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Abstract—In 6G Cognitive Radio Internet of Things (CR-IoT) 

networks, multi-band spectrum sensing cooperatively provides 

access to extensive spectrum resources. The suggested learning-

based multi-band multi-user cooperative spectrum sensing 

(M2CSS) scheme addresses intelligent spectrum access 

challenges. A cooperative strategy is introduced into a dueling 

deep Q network to facilitate multi-user reinforcement learning.  

This study selects the most suitable IoT secondary users (SU) to 

sense channels using the proposed learning-based M2CSS 

scheme. With the restriction that each IoT SU can serve as a 

front-runner for a single network and that there will only be one 

leader for individual frequency, the proposed work expresses an 

optimization difficulty in choosing leaders through k-means and 

SOM, who can efficiently interact with other SUs. Next, choose 

matching cooperative SUs for each frequency and express 

additional optimization problems. Following this phase, a subset 

of cooperative secondary users (SUs) senses frequencies and 

employs accurate knowledge to determine the channels' 

availability in a distributed manner. The simulation findings 

demonstrate significant improvements in detection performance, 

preventing the misuse of specific devices, providing reliable 

sensing data over extensive IoT connections, and achieving 

energy efficiency—all essential for IoT implementations. These 

advantages make the proposed M2CSS system suitable for the 

massive machine-type communications anticipated in 6G IoT 

scenarios. 

Keywords—Cooperative spectrum sensing; reinforcement 

learning; k-means leader selection; self-organizing map 

I. INTRODUCTION 

The concept of cognitive radio (CR) involves a 
communication device that can recognize and adapt to the 
spectral characteristics of its surroundings. By utilizing the 
spectral gaps (or holes) that approved consumers, also referred 
to as primary users (PUs), do not use, CR skill makes it 
possible for no licensed or secondary users (SUs) to identify 
these accessible portions of the spectrum [1]. Four distinct 
stages or functions are involved in the operation of spectrum 
reuse in a cognitive radio network (CRN): spectrum sharing, 
spectrum mobility, spectrum sensing (SS), and spectrum 
decision. A crucial step in identifying particular or additional 
PUs is SS, which indicates whether the sensed spectrum is 
engaged or unoccupied [2]. This mission is typically performed 
in particular groups, but the current multiband SS paradigm 
uses multiple bands that aren't always attached [3]. Demand for 
spectrum is rising because of the appearance of the Internet of 
Things (IoT), sixth generation (6G), past systems, and big data 

[4]. Spectrum scarcity and underutilization issues may be 
resolved with the help of CR skills [5]. Secondary users (SUs) 
in CRNs resourcefully contact the spectrum without 
intrusiveness through the broadcast of legitimate or PUs [6]. 
Each SU might have to sense every channel in single-band 
cooperative spectrum sensing (CSS). On the other hand, 
because of constraints on hardware and power consumption, 
each SU in multi-band CSS is given access to a subset of 
channels. By enabling access to a large spectrum with less 
difficulty and computational expense, this can significantly 
improve system performance. Additionally, low hand-off 
frequency, high throughput, and decreased sensing energy 
consumption are provided by multi-band CSS [7]. This essay 
focuses on multi-band CSS to enhance detection performance 
in CRNs and optimize SU scheduling for sensing a subset of 
channels. 

Most previous methods only consider one user, which has 
fewer sensing capabilities than a real multi-user or multi-
channel environment. As a result, SUs use a fully distributed 
model for multi-user spectrum access [8], which entails 
creating a deep multi-user reinforcement learning technique 
[9]. Multi-band CSS can be divided into centralized and 
distributed types [5]. SUs send multi-band, centralized CSS 
information, including multiple channels' worth of locally 
observed data, to an FC (fusion center) [10]. The fusion center 
used this information before deciding which channels were 
available. CRNs are bounded by limitations of the centralized 
method, including high latency and a single point of failure. 
[11]. SUs share local observations of several channels with 
neighbors in a multi-band distributed CSS to facilitate 
cooperative decision-making. Wireless sensor networks, mesh 
networks, Mobile ad-hoc networks, Vehicular ad-hoc 
networks, Flying Ad-hoc networks, etc., remain a few 
examples of disseminated CRNs [12]. Distributed CRNs are 
especially well-suited for newer Internet of Things applications 
like public safety networks and habitat monitoring. In 
disseminated CRNs, SUs typically have constrained 
computational and battery resources. Therefore, when 
developing multi-band CSS schemes for distributed CRNs, 
trade-offs must be made between energy resources, 
computational capacity, and performance limitations. 

A difficulty with multi-band CSS is the development of 
SUs to detect radiofrequency (RF) in specific networks in 
distributed CRNs. Depending on the channel state data, SUs 
may be able to sense channels in different ways. Consequently, 
if multiple SUs have similar locally sensed information, 
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selecting cooperative SUs efficiently to sense a subset of 
frequencies can lower sensing overhead and enhance 
organization presentation [13].  The CRN's size grows when 
new SUs join the existing SUs. New SUs must be given 
multiple channels to divide the sensing load equally between 
the original and new SUs in the network. To do this, research 
on the topic is essential. The actions and residual energy of the 
previous frame determine each frame's initial energy level.  In 
addition to being sporadic and unpredictable, the electrical 
energy obtained from the harvested RF may not always have 
enough power to optimize throughput. Therefore, the CRN 
must be energy efficient to balance the amount of energy 
harvested with the energy consumed during sensing and 
transmission activities. There is a sensing-throughput trade-off 
[14] in typical cognitive radio networks (also known as 
unconstrained energy counterparts), which depends on sensing 
accuracy and sensing time. However, the results of the sensing 
process (i.e., the sensing duration and accuracy) are energy-
constrained in the context of the energy harvesting CRN, 
making the energy harvesting-based CRN (EH-CRN) a 
scenario with increasing complexities. The SS is the primary 
mechanism that enables spectrum findings, which is not 
possible without all other CR functions. It is the driving force 
behind concentrating solely on this component of CR. In [15–
16], it has developed into a method that enhances spectral 
efficiency by providing access to SH, or vacant frequency 
bands, during intermittent times. 

The primary objective of this research is to develop and 
analyze an efficient SS framework for CRN in 6G-enabled 
Internet of Things (6G CR-IoT) environments that addresses 
critical spectrum scarcity challenges through opportunistic 
spectrum access while ensuring minimal interference to 
licensed users. The SOM-based cooperative SS technique 
carries out this function by having the CRN node sample the 
targeted spectrum in the range of 0.1 to 1 THz and determine 
whether or not an incumbent signal is present. SS seeks to 
reduce any interference that the incumbent might encounter 
from CRN nodes, in addition to identifying resources that are 
easily accessible. As a result, the SS scheme that the CR nodes 
use for identification significantly impacts the CRN and its 
performance, regardless of the incumbent network's licensing 
status. By allowing IoT devices to strategically access and 
share available spectrum resources while utilizing the 
improved capabilities of 6G networks, 6G CR-IoT seeks to 
address significant issues with spectrum scarcity. 

A. Study Organization 

The following sections are organized as follows: Section II 
provides the literature survey with existing gaps. Section III 
emphasizes the detailed proposed model with suitable diagrams 
and mathematical equations. Section IV gives the experimental 
results with four sub-sections under it, and Section V 
concludes this research. 

II. LITERATURE SURVEY 

Recently, studies have been carried out to improve multi-
band CSS performance in CRNs [2, 5, 8–26]. The type of 
CRN—decentralized or centralized—and the particular 
techniques used by different authors determine how effective 
these systems are. Most multi-band CSS schemes in the 

existing literature were created with centralized CRNs in mind. 
Through simultaneous optimization of the detection inception, 
a multiband multi-user scheme is proposed in [17] to maximize 
the throughput of a centralized CRN with imperfect sensing 
information. A centralized CRN-based multi-band CSS scheme 
proposed in [18] overcomes the issues of spectrum resources 
and limited energy. The plan uses wireless occurrence 
dynamism gathering and maximizes throughput by optimizing 
sensing time. For centralized CRNs, an ideal multi-band CSS 
scheme with chance disruptions is put forth in [19]. The 
method reduces interference to PUs while optimizing CRN 
throughput. For centralized CRN, a multi-band sensing time-
adaptive structure is also suggested in [20] to increase 
throughput and lessen interference to PUs. An artificial 
immune procedure built on the clonal selection theory is used 
to overcome this obstacle. Responsive hand-off in expression is 
reduced in centralized multi-band CRNs according to [21]. 
Sample-based sensing is an effective method for this purpose.  
In [22], the authors details that to maximize detection 
performance, the smallest number of SUs is chosen to sense 
frequencies based on the network situation. Centralized CRNs 
in [23] suggested a sub-Nyquist multiband CSS protocol to 
lower the overhead of computation and transmission using 
resident sub-Nyquist samples. For centralized CRNs with 
malevolent users, a multi-band CSS scheme is suggested in 
[24]. To limit the throughput of CRNs and counteract the threat 
of malevolent attackers, the authors devised an optimization 
problem. To improve system performance, a multiband CSS 
scheme based on deep learning is suggested in [25] for 
centralized CRN. This scheme allows SUs to sense networks 
independently and forecast the effects of indolent forecasting 
on the frequency of state-owned during the opening period. As 
a result, sensing requires less energy. Two secreted coatings, 
each containing 40 neurons, are used in the implementations 
for this purpose. The algorithms broadly impact the 
performance of centralized CRNs, and it continues to be 
exceptional as the CRN's dimension grows. Due to their 
computational intensity, these processes can result in growth 
that is above average, as evidenced by higher SUs and 
dispersed CRNs. 

The investigations in [26] specifically pinpoint the ideal 
sensing policy. They are an expansion of [26] that establishes 
the ideal detection threshold and sensing policy for enhancing 
the anticipated throughput while taking collision limits and 
energy causality into account. To increase average throughput 
while preserving energy, the relationship between the ideal 
sensing length and the matching sensing threshold was looked 
at. Based on the energy arrival rate and the correlation of the 
primary traffic, the theoretical maximum throughput of the SU 
in an energy harvesting-based system is considered, 
considering energy causality and collision constraints. The 
trade-off between SS and SU throughput is examined in [27] 
for a typical energy-unconstrained CRN. This maximizes both 
the average throughput and the harvested energy by 
optimizing the decision-making time. Based on it, the work 
[28] aims at proposing an optimum sensing time for the 
overlay energy harvesting (EH) CRN, in order to improve SU 
throughput and the harvested RF energy. Additionally, [29] 
performs the optimal SS and SU transmissions so as to 
maximize the residual energy. A common obstacle detected in 
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these works is the unpredictable nature of energy derived from 
ambient RF sources and the inability of it to always provide 
the maximal throughput in EH-CRNs. The SU split the channel 
into two sub-channel sets. One is used to detect the PU, while 
the other is used to record the RF of the PU signal. To ensure 
throughput, gathered energy is supplied in the transmission slot 
to offset sensor energy loss. Nevertheless, there is no mention 
of the specific energy source used for data transmission. In 
summary, although a significant amount of research has been 
done on non-arbitrary ways to assign channels for sensing by 
involving SUs in disseminated CRNs, these schemes are not 
remarkably scalable because of their limited computational 
capabilities. All cognitive radios participate in CSS by 
measuring the licensed spectrum and making autonomous 
decisions. Typically, the cognitive radio network is made up of 
multiple SUs and PUs, with the goal of the SUs being able to 
share multi-channel spectrum properties with the PUs without 
interfering with the PUs. Every SU optimizes its own SS 
performance while exchanging sensing data with the others. 
SU cannot be sure of the channel environment and is unable to 
choose until after trying a few times to sense a new channel. As 
a result, the partial observability issue can be resolved by 
modeling the channel exchange as a Markov chain. Every SU 
is synchronized with the designated time slot.  The sensing data 
and the information broadcast historically are the two periods 
that make up the time slot structure. Every SU in the system 
independently senses the slot at the start of the sensing 
historical event. Subsequently, the SU merges data with 
received data and transmits its sensing data to other users. 
Every SU, then sends out its decision. An acknowledgment 
signal is sent to confirm the accomplishment or failure of the 
broadcast before the sensing period ends. 

III. RESEARCH METHODOLOGY 

A. Model Creation 

The system model is created in this section by assigning 
base stations to secondary users, calculating the received 
powers, visualizing the network deployment, and generating 
random coordinates for both primary and secondary users. 
Using the existing k-means clustering, this section divides both 
new and current secondary users into various clusters 
according to their coordinates. It also selects new secondary 
users' leaders using proposed self-organizing maps. SS is 
carried out in this part by comparing secondary users' received 
power from base stations with a sensing threshold. The sensing 
result array indicates identified primary users with a value of 1. 

B. Proposed SOM-Based Leader Selection 

Choosing a leader involves determining which SU on each 
channel m is the best to listen to. Leaders must also select 
cooperative SUs for sensing each channel. Let, SNR_mk and 
SNR_avg represent the SNR standards of the kth SU sensing 
the mth channel, respectively, the preferred and attached 
thresholds for the normal SNR value across different 
frequencies. The channel m leader must establish a minimal 
association between its indication wrapping and the signal 
envelopes of the SUs to choose cooperative SUs with distinct 
nearby sensed data. The leader for each channel is the SU 
whose SNR is near SNR_avg, as defined in Eq. (1) and Eq. (2): 

∝𝑚𝑘= { 
 1,   𝑖𝑓 𝐾𝑡ℎ 𝑆𝑈 𝑖𝑠 𝑎 𝑙𝑒𝑎𝑑𝑒𝑟 𝑓𝑜𝑟 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑚

0,                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (1) 

The following is a definition of the optimization problem 
preparation for a similar collection of channel leaders: 

𝑚𝑖𝑛
∝𝑚𝑘

: ∑ ∑ 𝛼𝑚𝑘 × |𝑆𝑁𝑅𝑚𝑘 − 𝑆𝑁𝑅𝑎𝑣𝑔|

𝑀

𝑚=1

𝐾

𝑘=1

 

Subject to: C1 : ∑ ∝𝑚𝑘= 𝑐𝑘, ∀ 𝑘𝑀
𝑚=1 , 

C2:∑ 𝛼𝑚𝑘 = 1, ∀ 𝑚,𝑘
𝑘=1                 (2) 

The binary variable 𝑐𝑘is equivalent to 1 if the kth SU is a 
leader for a channel and 0 in all other cases. C1 ensures that a 
single SU can't simultaneously be chosen as a leader for 
multiple channels. C2, on the other hand, affirms that a single 
leader is selected for every channel. Combining these two 
restrictions ensures that every cooperative cluster has a distinct 
leader and channel. 

C. Reinforcement Learning (RL) for Resource Allocation 

According to the power received from the primary user, 
this section allocates available secondary users to primary 
users. Users who have been allotted are shown. This section 
applies a reinforcement learning algorithm to maximize 
resource distribution for every secondary user. The Q-learning 
algorithm trains a Q-table and mimics the environment to 
obtain rewards. Based on the rewards, the Q-table is updated, 
and metrics like energy consumption, false alarm rate, 
throughput, and probability of detection are calculated. A new 
line of inquiry for addressing SOM issues is the development 
of reinforcement learning (RL) techniques. The RL techniques 
shown in Fig. 1, don't need any prior understanding of the 
system model and can adjust to the spectrum environment. 
Because it is model-free, Q-learning is a significant 
reinforcement learning subfield with extensive applications in 
various settings. Finding the Q value for every state-action pair 
is the primary goal of Q-learning, a value iteration technique. 
Every SU uses the Q-learning approach, and based on recent 
action-observation experience and past channel occupation 
history, decides whether to sense the channel. Q-learning is 
effective when the state and action spaces are small. 

A new line of inquiry for addressing SOM issues is the 
development of reinforcement learning (RL) techniques. The 
RL techniques don't need any prior understanding of the 
system model and can adjust to the spectrum environment. 
Because it is model-free, Q-learning is a significant 
reinforcement learning subfield with extensive applications in 
various settings. Finding the Q value for every state-action pair 
is the primary goal of Q-learning, a value iteration technique. 
Every SU uses the Q-learning approach, and based on recent 
action-observation experience and past channel occupation 
history, decides whether to sense the channel. Q-learning is 
effective when the state and action spaces are small. DQN, 
which combines Q-learning and Reinforcement learning, has 
demonstrated considerable promise in solving the SOM 
problem. RL as a Markov chain in 2𝑁 states can accurately 
represent large-scale models, allowing them to continue 
performing well in large-scale scenarios. Channel selection in 

DQN is represented by <𝑆, 𝐴, 𝑅, S′>, where 𝑆∈{𝑆1,…,𝑆𝑁} 
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indicates the state space, 𝐴∈{1,… ,𝑁} indicates the action 

space, 𝑅 ∈ {0, 1} indicates the instant reward, and 𝑆 ′ 

indicates the next state. Every time slot begins with the current 
state (𝑆), which comprises all the previous observations and 
decisions. 

 

Fig. 1. RL framework for CRN. 

The Q network takes the 𝑆 as an input and predicts what 
the best action, Α, should be as an output, which denotes 𝐴 
sensing of a particular channel at time slot 𝑡. The system may 
reach the next state after taking action 𝐴 and receive a reward 
instantly. At last, the time slot record is saved in memory 𝐷, 
and it iterates again to 𝐷. And the experience memory is filled 
according to the random sampling. It samples 𝑚 records (𝑆, 𝐴, 
𝑅′) using experiences sampled from memory 𝐷 to derive the 
current target Q estimate. The associated in Eq. (3) is given as: 

y=R+γmaxa′Q(St+1, a′; θi
−)                    (3) 

The reinforcement output, denoted by y, is determined by 
the new experience. The approximation function created 

through prior expertise is represented by 𝑄 (St+1, 𝑎′; 𝜃−𝑖), 
where St+1 is the novel state resulting from action 𝑎, assuming 
the state St , and t is the time interval. The weightiness of the 
Q-network charity to calculate the objective at repetition i is 
represented by θi

−, and the discount rate is denoted by 𝛾. The 
loss function, which is expressed in Eq. (4) and Eq. (5), is the 
mean right-angled error between the value of the impartial 
purpose and the assessment of the definite purpose. 

Li(θi) = E[(Rt+1 + γ max
a′

Q (St+1, a′; θi
−) − Q(St, At;θi))2] 

(4) 

∇θiLi(θi) = E [(Rt+1 + γ max
a′

Q (St+1, a′; θi
−) −

Q(St, At; θi)) ∇θiQ(St, At; θi)])             (5) 

where, the estimate purpose designed by old understanding 
is represented by 𝑄 (St+1, 𝑎′; 𝜃−𝑖) and the estimate purpose 
designed by new understanding is represented by 𝑄 (St, 𝐴𝑡; 𝜃𝑖). 

IV. RESULTS AND DISCUSSION 

The states of the proposed M2CSS are the grouping of the 
operator's state on respective frequency, and the user's 
relationship to the PU, SU, data 1, data 2, and CBS, as shown 

in Fig. 2. Two simulated networks with different user and 
channel counts are employed to achieve accurate sensing in 
many user scenarios. The network implementation should take 
less time to yield positive outcomes. 

 

Fig. 2. M2CSS network deployment. 

D. K-means for Leader Selection (KMC) 

This stage uses similarities to classify recently joined SUs 
in the system that are interested in common assemblies. Fig. 3 
shows the organization process when new SUs attempt to 
intersect the CRN. The primary justifications for utilizing 
KMC in this work are its simplicity, speed, and low 
complexity. To locate the centroids in KMC, the maliciousness 
of the exercise set under consideration is computed. The 
centroids then state that the unlabeled set is confidential. The 
classifier in this study is created utilizing historical data from 
operational cooperative SUs. To classify the joining SUs, one 
needs to determine the centroids of each class. The CVM test 
results of current SU leaders are the lowest, and their SNR 
values are relatively close to the average SNR for each 
channel. Non-leaders, on the other hand, have larger SNR 
value spreads and high CVM test values. This implies that the 
training set should form two distinct clusters. Fig. 3 displays 
the filtered data as well as the current data points. Eigen 
vectors and values of the new and old data points were used to 
generate distribution contractions for them. The distributions 
differ from one another. Outliers must therefore be removed 
from freshly acquired data points. Fig. 3 shows the data points 
for leaving cooperative SUs. Interestingly, two separate SUs do 
not align with two marked departing data points. 

E. SOM Leader Selection 

Consequently, the data points from the operational 
cooperative SUs were split into two classes (see Fig. 4). The 
RL algorithm is utilized to do this. Channel leaders make up 
Class 1, and non-leaders make up Class 2. These class 
centroids serve as reference points for classifying new data 
instances. This procedure aids in distinguishing new data from 
Class 1 samples.  
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Fig. 3. K-means leader selection. 

 
(a) 

 
(b) 

Fig. 4. (a) Leader selection with SOM, (b) No-Leader selection with SOM. 

F. SNR Distribution of the Secondary Users 

The SNR for secondary users is determined as defined in 
Eq. (6), where  𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑝𝑜𝑤𝑒𝑟_𝑆𝑈_𝑏𝑠  is the established 
control of the secondary consumer from the base station, and 
𝑛𝑜𝑖𝑠𝑒_𝑝𝑜𝑤𝑒𝑟  is the noise power. When the sensing duties 
were distributed, the number of SUs sensing each frequency 
increased. This may result in the system using more energy. 
The incorporation of multiple SUs into the system can cause 
average SNR levels to surpass acceptable limits, resulting in 
compromised detection capabilities. Therefore, for a few 
freshly selected SUs, testing the average channel SNR 
condition and lowering the minimum required is necessary. If 
they find another channel, new SUs might not have to bother 
about sensing this one. This will enable the performance and 
energy to be recovered (see Fig. 5). 

 

Fig. 5. SNR distribution of SU. 

     𝑆𝑁𝑅𝑆𝑈 =  
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑝𝑜𝑤𝑒𝑟_𝑆𝑈_𝑏𝑠

𝑛𝑜𝑖𝑠𝑒_𝑝𝑜𝑤𝑒𝑟
                     (6) 
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G. Resource Allocation 

For illustration, it is considered that the user is distributed 
by channel with 10 joining and 10 existing SUs. Fig. 6 displays 
training data points or the data from the cooperative SUs 
currently used for sensing channels. The proposed work 
considers two features, resource allocation and SNR values, 
and defines a data point as a pair of binary feature standards for 
SU sensing at the mth frequency represented in Fig. 7. Both 
characteristics are scaled to depict the data points accurately. 
The disseminated version procedure for channel 2 of the 
recommended M2CSS and EM2CSS arrangements and the 
current multi-band schemes, RSSS, and ASSS, are shown in 
Fig. 8, Fig. 9, and Fig. 10. To simulate CRN systems, λmax is 
considered the learning rate, without losing generality. The 
suggested M2CSS and EM2CSS schemes establish the 
minimum and maximum K×I values for the number of 
designated SUs that can intelligently set a channel. 

 

Fig. 6. User distribution by channel. 

 

Fig. 7. Resource allocation for SU. 

 

Fig. 8. EM2CSS with different numbers of SU. 

 Before estimating each cooperative SU separately, ASSS 
selects them at random. Determining the test statistics and 
sensing a few examples based on the estimate. If the 
examination indicators are exceeding a specified boundary, SU 
is supposed to be able to sense primary user activity on the 
channel and execute preparation. It eliminates the need to sense 
that channel in any other way. Because of the approximation of 
the SUs' procedure in ASSS, there are generally fewer SUs in 
ASSS. SUs that were predicted to have poor sensing 
performance are dropped. RSSS selects cooperative SUs at 
random. Consequently, in M2CSS, EM2CSS, RSSS, and 
ASSS, respectively. 

 

Fig. 9. CRN throughput for SOM leader selection. 

A significant benefit of the proposed M2CSS and EM2CSS 
schemes is that they do not select dismissed cooperative SUs or 
those through comparable identified material for the mth 
channel. Nevertheless, when SUs are chosen by popular RSSS, 
SUs with comparable information may be chosen randomly, as 
the first selected SU possesses comparable sensing 
information, as seen in Fig. 9. In contrast, the third selected SU 
does not have original statistics for the alteration procedure. 
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This could result in increased computational complexity and 
expenses related to energy usage. The consensus point is 
reached in each case after 14 iterations, and the channel 
occupancy is calculated by comparing the obtained results to 
the threshold. The throughput results demonstrate that 
EM2CSS performs significantly better than M2CSS, and for all 
network sizes considered, both schemes provide excellent CRN 
throughput consequences. 

 
(a) 

 
(b) 

Fig. 10. (a) ROC with different CRN schemes using k-means, (b) ROC with 

different CRN schemes using SOM. 

Proceeding with the additional indicator, the CRN 
throughput presentation of the current schemes varies. For 
lower and higher CRNs, the combined PU throughput is 
compared to the combined untrue distress possibility (also 
called the PU security level). At a 10% false alarm probability, 
the most significant combined throughput is attained by the 
proposed EM2CSS scheme. Additionally, the M2CSS scheme 
achieves the same false alarm rate. However, it is achieved 
when the current ASSS scheme is used with the same false 
alarm possibility. The ROC curve in Fig. 10(a) and Fig. 10(b) 
shows that leader selection through SOM helps in achieving 
high probability of detection with less value of probability of 
false alarm as compare to existing k-mean. Therefore, the 

proposed EM2CSS structure fulfills the highest requirements 
of PU throughput in both inferior and superior CRN 
configurations. The combined sensing energy usage of the 
larger CRN's current RSSS and ASSS systems, as well as the 
indicated EM2CSS and M2CSS schemes. 

 

Fig. 11. Total energy consumption. 

The scheme's ability to drop SUs sensing specific 
frequencies with low-slung expected values correlates with this 
lowest value. On the other hand, the current RSSS scheme uses 
the most total energy for sensing. The highest energy 
consumption in RSSS is caused by randomly selecting 
cooperative SUs with no restriction on the number of SUs 
sensing each channel. Furthermore, by relaxing cooperative 
SUs, EM2CSS offers the benefit of distributing the sensing 
load among already-existing and newly joined SUs. Reduced 
energy consumption for sensing is made possible by the 
distribution of the sensing load. It is for this reason that Fig. 11 
shows that EM2CSS uses less sensing energy than M2CSS. As 
a result, the suggested EM2CSS enables respectable levels of 
sensing energy consumption and outstanding classification 
presentation in terms of discovery and quantity. 

V. CONCLUSION 

The SOM-based multi-band CSS schemes M2CSS and 
EM2CSS, which have been proposed to disseminate 6G-
enabled IoT CRNs, are discussed in this study. The proposed 
M2CSS architecture addresses two critical optimization 
challenges: intelligent cluster leader selection across frequency 
bands and dynamic secondary user accommodation within 6G 
CR-IoT networks. To choose a leader for every frequency and 
consistently accommodate SUs, the proposed work developed 
two optimization problems for the suggested M2CSS scheme. 
These problems are solved by the reinforcement learning 
algorithm in the EM2CSS scheme to offer a more effective and 
simplified method for allocating connection SUs to allocate a 
subsection of frequencies intelligently. The system architecture 
incorporates energy-efficient mechanisms that preserve 
network performance while reducing power consumption—a 
crucial requirement for resource-constrained IoT devices in 6G 
networks. The system has been relaxed to minimize energy 
consumption without compromising performance, and the 
joining SU selection process has been optimized to detect 
specific channels. Compared to the currently offered multi-
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band CSS schemes, reproduction consequences show that the 
recommended M2CSS arrangements select SUs through 
distinct nearby sensed evidence to preserve an effective 
agreement variation procedure and high-performance stages in 
lower and higher 6G IoT CRNs. While the proposed MBMU-
CR IoT framework is demonstrated via simulations, extending 
the work to hardware implementation could introduce 
additional complexity, but would significantly enhance the 
evaluation under real-world conditions. Incorporating the 
concepts of joint sensing and communication, along with 
integrated sensing and communication, can significantly 
enhance the performance of the proposed M2CSS. 
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