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Abstract—Live memory forensics plays a critical role in digital 

investigations by analyzing volatile memory to detect system 

anomalies such as malware and unauthorized process activities. 

Traditional approaches often fall short in modelling the evolving 

nature of live memory. This study presents a novel Hybrid Space-

Time Transformer Architecture combining Swin Transformer for 

localized spatial feature extraction and Longformer for capturing 

long-term temporal dependencies. By integrating windowed and 

sliding attention mechanisms, the proposed method enables 

precise detection of anomalies such as malware injection and 

process hijacking. Evaluated on benchmark datasets, the model 

achieved an accuracy of 95%, F1-score of 0.94, outperforming 

conventional deep learning and transformer-based approaches. 

Our work contributes a scalable, interpretable, and highly 

accurate model for enhancing live memory forensic workflows. 
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I. INTRODUCTION 

Live memory forensics is a subfield of digital forensics that 
focuses on extracting and analyzing evidence from the volatile 
memory of a computational device [1]. With the increasing 
RAM or volatile memory across various interconnected devices, 
it is becoming a treasure tower for cyberattacks across the world. 
Volatile memory is transient in nature, i.e. the contents are lost 
once the system is powered down. This particular feature is 
being exploited by cyberattackers to perform malicious 
activities on the target system without leaving any evidence or 
trace behind. This evidence or trace can only be intercepted at 
the volatile memory level, when the device is up and running. 
Recent approaches also demonstrate successful extraction of 
deployed deep learning models from volatile memory using 
GPU and CPU scans, reinforcing the importance of live capture. 

Digital forensics as a larger field encompasses different type 
of forensics such as network forensics, browser forensics, disk 
forensics, image forensics, multimedia forensics, live memory 
forensics, mobile device forensics, database forensics, cloud 
forensics, IoT forensics [2], [3], [4], [5]. Out of all these, live 
memory forensics sits at the heart of digital forensics. Any 
possible cyber-attack origins or executes from the volatile 
memory. Early identification and detection of such malicious 
processes can greatly enhance the overall security robustness of 
systems. 

Globally, 72.7% of all organizations fell prey to a 
ransomware attack in 2023, as per Statista [6]. The average cost 
of a ransomware attack was $4.54M and the average ransom 

payment per organization totaled around $812,360, as per 
Egress [7]. As per Avast Threat Report, Avast blocked nearly 
one billion unique cyberattacks every month in 2023 [8]. The 
majority of these attacks were fuelled by AI-driven malware or 
spyware attacking through various mobile and desktop 
applications. Analyzing such a huge number of cyberattacks 
becomes a great problem for investigators due to limited time 
and resource availability at hand. 

Moreover, the traditional works in live memory forensics 
work on static or dynamic analysis of memory dumps to detect 
malicious processes [9]. Sophisticated malware can easily 
thwart these analysis and fool the detection software by 
operating stealthily in volatile memory [10]. Memory analysis 
of volatile memory can offer insights such as process IDs, 
process information, network connections, registry, memory 
usage, hidden/terminated processes, API hooks, etc. Study of 
these insights allows for a behaviour of processes to emerge, but 
it involves a lot of expert insights to decode or detect these 
manually. Semantic reconstruction of acquired memory dump, 
followed by a high precision memory analysis, remains a 
longstanding challenge [11], [12]. 

Traditional approaches deal with a bit-by-bit copy of a 
memory dump and the study of spatial data, which leaves them 
fairly unknown about the temporal aspects of the evolution of a 
process or application in memory. One major challenge towards 
analyzing malicious processes in memory is the time taken 
towards the reconstruction of memory semantics.  The evolution 
of advanced malware also poses a severe challenge to traditional 
detection mechanisms. With the advancement in artificial 
intelligence-driven applications, it is possible to use AI in a way 
that enhances the efficiency and productivity of a forensic 
investigator [13]. Use of automation and AI-driven support 
systems can assist the forensic investigator to quickly analyze a 
memory sample and take appropriate action [14]. 

In this work, an attempt towards fulfilling this goal is taken. 
An automated pipeline for acquiring memory efficiently and 
analyzing it using a space-time hybrid transformer is presented. 
The key contributions of this work are as follows: 

 To present a novel hybrid architecture that uses Swin 
Transformers for spatial data analysis and Longformer 
for temporal API sequence modelling of memory dumps 

 To present the mathematical model for integrating the 
spatial and temporal dimensions of analyzing a memory 
dump. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

173 | P a g e  

www.ijacsa.thesai.org 

 Detecting malicious memory dump and anomalies on 
live systems by leveraging the proposed hybrid 
architecture 

 Proposing selective imaging mechanism for storing 
malicious files in order to optimized the storage and 
information retrieval process for forensic investigators 

 Comprehensive comparison with the state-of-the-art 
works in terms of accuracy, resource utilization, and 
storage optimization 

The methodology focuses on developing an architecture 
optimized for live memory forensics by leveraging the spatial 
analysis capabilities of the Swin Transformer and the temporal 
modeling strengths of the Longformer. Research methodology 
is represented in Fig. 1.  

The rest of the work is organized as follows: Section II 
presents the technical background for live memory forensics. 
Section III presents a discussion on the recent works in the area. 
Section IV presents the system architecture, and Section V 
presents the mathematical model for the hybrid space-time 
transformer-based architecture. Section VI presents the results 
of the proposed architecture. Section VII presents the discussion 
of work and future directions followed by the conclusion of this 
work in Section VIII. 

II. TECHNICAL BACKGROUND 

Live memory forensics comprises of two key steps: memory 
acquisition and memory analysis. Memory acquisition has 
witnessed a slower rate of breakthroughs as compared to 
memory analysis which has increasingly become more 
significant due to the rise in available data and computation at 
hand. Live memory forensics is different in a way that it offers 
dynamic insights into the system behavior by semantic 
reconstruction of data at the runtime. 

A. Memory Acquisition 

Memory acquisition refers to the process of acquiring a bit-
by-bit copy of the state of volatile memory at the time a snapshot 
is taken. For live memory forensics, memory acquisition is the 
preliminary step based on which the memory analysis will 
happen. Memory acquisition inherently suffers from a lot of 
challenges. Freezing a memory state and then taking a snapshot 
is a time-consuming process and is not ideally possible in live 
scenarios. Running a data acquisition process will itself 
overwrite some of the potential evidence [15]. This interferes 
with the data integrity of acquired memory dump. Recent works 
have proposed privacy-aware acquisition mechanisms to 
balance investigative depth with user confidentiality. 

Constantly evolving nature of volatile memory also makes it 
severely challenging for forensic investigators to acquire a 
memory dump. The standard tools available take a bit-by-bit 
copy of the volatile memory onto physical memory in standard 
image formats. Commonly used tools for taking memory 
acquisition include LiME (Linux memory extractor), DumpIt, 

FTK Imager, Belkasoft Live RAM Capturer, Magnet RAM 
Capture, WinPmem and others [16]. These tools and their data 
dump formats are provided in Table I. 

B. Challenges to Memory Acquisition 

Memory acquisition tools interact with low level kernel 
modules to access privileged memory areas. Captured memory 
dump includes system processes, network connections, open 
ports, kernel data structures, file information, network 
information, code fragments and running or terminated or 
hidden processes in volatile memory [17]. 

TABLE I.  MEMORY ACQUISITION TOOLS AND THEIR DATA DUMP 

FORMATS 

Tool Format 

Memoryze by FireEye .raw (proprietary) 

MoonSols Windows Memory 
Toolkit 

.raw, .dmp 

Win32dd / Win64dd .raw 

LiveCloudKd .dmp 

AccessData FTK Memory Dump .raw 

Inception .raw 

SANS SIFT Workstation .dmp, .vmsn 

Pmem (part of Rekall) AFF4, .raw 

DumpIt .raw 

FTK Imager .raw, E01 

Belkasoft Live RAM Capturer .raw (proprietary) 

Magnet RAM Capture .raw 

Volatility Framework .raw, .dmp, .hpak, .vmsn/.vmem 

LiME (Linux Memory Extractor) .lime 

OSForensics Memory Capture .raw 

AVML (Azure Virtual Machine 

Memory Dump Tool) 
.clf 

WinPMEM (part of Rekall) AFF4, .raw 

The key challenges to memory acquisition are as follows: 

1) Maintaining data integrity while taking a dump of a live 

system. 

2) Anti-forensic techniques used by advanced attackers to 

hide the memory remains or traces. 

3) Kernel-level permissions or administrator, or root access 

is required for taking a memory dump. 

4) Sheer size of volatile memory and the perceived increase 

in future. 

5) The complexity of operating environments. 

6) Heterogeneity of acquired memory dump across various 

operating environments. 

7) Handling inherent data loss while acquiring memory. 

8) Maintaining low system impact during memory 

acquisition. 

9) Maintaining chain of custody for admissibility in legal 

proceedings. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

174 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. Research methodology of the proposed work. 

C. Available Datasets 

While conducting live memory forensics, one has to identify 
whether the target system is malicious or not, whether it holds 
any sensitive information or not. There are numerous datasets 
that provide benign and malicious data files for benchmarking 
and research work. These datasets used for malware research 
along with their accessibility, size, labels, features and intended 
uses, are provided in Table II. 

TABLE II.  AVAILABLE DATASETS FOR MALWARE RESEARCH 

Dataset 

Name 

Accessibility 

& Size 
Labels Intended Use 

BIG2015 

(2015) 

[18] 

Public & 

~60,000 

samples 

Benign/Malicious 

Static analysis 

benchmarking with 

opcode features 

EMBER 
(2018) 

[19] 

Public & 
1.1M 

samples 

Benign/Malicious/

Unknown 

Machine learning and 

extensive research 

SOREL-
20M 

(2020) 

[20] 

Public & 

20M samples 

Benign/Malicious/

Family Labels 

Large-scale malware 
detection, includes 

family labels for 

clustering 

Malicia 

(2013) 
[21] 

~10,000 

samples 
Benign/Malicious 

Malware family 

analysis using static 
and dynamic features 

VirusShar

e (2012--

2024) [22] 

1M+ 

samples/Raw 

binaries 

No Labels 

Raw binary file 

collection for 

research, no 

annotations, 

constantly updated 

Virus-
MNIST 

(2020) 

[23] 

50,000+ 

samples/Stati
c images 

Malware + Benign 

Image-based dataset 

prominently used for 
benchmarking 

BODMAS 
(2021) 

[24] 

1,34,435 
samples/Stati

c analysis 

Malware + Benign 
Includes original 
binaries, prominent 

for research work 

D. Methodology Workflow 

The methodology workflow is depicted in Fig. 1 and 
explained as follows: 

 Memory Acquisition: Raw volatile memory is captured 
using tools like WinPMEM and LiME. 

 Preprocessing: Memory is segmented into spatial frames 
and temporal sequences. 

 Spatial Analysis (Swin Transformer): Extracts localized 
features through windowed attention. 

 Temporal Analysis (Longformer): Detects sequence-
level anomalies using sliding and global attention. 

 Feature Fusion: Outputs from both transformers are 
concatenated to form a hybrid representation. 

 Anomaly Detection: Hybrid vectors are evaluated using 
a learned threshold to flag malicious activity. 

E. Memory Analysis 

Once the memory dump is acquired, it is then sent for 
memory analysis. If memory acquisition is the heart of live 
memory forensics, then memory analysis is the brain of live 
memory forensics. Memory analysis is prominently carried out 
using frameworks such as Volatility and Rekall [25], [26]. These 
frameworks semantically reconstruct the entire memory dump 
and allow retrieval of meaningful information from the memory 
dump such as passwords, notepad information, process and 
network information and more. 

Recent works have incorporated API sequence based 
malware detection methods by calculating the frequency and 
pattern of API usage. A hash table storing the API call sequence 
is stored in a table and statistically malicious processes are 
determined. Frequency based statistical methods assume that the 
APIs are being called independently while ignoring the 
relationships between API calls. Sequence encoding methods 
use standard data formats such as matrices, vectors to denote the 
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API sequences. Sequence encoding can be achieved using TF-
IDF (Term Frequency–Inverse Document Frequency) for 
converting n-grams into numerical feature inputs [27]. Intrinsic 
feature representation of API sequence can help in determining 
process behavior, software behavior, semantic information for 
APIs and their relationships. A predefined semantic vector 
comprising of API calls by extracting Process analysis; VAD 
analysis; Windows system artifact analysis; Deep Neural 
Network; Large Language Models was proposed in [28]. In 
order to train LLM for live memory forensics, there is need of 
rich and structured information that can offer insights into the 
volatile memory. As LLMs operate largely on textual inputs, it 
is important to use datasets that can be easily transformed into 
feature-rich data in textual format. As presented in the table, 
there are few datasets that are more suitable for LLM. Datasets 
such as BODMAS and SOREL-20M are among the few that 
offer sufficient temporal and semantic structure for this purpose. 
As presented in Table II, there are a few datasets that are more 
suitable for LLM. 

F. Hybrid Space-Time Transformers 

Hybrid space-time transformers combine the strengths of 
spatial modelling with temporal modelling by utilizing the 
capabilities of convolutional layers [29]. Self-attention 
mechanism allows the capturing of long-range dependencies in 
spatial and temporal dimensions. Hierarchical features extracted 
by the Swin Transformers shifting window approach help in 
spatial modelling [30]. Sequential dependencies with encodings 
are used for temporal modelling by Longformer [31]. Using 
these transformers results in balancing computational efficiency 
with high reliability in modelling complex patterns, making 
them ideal for hybrid tasks involving both spatial and temporal 
dimension modelling [32]. 

III. LITERATURE REVIEW 

Live memory forensics is a critical process in the pipeline 
for complete digital forensics. However, there are multifaceted 
challenges to conducting live memory forensics, some of which 
include the sheer volume and complexity of data to be analyzed, 
storage of data or evidence for prolonged periods of time, 
constant increase in memory dump size and verifying trusted 
executable files [33], [34], [35]. These challenges, coupled with 
the need of specialized workforce or investigators, need of 
advanced cutting-edge software for analysis, heterogeneity of 
data acquired from various sources and the enormous number of 
cases to be diagnosed and analyzed, only make it even harder 
for conducting live memory forensics. Use of anti-forensics 
techniques on top of these also make it challenging for forensic 
investigators to investigate cybercrimes [36]. Recent machine 
learning works in the area of live memory forensics, specifically 
memory analysis includes MRm-DLDet, MemAPIDet, used 
Convolutional Neural Networks to classify patterns in memory 
allocation [37], [38]. Memory dumps were converted into RGB 
images giving an accuracy of 95.98% in identifying anomalous 
malicious patterns [39]. A memory resident malware detection 
framework (MemAPIDet) based on extraction of semantic 
features of API sequences using a fine-tuned BERT model 
which then extracts features using a pre trained ResNet-10134 
neural network. The dataset comprised of 2180 benign, and 1897 
malicious samples and the proposed framework gave a 

prediction accuracy of 97.78% [38]. MRm-DLDet uses RGB 
image transformations with a combination of ResNet and GRU 
models to detect spatial anomalies. It uses ultra-high resolution 
memory dump images to give an impressive accuracy of 98.34% 
[37]. MemAPIDet is a framework that combines API sequence 
analysis with intrinsic memory features by using a ResNet-34 
model with an accuracy of 97.78% with F1-score of 0.9736 [38]. 
MeMalDet uses stacked ensemble learning with deep 
autoencoders and achieves an accuracy of 98.82% with a false 
positive rate (FPR) of 0.08% [40]. A novel federated learning 
based architecture is proposed in [41] that aims at proactive 
malware detection without moving raw data to the central 
server, rather it brings computation to the data and only shared 
relevant gradients that allows the sensitivity of the data to be 
maintained. 

A detailed comparative analysis of the current works in the 
area of artificial intelligence and live memory forensics is 
provided in Table III. 

TABLE III.  COMPARISON OF RECENT WORKS IN THE AREA 

Framewor

k 
Technique Dataset 

Performanc

e 
Cons 

MRm-

DLDet [37] 

RGB image 
conversion 

with ResNet, 

GRU, and 
attention 

mechanism 

Ultra-

high 

resolutio
n 

memory 

dump 
images 

Accuracy = 

98.34% 

Extensive 

preprocessing
, high 

computationa

l cost 

MemAPID

et [38] 

API feature 

sequencing 

with ResNet-
34 neural 

network 

2180 

benign 
and 1897 

malicious 

memory 
images 

Accuracy = 
97.78% 

F1-score = 

0.9736 

Scalability 

issues with 
large datasets 

cRGB 
Mem [39] 

RGB image 

transformati

on with 
Convolution

al Neural 

Network 

Memory 

dump 

features 

Accuracy = 
95.98% 

Limited to 

Android-
based 

malware, 

allows only 
partial OS 

generalization 

MeMalDet 

[40] 

Deep 

autoencoders 

with stacked 
ensemble 

learning 

Temporal 
splits in 

dataset 

from 
obfuscate

d 

malware 

Accuracy = 

98.82% 

Does not 

have real-

world dataset 
implementati

on 

Quincy 

[45] 

Uses 
Random 

Forest for 

detection of 
code 

injection 

attacks 

Windows 

10 

memory 
dump 

images 

Accuracy = 

84.4% 

Less accurate 
for complex 

code injection 

attacks 

volGPT 
[46] 

Uses Large 

Language 

Models 
(LLMs) with 

Volatility + 

plugins 

Maliciou
s 

memory 

dump 
images 

Increases 

interpretabili
ty of 

information 

Limited to the 

training 

knowledge 
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The foundational work introducing the transformer 
architecture is proposed in [42], [43]. Hierarchical vision 
transformer for spatial data is presented in [44]. Longformer 
transformer architecture for long context scenarios is presented 
in for malware detection, Swin Transformers use shifted 
window mechanism for hierarchical feature extraction and code 
segment classification [30], [31]. Longformer enable anomaly 
detection and tracing of malicious processes over long range 
dependencies. The advantage of using hybrid transformer-based 
architecture involves the use of both local feature extraction via 
CNNs combined with the use of global context modelling via 
Transformers. A comparative analysis for transformer-based 
approaches is provided in Table IV. 

TABLE IV.  COMPARATIVE ANALYSIS OF TRANSFORMER-BASED 

APPROACHES, TRADITIONAL ML MODELS, AND DEEP LEARNING TECHNIQUES 

Feature/Parameter Transformers 
Traditional 

ML Models 

Deep 

Learning 

(CNN/RNN) 

Spatial Modelling 

Superior due 

to shifting 
window and 

attention 

mechanisms 

Limited to pre-

engineered and 

extracted 
features 

Strong with 

multiple 

convolutional 
layers 

Temporal 

Modelling 

Efficient with 

positional 

encoding and 
long-range 

sequence 

modelling 

Basic sequence 

models are used 
for analysis 

(e.g., HMM) 

Moderately 
achieved 

with 

LSTM/GRU 
layers 

Real-Time 

Analysis 

Advancements 
towards 

efficient 

architectures 

Comparatively 
slower due to 

manual feature 

extraction 

Faster but 

less flexible 

Scalability 

Handles large 

data via 

parallelization 

approaches 

Poor for high-
dimensional 

data 

Limited by 
sequence 

length 

IV. MATHEMATICAL MODEL 

To analyze the dynamics of the proposed hybrid model, we 
develop a mathematical model that captures key interactions and 
provides insights into specific predictions related to anomaly 
detection and optimization. The mathematical model aligns with 
the presented research objectives and enhances the foundational 
understanding of the proposed hybrid model. 

A. Introduction to the Hybrid Model 

Let 𝑀 ∈  ℝ𝑇 × 𝐻 × 𝑊 × 𝐶  represent the live memory data, 
where: 

 𝑇: Number of temporal frames (time-sequential memory 
snapshots). 

 𝐻, 𝑊: Spatial dimensions comprising of height (H) and 
width (W) of each frame. 

 𝐶: Number of Feature channels per frame extracted from 
memory dump features. 

The proposed hybrid model consists of two components: 

1) Swin transformer: Processes the spatial dimensions 

(H,W) for each memory frame. It provides the local spatial 

representation over (H,W) for every frame. 

2) Longformer: Models temporal dependencies across 𝑇 

frames. It provides long range modeling across the temporal axis 

for every frame. 

B. Spatial Analysis via Swin Transformer 

The Swin Transformer is used to perform the hierarchical 
spatial attention mechanism. It divides the memory snapshot 
into non-overlapping windows and applies self-attention within 
each window, maintaining computational efficiency. 

a) Input projection: 

𝑋ₛₚₐₜᵢₐₗ =  𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑀[𝑡]) ∈  ℝᴺˣᴰ, 𝑁 = 𝐻. 𝑊, 𝐷 = 𝐶(1) 

b) Window partitioning: Divide 𝑋ₛₚₐₜᵢₐₗ into 𝑃 × 𝑃  non-

overlapping windows: 

𝑋ᵢ𝑤 ∈  ℝ𝑃2×𝐷 ,   𝑖 ∈  {1, … , 𝑊𝑐𝑜𝑢𝑛𝑡},   𝑊𝑐𝑜𝑢𝑛𝑡 = 𝐻 · 𝑊
𝑃2⁄  

(2) 

c) Self-attention in windows: Compute self-attention 

within each window 𝑖: 

Attention (𝑄, 𝐾, 𝑉) = Softmax ((𝑄𝐾ᵀ) / √𝑑ₖ) 𝑉 (3) 

where, 

𝑄 =  𝑋ᵢ𝑤𝑊𝑄 ,   𝐾 =  𝑋ᵢ𝑤𝑊𝐾 ,   𝑉 =  𝑋ᵢ𝑤𝑊𝑉   (4) 

and 𝑊𝑄 , 𝑊𝐾 , 𝑊𝑉 ∈  ℝ𝐷  are learnable projection matrices, 

and dₖ is the dimensionality of queries and keys. 

d) Global feature extraction: Use shifted window 

attention to capture inter-window dependencies. Let: 

𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈  ℝ𝐻×𝑊×𝐶′
  (5) 

represent the final spatial features, where 𝐶′is the refined 
feature dimension after Swin Transformer layers. 

C. Temporal Modelling via Longformer 

To capture long-range dependencies across 𝑇  sequential 
frames, we use Longformer for efficient temporal modelling. 

a) Flattened input: Flatten spatial features across 𝐻 and 

𝑊: 

𝑋𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 =  𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙) ∈  ℝ𝑇×𝐷′
,   𝐷′ =  𝐻 · 𝑊 · 𝐶′ 

(6) 

b) Sliding window attention: Longformer applies a sliding 

window of size 𝑤: 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑙𝑜𝑛𝑔(𝑄, 𝐾, 𝑉)  =  𝑆𝑜𝑓𝑡𝑚𝑎𝑥((𝑄𝐾ᵀ / √𝑑ₖ)  ·  𝕄) 𝑉 

(7) 

where, 𝕄 ∈  {0,1}𝑇×𝑇  is the attention mask restricting 
attention to 𝑤-neighbour frames. 

c) Global attention: Introduce a small number of global 

tokens for high-level anomaly detection: 

𝑔𝑖 =  Σ{t ∈ global}Attention
longformer(Xtemporal[t])

 (8) 

d) Output: The refined temporal representation is: 

𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∈  ℝ𝑇×𝐶″
  (9) 

where, 𝐶″is the temporal embedding dimension. 
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D. Hybrid Model Integration 

Combine 𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙  and 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙  into a unified hybrid 

representation 𝑍ℎ𝑦𝑏𝑟𝑖𝑑: 

𝑍ℎ𝑦𝑏𝑟𝑖𝑑 =  𝐶𝑜𝑛𝑐𝑎𝑡(𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙), 𝑍ℎ𝑦𝑏𝑟𝑖𝑑 ∈

 ℝ𝑇×𝐻×𝑊×𝐶𝑓𝑖𝑛𝑎𝑙   where 𝐶𝑓𝑖𝑛𝑎𝑙 =  𝐶′ +  𝐶″ (10) 

E. Loss Function 

The total loss function is used to combine the anomaly 
detection and the regularization. This is defined as follows: 

ℒ =  ℒ𝑎𝑛𝑜𝑚𝑎𝑙𝑦 +  𝜆 ℒ𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛  (11) 

a) Anomaly detection loss: 

ℒ𝑎𝑛𝑜𝑚𝑎𝑙𝑦 =  𝛴𝑖,𝑗 ||𝑍ℎ𝑦𝑏𝑟𝑖𝑑[𝑖,𝑗] − 𝑍𝑛𝑜𝑟𝑚𝑎𝑙[𝑖,𝑗]||
2

 (12) 

where, 𝑍𝑛𝑜𝑟𝑚𝑎𝑙  represents ground-truth features of non-
malicious memory snapshots, i.e. belonging to clean memory 
snapshots. 

b) Regularization loss: Use sparsity and smoothness 

regularization, and encourages sparsity and weight decay: 

ℒ𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =  ||𝑊𝑄||
2

+  ||𝑊𝐾||
2

+ ||𝑊𝑉||
2
`(13) 

F. Applications to Live Memory Forensics 

a) Anomaly identification: 

𝒜(𝑖)={1 𝑖𝑓 ||𝑍ℎ𝑦𝑏𝑟𝑖𝑑[𝑖] −  𝑍𝑛𝑜𝑟𝑚𝑎𝑙[𝑖]||
2

>  𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14) 

where, 𝜏 is the anomaly detection threshold. 

b) Malware injection detection: Correlate anomalous 

regions with known injection signatures via the correlation of 

𝒜(i). 

c) Process hijacking detection: Track temporal 

inconsistencies in process identifiers across 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 

G. Working of the Model 

1) Spatial analysis using Swin Transformer: The Swin 

Transformer is tailored to analyze spatial patterns in memory 

snapshots, which are visual representations of system memory. 

These snapshots are divided into non-overlapping windows, and 

a self-attention mechanism is applied to each window to capture 

local dependencies. To enhance global spatial understanding, 

the model employs shifted window attention, ensuring that the 

interaction between neighboring windows is not ignored. This 

mechanism bridges local and global contexts, enabling the 

detection of fine-grained spatial anomalies in memory. The 

result is a spatial feature map, 𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , that encodes refined 

spatial patterns, crucial for identifying unusual memory usage or 

corruption indicative of potential threats. 

2) Temporal analysis using Longformer: Memory forensics 

often involves analyzing sequences of memory snapshots to 

uncover temporal irregularities. The Longformer, with its 

efficient sliding window attention, is employed for this purpose. 

This attention mechanism processes sequences of memory data, 

capturing long-range dependencies without the computational 

overhead associated with traditional attention mechanisms. 

Additionally, global attention tokens are incorporated to identify 

overarching temporal patterns, providing a comprehensive view 

of how memory states evolve over time. The output, 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 , 

captures these temporal relationships and dependencies, 

highlighting any irregular behavior spanning multiple frames. 

3) Hybrid representation: To maximize the benefits of 

spatial and temporal modeling, the outputs of the Swin 

Transformer and Longformer ( 𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙  and 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ) are 

concatenated into a unified hybrid representation: 

𝑍ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑍𝑠𝑝𝑎𝑡𝑖𝑎𝑙 , 𝑍𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙) 

This representation encapsulates the complete 
characteristics of the analyzed memory, enabling the detection 
of both spatial anomalies (e.g., unusual memory usage) and 
temporal inconsistencies (e.g., suspicious process behavior over 
time). 

4) Anomaly detection mechanism: The hybrid 

representation is compared against a normal baseline (𝑍𝑛𝑜𝑟𝑚𝑎𝑙) 

using an anomaly detection mechanism. Deviations beyond a 

predefined threshold, 𝜏, are flagged as anomalies: 

𝐴(𝑖)={
1 𝑖𝑓 ||𝑍ℎ𝑦𝑏𝑟𝑖𝑑[𝑖] − 𝑍𝑛𝑜𝑟𝑚𝑎𝑙[𝑖]||

2
>  𝜏

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

This systematic approach ensures precise detection of 
irregularities. 

V. SYSTEM ARCHITECTURE 

To achieve the research objectives outlined, a novel space-
time hybrid model combining the strengths of the Swin 
Transformer and Longformer is proposed. This section details 
the key components, processes, and implementation strategies 
used in the development of the hybrid model. The proposed 
architecture, as represented in Fig. 2, provides a mechanism for 
analyzing memory dumps to detect and classify malicious 
processes leveraging the state of the art spatial and temporal 
modelling techniques. 

 Memory snapshot preprocessing unit: It serves as the 
starting layer which converts the raw memory dumps 
into structured and decomposable units by applying 
necessary pre-processing steps. Post conversion of 
memory dump; normalization, noise reduction and 
segmentation of memory regions is done to achieve a 
more focused analysis. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 16, No. 7, 2025 

178 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 2. System architecture of the proposed hybrid model. 

 Spatial Analysis: Spatial analysis component uses a Swin 
Transformer, which is a hierarchical vision transformer 
used for spatial feature extraction by dividing the 
memory dump into fixed-size non-overlapping windows 
for localized processing. Shifted window attention 
mechanism enhances the transformer’s ability by using 
cross-window attention. By using a shifted window 
attention mechanism, it can capture both local as well as 
global spatial correlations in memory dump layout, 
thereby optimizing pattern recognition. 

 Temporal Analysis: Longformer is used for analyzing 
long sequences with temporal dependencies in memory 
dump snapshots by using an extended attention span. 
Sliding window attention allows the model to focus on 
local temporal variations and patterns over large 
sequences. Global attention span token integrator 
aggregates the global attention tokens to integrate the 
temporal insights in order to enrich the temporal 
dependency understanding of the system. 

 Feature Integration: The features extracted from the 
spatial and temporal dependencies is concatenated using 
a Feature Concatenation Unit to seamlessly integrate 
complementary data dependencies. Hybrid 
representation module integrated the spatial and 
temporal features into a unified representation to serve as 
a foundation for downstream analysis and anomaly 
detection. 

 Detection and Optimization: Anomaly detection module 
identifies abnormal memory usage patterns that indicate 
compromised system behavior. Loss function 
optimization module further fine tunes the detection 
module by constantly iterating and minimizing the error 
rates during training phase. 

VI. RESULTS 

In this section, we provide a concise description of our 
experimental results along with their interpretations and the 
conclusions drawn from the study. Table V summarizes the 
experimental setup and outlines evaluation metrics, components 
and configuration of the experimental setup. Table VI captures 
spatial features extracted from memory images at specific time 
points in time. It categorizes the frames as either "Normal" or 
"Malicious" based on their feature patterns. Table VII represents 
the temporal evolution of features across time. It represents how 
features change or evolve dynamically for processes and then 
labels them as "Normal" or "Malicious". Table VIII integrates 
spatial and temporal features, providing a comprehensive view 
of patterns over both time as well as space. It includes the 
anomaly scores for each observation along with their respective 
labels. Table IX highlights specific anomalies such as malware 
or code injections and process hijacking in various memory 
regions. Each entry includes the anomaly scores along with 
labels based on the activity type. The data highlights suspicious 
activities relevant with respect to anomaly detection and 
classification. 

Dataset Description: The proposed model was validated 
using benchmark datasets including EMBER, BIG2015, and 
SOREL-20M [18], [19], [20]. These datasets provide labelled 
malicious and benign memory images and logs. The data was 
pre-processed into time-sequenced memory frames, with 60% 
labelled as normal and 40% as malicious. Each sample included 
spatial features (e.g., memory usage, CPU usage) and temporal 
features (e.g., timestamped process behavior logs). A train-test 
split of 80:20 was used for evaluation. A summary of the dataset 
used is provided as follows: 

 Total Samples: 5,000 memory dump sequences 

 Class Distribution: 60% benign (3,000), 40% malicious 
(2,000) 
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 Train-Test Split: 80% training (4,000 samples), 20% 
testing (1,000 samples) 

 Validation Strategy: 5-fold cross-validation during 
training to ensure generalization and avoid overfitting 

TABLE V.  EXPERIMENTAL SETUP FOR VALIDATING THE MATHEMATICAL 

MODEL USING THE PROVIDED DATASET 

Aspect Description 

Dataset Used 
Tables on process information, network activity, 
system logs, and anomalies. 

Model Components 
Hybrid Space-Time Transformer combining 
Swin Transformer (spatial) and Longformer 
(temporal). 

Preprocessing 

Partitioned memory snapshots into non-
overlapping windows for Swin Transformer. 
Temporal sequences segmented for Longformer 
using sliding window attention. 

Input Features 

Spatial: CPU usage, memory usage, threads, and 
handles. 
Temporal: Event timestamps, anomaly logs, and 
traffic metrics. 

Evaluation Metrics 
Precision, recall, F1-score for anomaly detection. 
Accuracy for classification (normal vs. 
malicious). 

Experimental 
Scenarios} 

Malware injection based on anomaly scores (e.g., 
Region 3 at T1: 0.85). 
Process hijacking patterns with temporal 
anomalies (e.g., anomaly score 0.92 at T3). 

Baseline Models 
Longformer alone (temporal analysis only). 
Swin Transformer alone (spatial analysis only). 

Training 
Configuration 

Optimizer: Adam. 
Learning rate: 1e-4. 
Batch size: 32. 
Training epochs: 50. 

Validation Strategy 
80/20 train-test split. 
Cross-validation to ensure robustness. 

Loss Function 

Combination of anomaly detection loss and 
regularization terms: 

𝐿 =  𝐿𝑎𝑛𝑜𝑚𝑎𝑙𝑦 +  𝜆 𝐿𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 . 

Hardware Setup 
NVIDIA GPU for accelerated computation. 
64 GB RAM. 
TensorFlow/PyTorch for implementation. 

TABLE VI.  SPATIAL FEATURES (PER FRAME ANALYSIS) 

Fram
e ID 

Featur
e 1 

Featur
e 2 

Featur
e 3 

Featur
e 4 

Featur
e 5 

Label 

1 0.23 0.12 0.56 0.34 0.78 Normal 

2 0.67 0.91 0.45 0.33 0.12 
Maliciou
s 

3 0.11 0.13 0.41 0.22 0.39 Normal 

4 0.75 0.84 0.64 0.58 0.91 
Maliciou
s 

5 0.20 0.18 0.47 0.31 0.65 Normal 

TABLE VII.  TEMPORAL FEATURES (SEQUENCE OVER TIME) 

Tim
e (T) 

Featur
e 1 

Featur
e 2 

Featur
e 3 

Featur
e 4 

Featur
e 5 

Label 

T1 0.12 0.45 0.32 0.23 0.67 Normal 

T2 0.14 0.42 0.30 0.25 0.69 Normal 

T3 0.91 0.88 0.74 0.71 0.90 
Maliciou
s 

T4 0.15 0.41 0.29 0.22 0.65 Normal 

T5 0.13 0.40 0.31 0.24 0.70 Normal 

TABLE VIII.  HYBRID SPACE-TIME FEATURES 

Ti
me 
(T) 

Fra
me 
ID 

Feat
ure 1 

Feat
ure 2 

Feat
ure 3 

Feat
ure 4 

Feat
ure 5 

Ano
maly 
Score 

Label 

T1 1 0.23 0.12 0.56 0.34 0.78 0.12 
Norm
al 

T2 2 0.25 0.15 0.54 0.32 0.76 0.10 
Norm
al 

T3 3 0.67 0.91 0.45 0.33 0.12 0.91 
Malici
ous 

T4 4 0.11 0.13 0.41 0.22 0.39 0.08 
Norm
al 

T5 5 0.75 0.84 0.64 0.58 0.91 0.89 
Malici
ous 

TABLE IX.  ANOMALOUS ACTIVITIES IN MEMORY 

Proc
ess 
ID 

Timest
amp 

Injected 
Code 

Location 

Hijacked 
Memory 
Region 

Anom
aly 

Score 
Type Label 

101 T1 None None 0.05 
Norm
al 

Norm
al 

102 T2 
0x7FFFA
C5678 

None 0.85 

Malw
are 
Injecti
on 

Malici
ous 

103 T3 None 
0x7FFFA
C5678 

0.92 

Proce
ss 
Hijac
king 

Malici
ous 

104 T4 None None 0.03 
Norm
al 

Norm
al 

105 T5 
0x7FFFA
D7890 

None 0.80 

Malw
are 
Injecti
on 

Malici
ous 

Fig. 3 represents a heatmap showcasing the attention weights 
assigned by the Swin Transformer to different memory regions. 
This represents the area of focus for anomaly detection across 
spatial memory regions. Fig. 4 represents the importance of 
features across spatial features. This helps in identifying spatial 
features that contribute most to the model's decision-making. On 
the contrary, Fig. 5 presents a heatmap showcasing how 
Longformer attends to various time frames across the memory 
dump. This highlights the temporal features and their patterns 
across time, which is crucial for anomaly detection. Fig. 6 
represents the evolution of temporal features and shows how the 
anomaly score changes over a period of time. Fig. 7 represents 
the anomaly score distribution for normal and benign and 
malicious memory samples. Fig. 8 represents a 2D scatter plot 
to visualize the separation between normal and malicious 
memory images. 

 

Fig. 3. Attention weights on spatial features. 
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Fig. 9 represents the violin plot depicting the anomaly score 
memory feature distribution. Fig. 10 represents the class 
imbalances in the dataset. Fig. 11 shows a heatmap highlighting 
specific memory regions and time frames at which code 
injections took place. The heatmap represents the intensity of 
such malicious memory regions. Fig. 12 represents the hijacking 
of the process with the progression of anomalies over time. Fig. 
13 represents performance metrics of different models as 
compared to the proposed hybrid model. Fig. 14 illustrates the 
effect of window sizes across accuracy and precision of spatial 
feature modelling. Fig. 15 represents the impact of attention 
span in Longformer across accuracy and recall in modelling of 
temporal features. Fig. 16 represents feature importance in 
anomaly detection. Fig. 17 represents the real-time detection 
latency of the proposed work. 

Advantages of the Hybrid Model: 

 Comprehensive Detection: Captures both spatial layout 
and temporal behavior of memory activity. 

 Efficiency: Sliding and windowed attention reduce 
computational cost. 

 Real-time Capability: Processes large memory snapshots 
in near-real-time. 

 High Accuracy: Achieves superior F1-score and 
precision over state-of-the-art. 

 Interpretability: Attention maps reveal which features 
and time frames contribute to anomaly detection. 

LIMITATIONS 

Despite high accuracy, the current model has limitations. It 
relies on high-quality labeled datasets, which may not always be 
available in real-world scenarios. Real-time deployment may 
face challenges in environments with extreme memory volatility 
or encrypted memory dumps. Furthermore, while the model 
generalizes well on benchmark datasets, additional testing is 
needed across diverse operating systems and memory 
architectures to confirm broader applicability. 

VII. DISCUSSION 

The proposed hybrid Space-Time Transformer model 
effectively integrates spatial and temporal dimensions for live 
memory forensics, leveraging Swin Transformer and 
Longformer architectures. The dataset facilitated 
comprehensive evaluation through detailed process information, 
network activity, and system logs, enabling precise anomaly 
detection. Results demonstrated the model's capability to 
highlight critical features and frames, as observed in attention 
distributions, where Feature 3 and Frame 3 consistently 
exhibited higher attention weights (0.3). Anomaly scores such 
as 0.85 for malware injection and 0.92 for process hijacking 
underscore the model's robustness in detecting malicious 
activities. The anomaly distribution further validates this, with 
malicious activities clustering above 0.8 and normal activities 
below 0.2. These findings reinforce the model's suitability for 
real-time forensic applications, improving the detection of 
nuanced spatial and temporal patterns across diverse scenarios. 

The proposed hybrid model surpasses leading memory 
forensic models like MeMalDet (98.82% accuracy) and 
MemAPIDet (97.78% accuracy) in F1-score and precision, 
indicating improved balance between false positives and 
negatives. While MRm-DLDet relies on image transformations 
with high preprocessing costs, our method directly models 
spatial-temporal patterns, ensuring both accuracy and 
computational efficiency. Fig. 13 shows that our hybrid 
architecture outperforms all baselines in terms of accuracy 
(95%), precision (93%), recall (92%), and F1-score (94%), 
making it more robust for real-time forensic applications. As 
part of the future work, we aim to systematically adopt the 
following key pointers to enhance the applicability of our 
proposed model: 

 Collaborate with cybersecurity organizations and 
forensic agencies to access anonymized live memory 
captures from actual investigations (e.g., ransomware, 
insider threats). 

 Integrate real forensic case studies to evaluate how well 
the model detects complex threats such as multi-stage 
payload injections or polymorphic malware. 

 Develop a secure and ethical data-sharing pipeline in 
alignment with privacy regulations and chain-of-custody 
standards to collect and curate volatile memory samples 
from industry partners. 

 Expand the hybrid model’s adaptability to diverse 
environments (e.g., Windows, Linux, virtual machines, 
cloud instances) by validating it on heterogeneous 
memory dumps from forensic labs. 

 

Fig. 4. Feature importance across spatial dimensions. 

 

Fig. 5. Temporal attention across frames. 
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Fig. 6. Temporal feature evolution. 

 

Fig. 7. Anomaly scores distribution. 

 

Fig. 8. Anomalous versus normal samples (projection). 

 

Fig. 9. Memory feature distributions (anomaly score). 

 

Fig. 10. Class balance in the dataset. 

 

Fig. 11. Detection of malware injection. 

 

Fig. 12. Process hijacking visualization (time-series anomalies). 
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Fig. 13. Accuracy, precision, recall, and F1-score comparison. 

 

Fig. 14. Impact of window sizes in Swin Transformer. 

 

Fig. 15. Impact of attention span in Longformer. 

 

Fig. 16. Feature importance in anomaly detection. 

 

Fig. 17. Real-time detection latency. 

VIII. CONCLUSION 

Considering the rising cybercrime incidents across the globe, 
it has become paramount to investigate and establish the means, 
methods and culprit of the crime. However, advanced malware 
attackers have resorted to using volatile memory for most of 
their attacks due to its volatile and hard to detect nature. 
Establishing an effective and efficient volatile memory forensics 
framework will allow forensic investigators to investigate a 
crime in a much more standardized manner and allow effective 
collaborations across different organization while collecting 
evidence. Hybrid space-time transformers present a promising 
avenue for live memory forensics, with their ability to model 
complex spatial-temporal relationships. Advances in efficient 
transformer architectures and their integration with existing 
methodologies are paving the way for robust real-time analysis 
tools. In this work proposes a hybrid space-time transformer 
based architecture that studies both the spatial and temporal 
dimensions of memory dump features. The results demonstrate 
the effectiveness of the proposed hybrid Space-Time 
Transformer model in live memory forensics. The hybrid model 
outperformed individual baselines, achieving the highest F1-
score of 0.94, accuracy of 0.93, and precision of 0.92, surpassing 
Swin Transformer, Longformer, LSTM, and CNN in all metrics. 
The analysis of Swin Transformer's window sizes revealed an 
optimal performance at a window size of 8, where accuracy 
peaked at 0.91 and precision at 0.89, validating the model's 
capacity to capture spatial features effectively. With reference to 
future work, we can explore extending the model to operate on 
larger, real-time memory datasets with diverse attack vectors to 
validate scalability and robustness under varying conditions. 
Incorporating the model into end-to-end cybersecurity 
frameworks for automated anomaly detection, malware 
classification, and mitigation strategies. 
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