of image-based object classification. Among 
numerous CNN architectures, ResNet-18, proposed by He et al. 
[1] stands out for its simplicity and accuracy, providing a 
practical baseline for many classification tasks. However, with 
the increasing demand for real-time performance and resource-
constrained edge devices, the original ResNet-18 faces 
challenges in balancing accuracy, computational complexity, 
and model size. 

The first challenge lies in feature representation. Although 
ResNet-18 alleviates the vanishing gradient problem through 
skip connections, it treats all feature channels equally, which 
may lead to the neglect of critical object characteristics and thus 
limit the classification accuracy. To address this issue, the SE 

module, introduced by Hu et al. [2], was proposed. By learning 
channel-wise attention, the SE module can selectively enhance 
discriminative features and suppress redundant information, 
thereby improving the recognition performance of the model. 

The second challenge is computational efficiency. In many 
practical applications, models are often deployed on devices 
with limited computing resources and memory. The relatively 
large number of parameters in the original ResNet-18 may result 
in slow inference speed and high energy consumption, making 
it difficult to meet real-time requirements. Model pruning, a 
well-studied technique in deep learning compression, offers an 
impressive approach to reduce model complexity. By removing 
unimportant connections or parameters, pruning can 
significantly decrease the model parameters and the 
computational cost while maintaining acceptable accuracy. 

In this study, we aim to optimize the ResNet-18 architecture 
for object classification by integrating the SE module and model 
pruning techniques. Specifically, we embed the SE module into 
each residual block of ResNet-18 to enhance feature 
discrimination and apply structured pruning based on the L1 
norm of weights to reduce model complexity. 

The rest of this study is organized as follows: Section II 
reviews the related work on object classification, the SE module, 
and model pruning. Section III details the proposed 
methodology. Section IV presents the experimental setup, 
results, and analysis. Finally, Section V concludes the study and 
discusses future research directions. 

II. RELATED WORK 

A. Object Classification with Deep Learning 

The ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) has been a significant milestone in the development 
of image-based object classification using deep learning. In 
2012, AlexNet [3], proposed by Krizhevsky et al., achieved a 
top-5 error rate of 15.3% on the ImageNet dataset. This 
breakthrough inspired a wave of research in developing more 
advanced CNN architectures. Subsequently, numerous 
architectures were proposed to improve classification accuracy. 
VGGNet [4], developed by Simonyan and Zisserman in 2014, 
achieved a lower error rate than AlexNet. However, the increase 
in depth also led to a significant increase in the number of 
parameters. ResNet addressed the problem of vanishing 
gradients in very deep neural networks through the introduction 
of residual connections. This allowed for the training of 
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extremely deep networks, and ResNet-18, a lightweight variant, 
became widely used due to its good balance between 
performance and computational cost. ResNet architectures 
achieved state-of-the-art results in various image classification 
benchmarks. 

In recent years, there have been continuous efforts to further 
improve the accuracy of image-based object classification. 
Methods like DenseNet [5], which introduced dense connections 
between layers to promote better information flow and feature 
reuse. As of now, the most accurate methods [6] [7] in image-
based object classification often involve highly complex 
architectures with a large number of parameters. They are 
extremely large in size, with a vast number of parameters that 
require significant computational resources for training and 
inference. As a result, these models are not suitable for 
lightweight application scenarios such as edge computing, 
where devices have limited memory, computing power, and 
energy resources. 

B. SE Module 

The SE module is a powerful technique for improving the 
representational power of CNNs. Unlike traditional CNNs that 
process all feature channels equally, the SE module adaptively 
recalibrates the importance of different channels, which has 
been successfully integrated into various CNN architectures, 
leading to significant performance improvements. Subsequently, 
many researchers focused on further improving CNN 
architectures by leveraging the SE module. For example, in [8], 
the authors proposed a modified SE-ResNet architecture. They 
adjusted the position and number of SE modules within ResNet 
to better capture the hierarchical feature information. Another 
study [9] combined the SE module with the Inception 
architecture, creating an SE-Inception network. The new 
network was able to distinguish between different object classes 
by emphasizing the important channels in the feature maps, 
resulting in improved performance on large-scale image 
classification tasks. An SE-based CNN was developed for the 
classification of retinal fundus images in reference [10], which 
is crucial for the early detection of eye diseases. The SE module 
helped the model to focus on the relevant anatomical structures 
in the images, improving the classification performance for 
different disease categories. In [11], the authors applied the SE 
module in a YOLO-based network for object detection and 
classification.  Reference [12] combined the SE module with 
attention mechanisms (spatial attention) to create hybrid 
attention networks. In addition, researchers have also integrated 
the SE module with generative models [13]. 

C. Model Pruning Techniques 

Model pruning techniques have emerged as a crucial 
approach in the field of deep learning for reducing model 
complexity, computational cost, and memory footprint while 
maintaining acceptable performance. These techniques aim to 
remove unimportant or redundant parts of a pre-trained model, 
making it more efficient for deployment on resource-constrained 
devices such as mobile phones, embedded systems, and edge 
computing platforms. LeCun et al. [14] in 1989 proposed a 
simple form of pruning for neural networks. They removed 

small-magnitude weights from a neural network, demonstrating 
that a significant portion of the weights could be eliminated 
without sacrificing much accuracy. Han et al. [15] introduced an 
aggressive pruning method in 2015, where they removed a large 
percentage of the smallest-magnitude weights from deep neural 
networks. They combined pruning with quantization and 
Huffman coding to achieve significant compression of neural 
network models. Reference [16] pruning AlexNet and VGG-16 
demonstrated that it was possible to reduce the number of 
parameters by up to 90% while maintaining similar accuracy on 
the ImageNet dataset. Molchanov et al. [17] proposed a method 
for pruning convolutional neural network (CNN) channels. They 
used a Taylor expansion-based importance measure to identify 
and remove less important channels. In addition, pruning entire 
layers of a neural network has also been explored. Guo et al. [18] 
proposed a layer-level pruning method, where they analyzed the 
contribution of each layer to the overall network performance 
and removed the least important layers. Zhou et al. [19] 
proposed a data-dependent sparse structure selection method. 
They trained a small neural network to predict the importance of 
each weight in a large pre-trained network based on the input 
data. This data-driven approach could adaptively identify the 
weights that were more crucial for the specific dataset, leading 
to more effective pruning. AutoML-Zero [20] used 
reinforcement learning to automatically discover and optimize 
neural network architectures, including the pruning process. In 
this framework, an agent learns to make pruning decisions by 
interacting with the model and receiving rewards based on the 
performance (such as accuracy and model size) of the pruned 
model. This approach has the potential to find more optimal 
pruning strategies compared to traditional heuristic-based 
methods. 

III. METHODOLOGY 

A. Integration of SE Module into ResNet-18 

1) Architecture of SE-ResNet-18: The core idea of 

integrating the SE module into ResNet-18 is to enable the 

network to adaptively recalibrate the importance of different 

feature channels, thereby enhancing its discriminative power 

for object classification. ResNet-18 consists of four residual 

blocks, each containing two convolutional layers with skip 

connections. In our proposed architecture, we embed an SE 

module into each residual block, forming the SE-ResNet-18. 

The model structure can be seen in Fig. 1. 

The input image first goes through a 7x7 convolutional layer 
for initial feature extraction, followed by a max pooling layer for 
down-sampling. Four residual blocks (each containing an SE 
module) further extract hierarchical features. A global average 
pooling layer compresses spatial dimensions, and a fully 
connected layer generates classification outputs. The structure 
of residual blocks in Fig. 1 can be seen in Fig. 2. 

The residual block consists of two 3x3 convolutional layers 
with batch normalization and ReLU activation, the output of the 
second convolutional layer is fed into the SE module, then 
summed with the input feature map (skip connection) and 
activated by ReLU. The structure of SE block in Fig. 2 can be 
seen in Fig. 3. 
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Fig. 1. The structure of SE-ResNet-18. 

 

Fig. 2. The structure of residual block. 

 

Fig. 3. The structure of SE block. 

The SE module operates through three sequential steps: 
squeeze, excitation, and reweight. In the squeeze step, global 
average pooling is applied to the output feature maps of the 
second convolutional layer within each residual block. This 

operation compresses the spatial dimensions ( )H W of the 
feature maps into a single value for each channel, aggregating 
global context information across the entire feature map. 

Mathematically, for a feature map 
C H WX R   , the squeeze 

operation sqF
generates a channel-wise descriptor 

Cz R : 

1 1

1
( ) ( , )

H W

c sq c c

i j

z F X X i j
H W  

 



                  (1) 

where, cX represents the c -th channel of the feature map X . 

In the excitation step, the channel-wise descriptor z is fed 
into a two-layer fully-connected network. The first fully-

connected layer reduces the dimensionality of z from C  to 
/C r  (where r is the reduction ratio), followed by a ReLU 

activation function. The second fully-connected layer then 

restores the dimensionality back to C , and a Sigmoid activation 
function is applied to generate a set of channel-wise weights 

Cs R  , where each element cs  represents the importance score 
of the c -th channel: 

2 1( , ) ( ( ))exs F z W W W z                         (2) 

where, 1

C
C

rW R



 and 2

C
C

rW R



 are the weights of the 

fully-connected layers,   is the ReLU function, and  is the 
Sigmoid function. Finally, in the reweight step, the channel- 

wise weights s  are used to scale the original feature maps X . 

The output of the SE module 
C H WY R    is calculated as: 

( , )C scale c c c cY F X s s X  
                      (3) 

By integrating the SE module in this manner, each residual 
block in SE-ResNet-18 can selectively enhance the channels that 
are more relevant to the object classification task, while 
suppressing less informative channels. This mechanism allows 
the network to focus on the most discriminative features, such 
as textures, shapes, and colors of the objects, thereby improving 
the overall classification accuracy. 

2) Parameter and computational analysis: The integration 

of the SE module into ResNet-18 introduces additional 

parameters and computational costs. The extra parameters 

mainly come from the two fully - connected layers in the 

excitation step. For each SE module, the number of additional 

parameters is 

C C
C C

r r
  

 . In ResNet-18, with a total of 8 

residual blocks, the total number of additional parameters 

introduced by the SE modules is 

8
C C

C C
r r

 
    
  . 

However, compared to the overall number of parameters in 

ResNet-18 (about 11.7 million), the increase in parameters due 
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to the SE module is relatively small when  r  is set 

appropriately. In terms of computational cost, the main 

operations added by the SE module are global average pooling, 

two fully - connected layers, and element - wise multiplication. 

Although these operations increase the computational load, the 

improvement in feature representation often outweighs the cost, 

especially in complex object classification tasks where fine- 

grained feature discrimination is required. 

B. Model Pruning Strategy 

1) Unstructured pruning based on L1 norm: To further 

optimize the SE-ResNet-18 for better computational efficiency 

and model size reduction, we adopt an unstructured pruning 

strategy based on the L1 norm of weight parameters. 

Unstructured pruning has the advantage of flexibility, as it can 

remove individual weights without imposing a specific 

structural constraint on the network. 

The L1 norm of a weight parameter w  is defined as 

1|| || | |w w
 . Weights with smaller L1 values contribute less to 

the output of the network and are thus considered less important 
for the classification task. 

The pruning process consists of the following steps: 

 Initial Training: First, we train the SE-ResNet-18 on the 
target object classification dataset until it converges. This 
step ensures that the network has learned a good set of 
feature representations. 

 Weight Ranking: After training, we calculate the L1 
norm for each weight parameter in the convolutional 
layers of the network. Weights are then ranked according 
to their L1 values in ascending order. 

 Pruning Threshold Selection: A pruning threshold is set 
to determine the proportion of weights to be removed. 
For example, if we remove 30% of the weights with the 
smallest L1 values. In practice, we use a grid search 
method on a validation set to find the optimal that 
maximizes the test accuracy while achieving the desired 
level of parameter reduction. 

 Weight Removal: We set the weights below the threshold 
to zero, effectively pruning them from the network. 

 Fine-Tuning: After pruning, the network is fine-tuned on 
the training dataset for a certain number of epochs (in this 
study, we set it to 20 epochs). Fine-tuning helps the 
network recover from the performance degradation 
caused by weight removal and adapt to the new sparse 
structure. 

2) Pruning-aware training: To further improve the 

effectiveness of pruning and mitigate the negative impact on 

model performance, we also incorporate pruning-aware 

training techniques. During the initial training phase of SE-

ResNet-18, we add a regularization term to the loss function 

that encourages weight sparsity. Specifically, we use L1 

regularization: 

| |regularized task

w

L L w


  
                        (4) 

where, taskL  is the original loss function for the object 

classification task,   is the regularization strength, and    is 
the set of all weight parameters in the network. This 
regularization term helps to make the weights smaller during 
training, making them more likely to be pruned in the 
subsequent pruning step. 

C. Overall Optimization Process 

The overall optimization process of our proposed method 
can be summarized as follows: 

1) Initialization: Start with the original ResNet-18 

architecture and initialize the network weights. 

2) SE Module Integration: Embed the SE module into each 

residual block of ResNet-18 to form SE-ResNet-18. 

3) Initial Training: Train the SE-ResNet-18 on the object 

classification dataset with data augmentation techniques (such 

as random cropping, horizontal flipping) and L1 regularization 

to encourage weight sparsity. 

4) Model Pruning: After the initial training converges, 

apply the unstructured pruning based on the L1 norm to remove 

redundant weights. 

5) Fine-Tuning: Fine-tune the pruned SE-ResNet-18 on the 

training dataset to recover and improve the classification 

performance. 

6) Evaluation: Evaluate the optimized model on the test 

dataset to measure its accuracy, computational efficiency, and 

model size. 

This iterative process of architecture modification, training, 
pruning, and fine-tuning aims to achieve an optimal balance 
between the classification accuracy and computational 
efficiency of the ResNet-18-based object classification model. 

IV. EXPERIMENTS 

The CIFAR-10 dataset is employed to evaluate the proposed 
method. The dataset is partitioned into 50,000 training images 
and 10,000 test images. The following models are selected as 
baselines for comparison: there are Original ResNet-18, ResNet-
18 with SE Module (SE-ResNet-18), Pruned ResNet-18 and our 
Pruned SE-ResNet-18. Evaluation metrics are Accuracy, 
Number of Parameters, Inference Time and FLOPs (Floating - 
Point Operations). 

Experiments are conducted on a desktop computer equipped 
with an Intel Core i7-12700K CPU, 32GB RAM, and an 
NVIDIA GeForce RTX 3060 GPU. The deep learning 
framework used is PyTorch 1.13, and CUDA 11.6 is employed 
for GPU acceleration. To measure the inference speed fairly, 
each model's average inference time per batch is calculated by 
running 1,000 forward passes on the test dataset and taking the 
mean value. 

The proposed SE-Pruned ResNet-18 achieves a test accuracy 
of 94.1%, outperforming the Pruned ResNet-18 by 1.3% and 
approaching the accuracy of SE-ResNet-18 (94.5%). This 
indicates that the combination of SE module and pruning can 
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maintain high accuracy even with a reduced number of 
parameters. 

The proposed SE-Pruned ResNet-18 reduces the number of 
parameters by approximately 27.4% compared to the original 
ResNet-18, from 11.7 million to 8.5 million, while the FLOPs 
are decreased by 27.1%. Notably, its inference time of 12.8 
ms/batch is 15.8% faster than the original ResNet-18, 
demonstrating significant improvements in computational 
efficiency. Although the Pruned ResNet-18 has a slightly lower 
inference time (12.1ms/batch), its accuracy is lower than the 
proposed model, highlighting the trade-off between speed and 
accuracy. The experimental results are shown in Table I. 

TABLE I.  EXPERIMENTAL RESULTS PRESENTATION 

Model 
Parameters 

(M) 

Flops 

(G) 

Inference time 

(ms/batch) 
Accuracy 

Resnet 11.7 1.81 15.2 93.2 

SE-Resnet 12.3 1.98 17.8 94.5 

Pruned-

Resnet 
8.2 1.25 12.1 92.8 

ours 8.5 1.32 12.8 94.1 

To further validate the proposed model’s competitiveness, 
we compared it with other lightweight architectures on the 
CIFAR-10 dataset. The results are shown in Table II: 

TABLE II.  COMPARISON WITH OTHER LIGHTWEIGHT ARCHITECTURES 

Model 
Parameters 

(M) 

Flops 

(G) 

Inference time 

(ms/batch) 
Accuracy 

ResNet 11.7 1.81 15.2 93.2 

MoblieNet 

V2 [21] 
2.2 1.32 7.5 92.1 

ShuffleNet 

V2 [22] 
2.2 0.30 6.8 91.5 

EfficientNet 

B0 [23] 
5.3 0.14 9.2 93.7 

Ours 8.5 1.32 12.8 94.1 

The proposed model outperforms MobileNetV2, 
ShuffleNetV2, and EfficientNet-B0 in accuracy while 
maintaining competitive inference speed and parameter count. 
Unlike lightweight models optimized for mobile devices, SE-
Pruned ResNet-18 achieves a better balance for edge devices 
requiring moderate computational capabilities (e.g., IoT 
gateways, embedded systems). 

The experimental results validate the effectiveness of the 
proposed approach. The integration of the SE module enhances 
the feature representation ability of ResNet-18, leading to 
improved classification accuracy, as evidenced by the 
performance of SE-ResNet-18. Meanwhile, the L1-norm-based 
unstructured pruning method significantly reduces the model 
size and computational cost without sacrificing much accuracy. 
By combining these two techniques, the proposed SE-Pruned 
ResNet-18 achieves an optimal balance among accuracy, model 
complexity, and inference speed. 

Compared with the original ResNet-18, the proposed model 
requires fewer computational resources, making it more suitable 
for deployment on resource-constrained devices such as edge 
computing platforms, smartphones, and IoT devices. The 

reduced inference time also enables real-time object 
classification applications, expanding the practical application 
scenarios of the model. 

V. CONCLUSION 

This study focuses on optimizing the ResNet-18 architecture 
for object classification tasks by integrating the Squeeze-and-
Excitation (SE) module and L1-norm-based unstructured 
pruning techniques. Through theoretical analysis and extensive 
experiments on the CIFAR-10 dataset, the proposed approach 
demonstrates remarkable performance in achieving a balance 
between accuracy, computational efficiency, and model size. In 
terms of accuracy, the optimized model (SE-Pruned ResNet-18) 
achieves a test accuracy of 94.1%, outperforming the pruned-
only ResNet-18 (92.8%) and approaching the accuracy of the 
SE-integrated ResNet-18 (94.5%). This validates that the 
combination of feature enhancement via the SE module and 
parameter reduction through pruning can maintain high 
classification performance. Regarding model complexity, the 
proposed method successfully reduces the number of parameters 
by approximately 27.4% compared to the original ResNet-18, 
from 11.7 million to 8.5 million. Meanwhile, the Floating-Point 
Operations (FLOPs) are decreased by 27.1%, and the inference 
time is reduced by 15.8%, resulting in a 12.8 ms/batch inference 
speed. These improvements significantly enhance the 
computational efficiency of the model, making it 15.8% faster 
than the original architecture. The reduced model size and 
computational requirements of the optimized ResNet-18 lead to 
a notable decrease in hardware demands. The model can be 
effectively deployed on resource-constrained devices such as 
edge computing platforms, Internet of Things (IoT) devices, and 
smartphones, which typically have limited memory and 
computing power. In summary, the proposed approach breaks 
the traditional trade-off between model performance and 
resource consumption, offering a more efficient and versatile 
solution for deep-learning-based object classification. 

However, there is still room for improvement. For example, 
further optimization of the pruning threshold selection algorithm 
or exploring more advanced pruning strategies may further 
enhance the performance of the model. Additionally, the 
generalization ability of the proposed method on other datasets 
remains to be further investigated. 
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