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Abstract—Liver cancer detection has always stood as a 

significant challenge in medical diagnostics, largely due to the 

complexity of interpreting imaging data and the critical need for 

accurate yet explainable results. This study explored how recent 

advances in artificial intelligence, specifically Vision 

Transformers (ViTs), Contrastive Learning, and Explainable AI 

(XAI), can be combined to address this challenge more effectively. 

Unlike conventional models, Vision Transformers are particularly 

good at capturing intricate patterns in medical images, which 

makes them well-suited for tasks like cancer classification. To 

improve the model's ability to generalize across different imaging 

conditions incorporated contrastive learning techniques, 

essentially teaching the system to recognize subtle distinctions 

between similar and dissimilar image features. This approach 

significantly sharpened its performance. Recognizing the 

importance of transparency in medical AI also integrated 

explainable AI tools into the model. This helped generate visual 

and textual cues that explain the system’s predictions, which is 

crucial for gaining the trust of clinicians who rely on these tools in 

high-stakes environments. The model was trained on a 

comprehensive dataset of liver cancer images, including both CT 

scans and MRIs, sourced from a well-established medical 

repository. The results were promising: the system reached a 

classification accuracy of 92 per cent, outperforming standard 

convolutional neural networks (CNNs) by 8 per cent. Most 

notably, it showed strong performance in identifying early-stage 

liver cancer, with 90 per cent sensitivity and 94 per cent specificity, 

suggesting that it may hold real potential for clinical application. 

Keywords—Contrastive learning; explainable AI (XAI); medical 
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I. INTRODUCTION 

Liver cancer continues to be a major contributor to cancer-
related deaths globally. One of the most effective ways to reduce 
its impact is through early detection, which significantly 
improves the chances of successful treatment. However, 
identifying liver cancer at an early stage remains a difficult task, 
especially due to the complexity of medical imaging and the 
subtle nature of early symptoms. Traditional diagnostic 
methods, such as biopsies and manual interpretation of CT or 
MRI scans, often fall short because they rely heavily on the 
expertise and judgment of medical professionals, which can vary 
from case to case. 

To overcome these limitations, researchers have 
increasingly turned to artificial intelligence (AI) as a tool for 
enhancing diagnostic accuracy and efficiency. Deep learning, in 
particular, has shown promising results in the field of medical 
image analysis. Convolutional Neural Networks (CNNs), which 
have been widely used in image-based tasks, have delivered 
strong results in classifying medical images. Despite this, CNNs 
are not without their shortcomings. They sometimes struggle to 
capture deeper spatial relationships within complex medical 
scans and often lack transparency, making it difficult for 
clinicians to trust their outputs without further validation. This 
study introduces a novel approach aimed at improving the 
accuracy and reliability of liver cancer detection using a 
combination of Vision Transformers (ViTs), Contrastive 
Learning, and Explainable AI (XAI). Vision Transformers have 
recently emerged as a powerful alternative to CNNs, offering the 
ability to process and understand global image features more 
effectively. When paired with Contrastive Learning, the model 
is trained to focus on distinguishing between similar and 
dissimilar examples, which helps in improving its robustness 
across different imaging conditions. 

A crucial addition to this framework is the integration of 
Explainable AI techniques. One of the major concerns in clinical 
applications of AI is the lack of interpretability — doctors and 
radiologists need to understand not just what the AI predicts, but 
why it makes those predictions. By incorporating XAI, the 
system offers insights into its decision-making process, making 
the results more transparent and easier to interpret in a clinical 
context. This helps bridge the gap between automated systems 
and real-world medical practice. The model was trained on a 
diverse and well-annotated dataset that included both CT scans 
and MRI images of liver cancer cases. This diversity ensured 
that the model learned to generalize well across different image 
types and clinical scenarios. The results from the study were 
encouraging, with the AI system achieving high classification 
accuracy. It also demonstrated strong sensitivity and specificity, 
particularly in detecting liver cancer at early stages — an area 
where early intervention can make a significant difference in 
patient outcomes. 

In summary, this research presents an integrated AI-based 
approach that leverages the strengths of ViTs, Contrastive 
Learning, and XAI to improve the detection of liver cancer. By 
addressing the limitations of traditional CNNs and incorporating 
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interpretability into the model, this study aims to provide a more 
reliable and clinically usable diagnostic tool. Such 
advancements not only enhance the performance of medical 
imaging systems but also build trust among healthcare 
professionals, ultimately contributing to better diagnosis and 
patient care. 

II. RELATED WORK 

The application of artificial intelligence in liver cancer 
detection has witnessed significant progress in recent years, 
largely due to the integration of Vision Transformers (ViTs), 
contrastive learning, and explainable AI (XAI). These advanced 
methodologies have contributed to developing AI models that 
are not only accurate but also more interpretable and reliable. 
One recent study implemented a ViT-based system for 
classifying liver cancer using CT images. The model 
demonstrated high sensitivity and accuracy, primarily by 
leveraging ViTs’ capability to capture both global and fine-
grained imaging features. The findings underscored the model's 
superior performance compared to traditional convolutional 
neural networks (CNNs), especially in dealing with complex 
medical imaging data [1]. 

Contrastive learning has emerged as a crucial technique to 
strengthen the generalization capabilities of AI systems. A 2024 
study used this approach to help the model differentiate between 
relevant and irrelevant image data, which led to significant 
improvements in detecting malignant liver tumors across 
varying conditions and imaging sources [2]. In another study 
conducted in 2023, the integration of XAI with deep learning 
models added a valuable layer of interpretability. By using 
saliency maps, the system allowed clinicians to better 
understand how and why the model reached its predictions, 
which is essential in high-stakes environments like cancer 
diagnosis [3]. A subsequent hybrid model developed in 2022 
combined ViTs, contrastive learning, and XAI. The integration 
not only improved detection accuracy but also provided visual 
interpretability for each prediction, making the model more 
transparent and clinician-friendly [4]. In 2021, researchers 
expanded on ViTs’ capabilities by developing a multi-modal 
liver tumor classification model that utilized both CT and MRI 
scans. This combination of modalities allowed the model to 
achieve higher diagnostic accuracy and perform well in 
identifying early-stage liver cancer — a critical aspect of timely 
treatment [5]. Similarly, a study published in 2023 emphasized 
the importance of training ViT models on multi-center datasets. 
The diversity of data improved the model’s robustness, enabling 
it to perform consistently across different patient populations 
and imaging sources [6]. Another 2022 study took a different 
approach by integrating domain-specific anatomical knowledge 
into the deep learning process. This addition enhanced the 
model's ability to distinguish between benign and malignant 
liver lesions, adding a clinical perspective to pure data-driven 
learning [7]. 

The advantages of combining multiple imaging modalities 
were further demonstrated in a 2022 study that used both CT and 
MRI scans in a ViT-based system. This approach resulted in 
better tumor detection performance, especially for early-stage 
cases, by allowing the model to learn richer representations from 
the combined inputs [8]. In 2021, improvements in XAI 

techniques were applied to liver cancer detection through the 
generation of class activation maps (CAMs). These visual 
outputs gave medical practitioners clear insights into which 
areas of the scan influenced the model’s decisions, thus boosting 
clinical trust in the system [9]. 

In 2023, contrastive learning once again proved effective in 
a study where it was used to train AI models capable of handling 
diverse imaging inputs. Even with limited training data, the 
model maintained high detection accuracy, showing that 
contrastive learning can enhance generalization to unseen data 
[10]. This aligns with findings from a 2022 investigation that 
showed how ViTs trained on multi-center datasets benefited 
from the variability, resulting in improved prediction 
consistency across institutions [11]. Another hybrid model 
introduced in 2022 combined ViTs and contrastive learning to 
outperform conventional CNNs. It delivered more accurate 
results, particularly in complex cases where tumors were small 
or subtle in the imaging data [12]. 

Further reinforcing the role of expert knowledge, a 2021 
study explored the incorporation of liver anatomy into ViT-
based systems. This approach improved tumor detection 
reliability and showed that AI models could benefit from the 
combination of clinical insights with deep learning methods 
[13]. A 2024 paper presented a model that blended ViTs with 
contrastive learning to enhance early-stage liver cancer 
detection. The study confirmed that this combination improved 
both precision and sensitivity, helping to address limitations 
often seen in traditional diagnostic techniques [14]. 

In 2023, researchers developed a multi-modal deep learning 
model using ViTs to simultaneously process CT and MRI scans. 
This model delivered improved detection accuracy, particularly 
for early-stage liver cancers that are typically harder to identify 
using only one imaging method [15]. Another major 
development from 2022 involved training ViT-based models on 
diverse multi-center datasets, which enhanced the systems’ 
ability to generalize in varied clinical scenarios [16]. In a 2021 
study, contrastive learning was incorporated into a ViT 
framework to better detect small tumors, yielding higher 
accuracy in distinguishing subtle differences between normal 
and diseased tissues [17]. The importance of model 
interpretability was highlighted again in a 2023 study where 
ViTs were combined with saliency maps to improve the 
transparency of liver cancer predictions. Clinicians were able to 
understand model reasoning more clearly, thus strengthening 
trust in the system [18]. In another 2022 study, researchers 
demonstrated that ViTs were effective in processing large-scale 
medical image datasets and outperformed CNNs in classifying 
liver lesions with high accuracy. A 2021 study also showed how 
fusing multi-modal imaging data enhanced early-stage liver 
cancer detection, particularly by helping the model learn more 
distinct features from varied input sources [19]. A 
comprehensive review paper published in 2022 captured the 
growing influence of AI in liver cancer detection, particularly 
the application of ViTs and XAI. The review pointed out 
successful implementations across various use cases and 
emphasized the importance of building trust through model 
interpretability [20]. Finally, a foundational study from 2020 
demonstrated how combining CNNs with ViTs improved liver 
tumor localization in segmentation tasks. This hybrid model 
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significantly enhanced detection capabilities, providing a strong 
base for future AI developments in medical imaging [21–22]. 

III. METHODOLOGY 

This study proposes a comprehensive method for liver 
cancer detection by integrating Vision Transformers (ViTs), 
Contrastive Learning, and Explainable AI (XAI) (see Fig. 1). 
Vision Transformers have emerged as a promising alternative to 
traditional Convolutional Neural Networks (CNNs) in the field 
of medical image analysis. Unlike CNNs, which rely on local 
filters and limited spatial context, ViTs utilize self-attention 
mechanisms to process images more holistically. By dividing 
each image into fixed-size patches and encoding them into 
detailed feature representations, ViTs can capture complex 
spatial relationships and subtle irregularities across the image. 
This global attention framework enables the model to 
concentrate on medically relevant regions, which is particularly 
advantageous for identifying early or minor indications of liver 
abnormalities. To further refine feature learning, the study 
employs Contrastive Learning — a self-supervised method 
aimed at improving the model's ability to distinguish between 
healthy and diseased tissue. This is achieved by encouraging the 
model to cluster similar examples closely (positive pairs) while 
distancing dissimilar ones (negative pairs) in the embedding 
space. In the context of limited annotated medical data, this 
approach is highly beneficial as it enhances the model’s learning 
efficiency without heavy reliance on labeled datasets. By 
fostering stronger generalization and feature separation, the 
method supports more reliable classification outcomes even 
with constrained training resources, making it highly suitable for 
deployment in clinical environments. 

Interpretability remains a critical factor in the acceptance of 
AI in healthcare. To support transparent decision-making, the 
model integrates Explainable AI (XAI) tools that reveal the 
reasoning behind its outputs. Through visualization techniques 
such as attention heatmaps and feature attribution, clinicians can 
observe which parts of the image guided the AI’s judgment. This 
layer of interpretability not only builds trust among healthcare 
professionals but also aids in validating and refining the 
system’s predictions. The combined use of ViTs, Contrastive 
Learning, and XAI results in a diagnostic framework that 
balances accuracy with transparency, paving the way for more 
reliable and accepted AI adoption in medical imaging for liver 
cancer. 

𝐿𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 = −𝑙𝑜𝑔
exp⁡(cos⁡(𝑧𝑖,𝑧𝑗)/𝜏

∑ exp⁡(cos⁡(𝑧𝑖,𝑧𝑘)/𝜏𝑘≠𝑖
             (1) 

In this approach, the variables ziz_izi and zjz_jzj refer to the 
feature embeddings of two distinct images, with 
cos(zi,zj)\text{cos}(z_i, z_j)cos(zi,zj) and 
cos(zi,zk)\text{cos}(z_i, z_k)cos(zi,zk) representing the cosine 
similarity between pairs. The temperature parameter τ\tauτ plays 
a crucial role in shaping the distribution of these similarities, 
effectively controlling the sharpness of the output probabilities. 
By fine-tuning this parameter, the model is better able to learn 
distinct and meaningful feature representations. This contrastive 
loss formulation is particularly valuable in distinguishing 
between cancerous and non-cancerous tissues, which is critical 
when working with subtle and complex patterns in liver imaging 
data. 

To improve the interpretability of the model’s predictions, 
Explainable AI (XAI) methods are applied, with a specific focus 
on Grad-CAM (Gradient-weighted Class Activation Mapping). 
Grad-CAM generates visual heatmaps that highlight the specific 
areas in a medical image that contribute most significantly to the 
model's output. These heatmaps help clinicians understand 
which regions the AI considers important when making a 
classification, thereby increasing trust and enabling more 
informed analysis. The Grad-CAM score quantifies this 
attention, offering a clear indication of the model’s focus and 
reasoning during decision-making. 

𝐺𝑟𝑎𝑑 − 𝐶𝐴𝑀(𝑥) = 𝑅𝑒𝐿𝑈(∑ 𝛼𝑘 ⁡𝐴𝑘𝑘 )         (2) 

where, 

𝛼𝑘 =
1

𝑍
⁡∑∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

 

The activation Ak represents the output feature maps from 
the final convolutional layer of the network, while the values αk 
correspond to the gradients of the target class with respect to 
these feature maps. Grad CAM uses these gradients to weight 
the importance of each activation map, helping to identify which 
regions of the image most strongly influence the model's 
decision. The ReLU function is applied to remove negative 
values, ensuring that only the regions with a positive impact on 
the classification are highlighted. This results in a heatmap that 
visually indicates the most influential areas, offering clinicians 
an interpretable explanation of how the model reached its 
conclusion. Such visualization enhances confidence in AI 
predictions and supports their adoption in clinical practice. For 
optimizing the model during training, the Adam optimizer is 
employed. It updates the model’s parameters using an adaptive 
learning rate based on estimates of first and second moments of 
the gradients. The update rule for Adam is: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂
𝑚𝑡

√𝑣𝑡+∈
⁡                      (3) 

Here, η represents the learning rate, mt is the moving average 
of the gradients (first moment), vt denotes the moving average 
of the squared gradients (second moment), and ϵ is a small 
constant added to prevent division by zero. The Adam optimizer 
dynamically adjusts the learning rate during training, which 
contributes to faster convergence and helps avoid overshooting 
optimal parameter values. To further enhance the model's 
generalization and prevent overfitting, dropout regularization is 
applied. During training, dropout randomly deactivates a portion 
of the input units by setting them to zero, ensuring that the 
network does not become overly dependent on any single 
neuron. This process can be formally represented as: 
 

 

�̂� = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑦)                              (4) 

In this context, y denotes the output of a neuron prior to 
applying dropout, while y^\hat{y}y^ represents the output after 
dropout has been applied. To further refine training, the model 
incorporates learning rate scheduling strategies, which adjust the 
learning rate dynamically as training progresses. One widely 
adopted approach is the Cyclical Learning Rate (CLR) schedule, 
where the learning rate periodically varies between a predefined 
minimum and maximum value. This oscillation helps the 
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optimizer escape shallow local minima and encourages 
convergence toward a better global optimum. The CLR can be 
formally expressed as: 

𝜂𝑡 = 𝜂𝑚𝑖𝑚 + 0.5. (𝜂𝑚𝑎𝑥 − 𝜂𝑚𝑖𝑚). (1 + 𝑐𝑜𝑠 (
𝑡

𝑇
𝜋))⁡⁡   (5) 

where, 

 ηt is the learning rate at iteration tt. 

 ηmin and ηmax are the minimum and maximum learning 
rates, respectively. 

 T is the total number of iterations. 

The cyclical learning rate aids in preventing the model from 
getting stuck in local minima while enhancing its convergence 
speed. In addition to conventional evaluation metrics like 
accuracy, sensitivity, and specificity, we integrate advanced 
performance measures that are particularly vital for medical 
image classification, especially in the presence of imbalanced 
datasets. One such metric is the Area Under the Receiver 
Operating Characteristic Curve (AUC-ROC), which illustrates 
the relationship between the True Positive Rate (sensitivity) and 
the False Positive Rate (1-specificity) across different threshold 
values. Here, TPR represents the True Positive Rate 
(sensitivity), while FPR denotes the False Positive Rate. 

AUC = ∫ TPR(FPR)⁡dFPR
1

0
⁡⁡⁡⁡⁡⁡⁡                    (6) 

F1-Score: The F1-score, a harmonic mean of precision and 
recall, ensures balanced evaluation in liver cancer detection. The 
proposed model achieved an F1-score of 92.2%, surpassing 
traditional CNN (85.5%) and ViT without Contrastive Learning 
(88.3%). With a precision of 90.3% and a recall of 94.1%, the 
model effectively minimizes false positives and false negatives, 
enhancing diagnostic reliability. These results confirm the 
model’s superior performance in accurately classifying liver 
cancer cases while maintaining robustness across different 
imaging conditions. 

𝐹1 = 2 ⋅
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (7) 

 

The Matthews Correlation Coefficient (MCC) is a robust 
metric for evaluating liver cancer detection performance, 
especially in imbalanced datasets. The proposed model achieved 
an MCC of 0.85, outperforming traditional CNN (0.75) and ViT 
without Contrastive Learning (0.78). MCC considers true 
positives (TP), true negatives (TN), false positives (FP), and 
false negatives (FN), providing a more reliable measure than 
accuracy alone. A high MCC value confirms the model’s strong 
predictive capability, ensuring accurate classification of liver 
cancer cases across varying imaging conditions and tumor 
characteristics. 

𝑀𝐶𝐶 =
𝑇𝑃⋅𝑇𝑁−𝐹𝑃⋅𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
⁡       (8) 

The Jaccard Index, also known as the Intersection over 
Union (IoU), evaluates the overlap between predicted and actual 
liver cancer regions in medical images. The proposed model 
achieved a Jaccard Index of 0.90, outperforming traditional 

CNN (0.82) and ViT without Contrastive Learning (0.85). This 
metric ensures accurate tumor localization by quantifying the 
similarity between predicted and ground truth regions. A higher 
Jaccard Index indicates better segmentation performance, 
enhancing the model’s effectiveness in distinguishing cancerous 
from non-cancerous liver tissues: 

𝐽 =
|𝐴∩𝐵|

|𝐴∪𝐵|
⁡    (9) 

The Dice Similarity Coefficient (DSC) evaluates the overlap 
between predicted and actual liver cancer regions, ensuring 
accurate segmentation. The proposed model achieved a DSC of 
0.92, outperforming traditional CNN (0.84) and ViT without 
Contrastive Learning (0.87). A higher DSC indicates better 
alignment between the predicted and true tumor regions, 
improving detection reliability. This strong segmentation 
performance enhances clinical applicability by ensuring precise 
tumor localization in liver cancer diagnosis. 

𝐽 =
2|𝐴∩𝐵|

|𝐴|+|𝐵|
         (10) 

 
Fig. 1. Flowchart of feasible procedure. 

Dataset: 

The dataset used in this study consists of 1,000 liver imaging 
samples, evenly divided into 500 cancerous and 500 non-
cancerous cases. These images were obtained from a well-
established medical imaging repository and include both CT and 
MRI scans. Prior to model training, the data underwent 
preprocessing steps such as normalization and augmentation to 
improve model robustness and reduce bias. The AI framework 
developed in this research—combining Vision Transformers 
(ViTs), Contrastive Learning, and Explainable AI (XAI)—
demonstrated strong performance, achieving an overall 
classification accuracy of 92.5%. Furthermore, the model 
attained a sensitivity of 94.1% and a specificity of 90.9%, 
indicating its effectiveness in correctly identifying both positive 
and negative cases. 
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IV. RESULTS AND DISCUSSIONS 

In this study, we evaluated the performance of our integrated 
methodology for liver cancer detection using Vision 
Transformers (ViTs), Contrastive Learning, and Explainable AI 
(XAI). The evaluation was conducted on a dataset comprising 
1,000 liver images, with 500 images containing liver cancer and 
500 images without. The comparison demonstrates that 
integrating ViTs with Contrastive Learning and XAI 
outperforms traditional CNNs and ViTs without Contrastive 
Learning in all evaluated metrics. The ROC curve illustrates the 
model's ability to distinguish between classes, with an AUC-
ROC of 0.96 indicating excellent performance. 

While performance slightly decreases as tumor size 
increases, it remains consistently high, ensuring reliable 
detection even for larger tumors. AUC-ROC and AUC-PR 
values indicate robust classification ability, while MCC reflects 
strong overall model reliability across all size ranges. Fig. 2 and 
Table I showcase the model's strong diagnostic performance 
across all tumor size categories, with the highest accuracy, 
sensitivity, and specificity for tumors smaller than 2 cm. While 
performance slightly decreases as tumor size increases, it 
remains consistently high, ensuring reliable detection even for 
larger tumors. AUC-ROC and AUC-PR values indicate robust 
classification ability, while MCC reflects strong overall model 
reliability across all size ranges. 

Fig. 3 and Table II summarizes the model’s diagnostic 
performance across varying tumor size categories, with the 
highest accuracy, sensitivity, and specificity observed for 
tumors measuring less than 2 cm. Although a slight decline in 
performance is noted as tumor size increases, the results remain 
consistently high, indicating the model’s reliability even in 
detecting larger tumors. Metrics such as AUC-ROC and AUC-
PR further underscore the model’s strong classification 
capability, while the Matthews Correlation Coefficient (MCC) 
reflects its overall reliability across all size ranges. Table III 
evaluates the model’s robustness under different noise levels in 
the input images. Clean images (0% noise) achieve peak 
accuracy at 95%. Notably, even with a significant noise level of 

45%, the model sustains a commendable accuracy of 77%. 
Averaged across all noise levels, the model delivers a strong 
performance with an average accuracy of 86%, AUC-ROC of 
0.90, and MCC of 0.81, affirming its resilience to image 
degradation. 

 
Fig. 2. Comparison with baseline models. 

 
Fig. 3. Model performance across different tumor sizes. 

TABLE I.  COMPARING VITS WITH CONTRASTIVE LEARNING AND XAI AGAINST TRADITIONAL CNNS 

Model Accuracy Precision Recall Specificity F1 Score AUC-ROC AUC-PR MCC 

Traditional CNN 85.2% 82.5% 88.7% 83.4% 85.5% 0.91 0.89 0.75 

ViT without Contrastive Learning 88.6% 86.4% 90.2% 87.1% 88.3% 0.93 0.91 0.78 

ViT with Contrastive Learning 90.1% 88.2% 91.5% 88.9% 89.8% 0.94 0.92 0.80 

Proposed Model 92.5% 90.3% 94.1% 90.9% 92.2% 0.96 0.94 0.85 

TABLE II.  MODEL PERFORMANCE METRICS ACROSS DIFFERENT TUMOR SIZES 

Tumor Size (cm) Sensitivity Specificity Accuracy Precision Recall F1 Score AUC-ROC AUC-PR MCC 

< 2 95.0% 98.0% 96.5% 94.5% 95.0% 94.7% 0.97 0.95 0.90 

2 - 5 92.0% 97.5% 94.8% 91.2% 92.0% 91.6% 0.95 0.93 0.85 

5 - 10 90.0% 96.0% 93.0% 88.5% 90.0% 89.2% 0.93 0.91 0.80 

> 10 85.0% 94.0% 89.5% 83.0% 85.0% 84.0% 0.90 0.88 0.75 
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TABLE III.  IMPACT OF SALT-AND-PEPPER NOISE ON CLASSIFICATION MODEL PERFORMANCE 

Salt & Pepper Noise Level (%) Accuracy Precision Recall F1 Score AUC-ROC MCC 

0% 95.00% 94.00% 96.00% 95.00% 98% 90% 

5% 93.00% 92.00% 94.00% 93.00% 97% 88% 

10% 91.00% 90.00% 92.00% 91.00% 95% 86% 

15% 89.00% 88.00% 90.00% 89.00% 93% 84% 

20% 87.00% 86.00% 88.00% 87.00% 91% 82% 

25% 85.00% 84.00% 86.00% 85.00% 89% 80% 

30% 83.00% 82.00% 84.00% 83.00% 87% 78% 

35% 81.00% 80.00% 82.00% 81.00% 85% 76% 

40% 79.00% 78.00% 80.00% 79.00% 83% 74% 

45% 77.00% 76.00% 78.00% 77.00% 81% 72% 
 

Fig. 4, Fig. 5, Table IV and Table V present detailed 
performance metrics across various tumor color categories, 
including sensitivity, specificity, accuracy, precision, recall, F1 
score, AUC-ROC, AUC-PR, and MCC. The model shows the 
highest sensitivity and specificity for lighter-colored tumors, 
with a gradual decrease observed for darker and more 
heterogeneous tumors. A similar pattern is evident in accuracy 
and other classification metrics such as precision, recall, and F1 
score. While AUC-ROC and AUC-PR remain high across all 

categories, the MCC values demonstrate a slight downward 
trend, suggesting reduced reliability as tumor color complexity 
increases. Finally, Table V reinforce the model’s strong 
diagnostic capability across all tumor color categories. It 
performs best with light-colored tumors but continues to 
maintain high sensitivity, specificity, and accuracy even with 
darker and heterogeneous tumors. AUC-ROC and AUC-PR 
scores further confirm the model’s robust classification ability, 
ensuring reliable detection across diverse tumor presentations. 

TABLE IV.  PERFORMANCE METRICS FOR TUMOR CLASSIFICATION BY COLOR CATEGORY 

Tumor Colour Category Sensitivity Specificity Accuracy Precision Recall F1 Score 
AUC-

ROC 

AUC-

PR 
MCC 

Light-Coloured Tumors 96.0% 97.0% 96.5% 95.0% 96.0% 95.5% 98% 97% 92% 

Moderate-Coloured Tumors 94.0% 96.0% 95.0% 93.0% 94.0% 93.5% 97% 96% 90% 

Dark-Coloured Tumors 92.0% 95.0% 93.5% 91.0% 92.0% 91.5% 96% 95% 88% 

Heterogeneous-Coloured Tumors 90.0% 93.0% 91.0% 89.0% 90.0% 89.5% 94% 93% 85% 

TABLE V.  EVALUATION OF CLASSIFICATION METRICS ACROSS TUMOR COLOR CATEGORIES 

Metric Light-Colored Tumors Moderate-Colored Tumors Dark-Colored Tumors Heterogeneous-Colored Tumors 

Sensitivity (Recall) 96.0% 94.0% 92.0% 90.0% 

Specificity 97.0% 96.0% 95.0% 93.0% 

Accuracy 96.5% 95.0% 93.5% 91.0% 

Precision 95.0% 93.0% 91.0% 89.0% 

F1 Score 95.5% 93.5% 91.5% 89.5% 

AUC-ROC 98% 97% 96% 94% 

AUC-PR 97% 96% 95% 93% 

MCC 92% 90% 88% 85% 

 
Fig. 4. Impact of tumor color category on classification performance metrics. 
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Fig. 5. Variation in classification performance metrics by tumor color category. 

V. CONCLUSION 

This study effectively demonstrated that the integration of 
Vision Transformers (ViTs), Contrastive Learning, and 
Explainable AI (XAI) can significantly improve both the 
accuracy and interpretability of liver cancer detection models. 
The proposed system achieved a notable classification accuracy 
of 92.5%, outperforming conventional CNN-based approaches 
by a margin of 8%. With a sensitivity of 94.1% and a specificity 
of 90.9%, the model proved especially reliable in identifying 
early-stage liver cancer. Notably, for tumors smaller than 2 cm, 
the sensitivity reached 95.0%, underscoring the model’s ability 
to detect smaller and potentially more elusive malignancies. 

The system also showed strong resilience to image quality 
issues, maintaining a solid 77% accuracy even with 45% salt-
and-pepper noise. An average AUC-ROC of 0.90 further 
highlighted the model's robustness under challenging 
conditions, supporting its ability to generalize well across 
various imaging scenarios and tumor characteristics. 
Importantly, the incorporation of XAI techniques allowed the 
model to provide visual insights into its decision-making 
process, enhancing transparency and building confidence 
among clinicians. These results not only validate the 
effectiveness of the proposed approach but also lay the 
groundwork for future advancements. Potential areas for further 
research include combining multiple imaging modalities, 
adapting the model for real-time clinical use, and exploring more 
advanced AI techniques to push detection capabilities even 
further. Overall, this work contributes meaningfully to the field 
of AI-driven diagnostics, offering a practical and powerful 
solution to aid in early liver cancer detection and ultimately 
improve patient care outcomes. 
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